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Abstract
It has been shown that testicular germ cell development is critically dependent upon somatic cell
activity but, conversely, the extent to which germ cells normally regulate somatic cell function is
less clear. This study was designed, therefore, to examine the effect of germ cell depletion on
Sertoli cell and Leydig cell transcript levels. Mice were treated with busulphan to deplete the germ
cell population and levels of mRNA transcripts encoding 26 Sertoli cell-specific proteins and 6
Leydig cell proteins were measured by real-time PCR up to 50 days after treatment.
Spermatogonia were lost from the testis between 5 and 10 days after treatment while
spermatocytes were depleted after 10 days and spermatids after 20 days. By 30 days after
treatment most tubules were devoid of germ cells. Circulating FSH and intratesticular testosterone
were not significantly affected by treatment. Of the 26 Sertoli cell markers tested, 13 showed no
change in transcript levels after busulphan treatment, 2 showed decreased levels, 9 showed
increased levels and 2 showed a biphasic response. In 60% of cases changes in transcript levels
occurred after loss of the spermatids. Levels of mRNA transcripts encoding Leydig cell specific
products related to steroidogenesis were unaffected by treatment. Results indicate 1) that germ
cells play a major and widespread role in regulation of Sertoli cell activity 2) most changes in
transcript levels are associated with the loss of spermatids and 3) Leydig cell steroidogenesis is
largely unaffected by germ cell ablation.

Introduction
Germ cell proliferation, meiosis and differentiation during spermatogenesis is critically
dependent on the actions of follicle-stimulating hormone (FSH) and androgen mediated
through the Sertoli cells. Loss of androgens and, to a lesser extent, FSH disrupts
spermatogenesis (Lyon & Hawkes 1970, Kumar et al. 1997, De Gendt et al. 2004) while
depletion and loss of function of the Sertoli cells leads to massive degeneration of the
haploid germ cells and eventually to almost complete loss of germ cells (Russell et al. 2001).
Overall the Sertoli cells act to maintain spermatogenesis through provision of a structural
support, generation of a unique environment in which the germ cells develop, movement of
the germ cells as they progress through spermatogenesis and through secretion of factors
which aid germ cell development and differentiation (Mruk & Cheng 2004).
Spermatogenesis is highly organised and orchestrated by the Sertoli cells and appears, in
most mammals, as a wave within the tubule. While the role of the Sertoli cell in the process
of spermatogenesis is apparent, the extent to which germ cells regulate Sertoli cell activity is
less clear. Previous studies have shown that germ cell depletion can alter expression of
Sertoli cell genes (Jonsson et al. 1999, Maguire et al. 1993) and secretion of specific Sertoli
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cell proteins (McKinnell & Sharpe 1997, Guitton et al. 2000). In addition, co-culture
experiments have shown that factors secreted by the germ cells can influence Sertoli cell
activity (Boitani & Ritzen 1981, Le Magueresse & Jégou 1986, Syed et al. 1999, Vidal et al.
2001, Zabludoff et al. 2001, Delfino et al. 2003). Cryptorchidism has also been shown to
affect Sertoli cell activity (Johnston et al. 2004, O'Shaughnessy et al. 2007) although this
may be a direct effect of increased temperature on the Sertoli cells (Bergh & Soder 2007).
Overall, there has not been an extensive survey of either the role of germ cells in regulating
Sertoli cell gene expression in vivo or the extent to which overall Sertoli cell activity is
affected. In this study, therefore, we have treated outbred mice with busulphan and
measured changes in the level of 26 different mRNA species expressed specifically in the
Sertoli cells as germ cell depletion progresses.

Androgen secretion by the testis is dependent upon the Leydig cells which are regulated by
luteinising hormone (LH). There is also good evidence, however, that the Sertoli cells
influence Leydig cell activity and that ablation of the Sertoli cell population will lead to loss
of the Leydig cells (Russell et al. 2001). We have, therefore, also measured Leydig cell
activity and function in germ cell-depleted mice to determine whether the germ cells can
directly or indirectly affect the steroidogenic function of the testis.

Materials and Methods
Animals

Adult (15 weeks), outbred MF1 mice were purchased from Harlan UK (Bicester, UK). Mice
were given a single injection (IP) of busulphan (30mg/Kg) in DMSO/H2O (50/50 v/v) and
were killed 5, 10, 15, 20, 30 and 50d later. At each time point 3 or 4 control animals and 5
treated animals were killed to allow for any effects of ageing of the mice. No significant
differences between the control animals was seen and data from the control animals was
pooled for analysis.

One testis from each animal was frozen in liquid N2 while the other testis was weighed and
cut in half. One half was frozen for subsequent measurement of intratesticular testosterone
while the other half was fixed in Bouin's. Trunk blood was collected from animals and
serum used to measure circulating FSH.

Measurement of mRNA levels
Real-time PCR was used to quantify the content of specific mRNA species in testes at
different times following busulphan treatment. To allow specific mRNA levels to be
expressed per testis and to control for the efficiency of RNA extraction, RNA degradation
and the reverse transcription step an external standard (luciferase (Promega UK,
Southampton, UK)) was used (O'Shaughnessy et al. 2002, Baker & O'Shaughnessy 2001,
Johnston et al. 2004). Testis RNA was extracted using Trizol (Life Technologies, Paisley,
UK) and luciferase mRNA (5ng) was added to each testis at the start of the RNA extraction
procedure. Residual genomic DNA was removed from extracted RNA by DNAse treatment
(DNA-free, Ambion Inc, supplied by AMS biotechnology, UK ). The RNA was reverse
transcribed using random hexamers and Moloney murine leukemia virus reverse
transcriptase (Superscript II, Life Technologies, Paisley, UK) as described previously
(O'Shaughnessy & Murphy 1993, O'Shaughnessy et al. 1994).

Measurement by real-time PCR used the SYBR method in a 96-well plate format. Reactions
contained 5μl 2 × SYBR mastermix (Stratagene, Amsterdam, Netherlands), primer (100nM)
and template in a total volume of 10μl. The thermal profile used for amplification was 95°C
for 8min followed by 40 cycles of 95°C for 20 secs, 63°C for 20sec and 72°C for 30sec. At
the end of the amplification phase a melting curve analysis was carried out on the products
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formed and gel electrophoresis was carried out on representative samples to confirm product
size. The quantity of each measured cDNA was expressed relative to the internal standard in
the same sample which allows direct comparison of expression levels per testis between
different samples (Johnston et al. 2004).

Primers were designed using PrimerExpress software (Applied Biosystems, Warrington,
UK) using parameters described previously (O'Shaughnessy et al. 2007). The primers used
are shown in Table 1.

Measurement of hormone levels
Levels of FSH in the serum were measured using a commercial radioimmunoassay (RIA)
with rat standards (Amersham Biosciences, Little Chalfont, Buckinghamshire, UK). A
dilution curve of mouse serum was parallel with the standard curve generated by the RIA.
To measure intratesticular testosterone levels steroids were extracted from frozen hemi-
testes in ethanol and measured by RIA as previously described (O'Shaughnessy & Sheffield,
1990).

Histology
Testes were fixed overnight in Bouin's and stored in 70% ethanol. Testes were embedded in
Technovit 7100 resin, cut into sections and stained with Harris' hematoxylin and eosin.

Statistics
Effects of drug treatment were analysed initially by single factor analysis of variance
followed by post-hoc analysis using Fisher's test.

Results
Testis morphology

Busulphan treatment had no apparent effect on testis morphology up to day 5 (Fig 1A & B).
By day 10, however, spermatogonia had been depleted and by day 15 the number of
spermatocytes had been reduced (Fig 1C & D). Twenty days after busulphan treatment some
tubules contained only elongated spermatids and spermatozoa although other tubules still
contained round spermatids (Fig 1E). By 30 days nearly all tubulues were devoid of germ
cells although some spermatozoa were still present in a few tubules (Fig 1F). Fifty days after
treatment most tubules remained devoid of germ cells although early regeneration was
apparent in some tubules (Fig 1G). Progressive loss of germ cell populations was reflected
in declining testis weight (Fig 1H)

Hormone profiles
Circulating levels of FSH did not change after busulphan treatment (Fig 2). There was large
variation in intratesticular levels of testosterone between animals but no significant change
in response to busulphan treatment (Fig 2).

Germ cell genes
Expression levels of three mRNA species encoding markers of different germ cell
populations were measured following busulphan treatment to monitor loss of each
population. The three markers examined were Stra8, Spo11 and Tnp1 which show
predominant expression in spermatogonia, spermatocytes and spermatids respectively
(Oulad-Abdelghani et al. 1996;Shannon et al. 1999;Yelick et al. 1989). Levels of Stra8
mRNA were significantly reduced on day 5 and were barely detectable by day 10 (Fig 3).
The expression recovered slightly by 30 days but remained significantly less than control up
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to day 50 (Fig 3). Expression of Spo11 was normal up to day 10 but was significantly and
markedly reduced on day 15 with little recovery up to day 50 (Fig 3). There was no change
in Tnp1 expression up to 20 days but between 20 and 30 days there was a marked decline in
expression which was maintained up to 50 days.

Leydig cell specific genes
To determine whether Leydig cell function is affected by germ cell depletion levels of 5
Leydig cell specific mRNA species (Lhr, Star, Hsd3b6, Cyp17a1 and Cyp11a1) were
measured following busulphan treatment. No significant changes in transcript levels
encoding the LH-receptor, StAR protein or steroidogenic enzymes were seen following
busulphan treatment (Fig 4). There was, however, a significant decrease in mRNA encoding
PDGF-A 20 days after treatment.

Sertoli cell specific genes
To examine the effects of germ cell ablation on Sertoli cell activity the levels of 26 Sertoli
cell specific mRNA species were measured (Fig 5). There were no changes in the expression
levels of 13 mRNAs (Rhox5, Espn, Fshr, Tjp1, Aqp8, Fyn, Dhh, Ccnd2 , Wt1, Gata1, Sox9,
Msi1 and Inhba ). The remaining 13 mRNA species showed significantly altered levels after
treatment. Of these, 9 showed increased expression in response to busulphan (Cst9, Shbg,
Wnt5a, Clu, Il1a, Cldn11, Cys12, 4930486L24Rik (Testin) and Amh) while 2 showed
decreased expression (Spata2 and Sympk ) and 2 showed a mixed response (Trf and Inhbb).
Most mRNA species showed a late response to germ cell ablation (after 15 days) although 5
responded within 5 days (Cst9, Shbg, Inhbb, Wnt5a and Clu) and one within 15 days
(Spata2) (Fig 5).

Other testicular genes
Levels of mRNA encoding three products with unknown (BDEF36) or mixed somatic
expression (GATA4 and NR0B1) were also measured after busulphan treatment. Levels of
transcripts encoding the β-defensin BDEF36 and the transcription factor GATA4 increased
significantly 30 days after treatment with busulphan and remained high up to day 50 (Fig 6).
In contrast, Nr0b1 (Dax1) transcript levels were significantly reduced 50 days after
treatment (Fig 6).

Discussion
Busulphan induces apoptosis in spermatogonia within one week of treatment followed by a
second wave of apoptosis in meiotic spermatocytes after 2 weeks (Choi et al. 2004). The
expression pattern of germ cell markers was consistent with early loss of spermatogonia
through apoptosis followed by loss of spermatocytes after 2 weeks and subsequent loss of
spermatids between 20 and 30 days as existing spermatids mature and fail to be replaced.
Histological changes in the testis after busulphan were also consistent with the changes in
marker transcript levels although there tended to be a delay between loss of marker
expression and loss of a particular cell population. Overall the histological and marker data
indicates that spermatogonia entered apoptosis within 5 days of treatment followed by loss
of spermatocytes after day 10 and spermatids after day 15. By day 30 most tubules
contained only Sertoli cells and by day 50 germ cell repopulation was apparent in some
tubules. It should be noted that since busulphan is a cytotoxic drug there is a possibility that
it will also have direct effects on the somatic cells of the testis. It might be expected that any
such effects would be rapid and, within any one cell type, have a relatively non-specific
effect on transcript levels. Within the confines of the experimental design, however, no
effects of this nature were seen apart from some early increases in specific Sertoli cell
transcript levels (discussed below).
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Treatment with busulphan had no effect on intratesticular levels of testosterone confirming
previous studies which have shown no effect of germ cell ablation on testosterone levels
(Gomes et al. 1973, Morris et al. 1987, De Franca et al. 1994). Consistent with the failure to
alter testicular androgen levels, busulphan treatment had no effect on levels of mRNA
transcripts encoding proteins involved in steroidogenesis. Use of an external standard
control for the real-time PCR studies meant that transcript levels were normalised to the
whole testis and were, therefore, unaffected by changes in testis volume or cellular
composition induced by busulphan. In addition, total Leydig cell number is unaffected by
busulphan treatment in the adult mouse (O'Shaughnessy et al. 2003) and no corrections to
the measured transcript levels per testis were required (O'Shaughnessy et al. 2007). The
constant transcript levels per testis after busulphan treatment indicates, therefore, that there
is no change in level per Leydig cell. This failure of germ cell ablation to affect the
steroidogenic function of the Leydig cells in the adult animal contrasts with the reported
effect of germ cell ablation in the fetal or prepubertal rat (Boujrad et al. 1995a,b). Under
these circumstances Leydig cell number is reduced in the adult animal but testosterone
production per cell is increased (Boujrad et al. 1995a,b). This would suggest that germ cells
are required at the pre-pubertal stage for normal development of Leydig cell number and
function but that the Leydig cells become independent of germ cell regulation once the adult
cohort is formed. Alternatively, it has been shown that cryptorchidism appears to have
different effects on Leydig cell function in rats and mice (de Kretser et al. 1979, Jegou et al.
1983, Mendis-Handagama et al. 1990a,b, Murphy & O'Shaughnessy 1991) and it is possible
that there is a species difference in the Leydig cell response to germ cell depletion.

In contrast to the steroidogenic apparatus, levels of mRNA encoding PDGFA were
significantly reduced coinciding with ablation of the spermatid population. This growth
factor is required for normal Leydig cell development around puberty and is predominantly
expressed in the Sertoli cells in the immature testis but in the adult animal it is localised in
the Leydig cells (Gnessi et al. 2000, Fecteau et al. 2006). Altered expression of Pdgfa after
busulphan suggests, therefore, that germ cell ablation can affect specific Leydig cell
functions and this is likely to occur through changes in Sertoli cell activity.

The failure of germ cell ablation to affect circulating FSH levels was somewhat surprising
since busulphan caused transient but significant changes in Inhibin βB –subunit mRNA
levels and previous studies have shown that busulphan will increase circulating FSH levels
in the rat between 6 and 10 weeks after injection (Gomes et al. 1973, Morris et al. 1987).
The lack of a similar phenomenon in the mouse may be indicative of a species difference but
a contributing factor in this study may also be that an outbred strain of mouse was used. This
has the advantage that inbred strain-specific effects are avoided but at the expense of an
overall increase in animal to animal variability which may have masked subtle changes in
hormone levels.

Despite failure to affect androgen or FSH levels, germ cell ablation had a marked and
widespread effect on the Sertoli cells. This study examined 26 mRNA species which have
been shown, within the testis, to be predominantly or exclusively expressed in the Sertoli
cells (Table 1). Of the genes studied over 50% showed altered expression following germ
cell ablation and since hormone levels were unaffected this is likely to be a direct response
to the loss of germ cells. In addition, since busulphan treatment does not affect Sertoli cell
number (O'Shaughnessy et al. 2003) changes in transcript levels per testis will be a
reflection of changes per Sertoli cell. While extrapolation from this set of genes should be
done with caution, the results indicate that a large number of Sertoli cell genes may be
directly regulated by the germ cell component. Most of the genes affected by busulphan
showed a late response (after 15 days) which indicates that Sertoli cell activity is particularly
sensitive to regulation by the spermatid population. This is consistent with earlier in vivo
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studies which showed that spermatids are primarily responsible for changes in Sertoli cell
function (McKinnell & Sharpe 1997, Maguire et al. 1993, Jegou et al. 1993). In addition,
more recent in vitro studies using co-culture methods have shown specific effects of post-
meiotic germ cells on Sertoli cell function (Vidal et al. 2001, Delfino et al. 2003). Sertoli
cell activity also appears to be regulated by other germ cell populations and, in particular,
the meiotic germ cells (Syed et al. 1999, AlAttar et al. 1997, Rey et al. 1994, Grandjean et
al. 1997) although spermatogonia may also be involved (Fujino et al. 2006). This would be
consistent with the earlier changes seen in mRNA species such as Shbg and Cst9 and the
loss of Spata2 around day 15. As discussed above, it is also possible that early effects of
busulphan could be due to direct effects of the drug on Sertoli cell activity but this appears
unlikely since only a small number of genes are affected and in each case activity is
increased after treatment.

Two recent studies have shown that there is high expression of β-defensins in the testis and
male reproductive tract (Patil et al. 2005, Yenugu et al. 2006). In both studies β-defensin 36
was shown to be abundantly expressed in the testis and we have included it as a
representiative β-defensin in this study. While β-defensins are generally expressed in
epithelia the specific localisation of def36 expression in the testis is uncertain and def36 has
not been considered with the other two groups. Results from this study show clearly that
germ cell ablation will significantly increase def36 mRNA levels. The β-defensins act as
broad spectrum antimicrobials which help protect the male reproductive tract against
infection (Selsted & Ouellette 2005). It might, therefore, be expected that ablation of the
germ cell population would act to increase levels of β-defensins as a protective response.
During development the transcription factor GATA4 and the nuclear receptor NR0B1
(DAX1) are involved in sex determination and differentiation of the fetal Leydig cells (La
Voie 2003, Park et al. 2005, Bielinska et al. 2007). In adult animals their function is less
clear although both may be involved in maintenance and regulation of steroidogenesis (La
Voie 2003, Niakan & McCabe 2005). The two factors are expressed in both Sertoli cells and
Leydig cells in the adult animal (Tamai et al. 1996, Ketola et al. 1999) and the late changes
in transcript levels after busulphan treatment indicates that normal expression of these
factors is regulated by the germ cells. It is not clear whether this regulation occurs in both
cell types or is restricted to only one.

Previous studies have examined the role of germ cells in the regulation of a small number of
the mRNA species studied in this report at the mRNA level or as secreted proteins. During
normal development there is a marked, prepubertal decline in AMH secretion by the Sertoli
cells which is likely to be caused by increased androgen action on the Sertoli cells and by
germ cell entry into meiosis (AlAttar et al. 1997, Rey et al. 2003). Since there was no
significant change in intratesticular androgen levels in this study, the rise in Amh after
busulphan treatment is consistent with regulation by the germ cells although the effect of
busulphan was only seen after loss of the spermatid population. Similarly, it has been
reported that levels of the Sertoli cell secretory product testin are inversely proportional to
germ cell numbers (Cheng et al. 1989, Guitton et al. 2000) which is consistent with results
reported here. A number of earlier studies have shown that Inhibin B levels are regulated by
germ cells and data from the rat suggests that loss of post-meiotic germ cells is associated
with a decline in Inhibin B (Guitton et al. 2000 Allenby et al. 1991). In contrast, Clifton et
al. (2002) have reported that meiotic germ cells act to inhibit Sertoli cell Inhbb mRNA
levels in culture. Interestingly, it has been shown that Inhibin B production appears to be
germ cell stage-dependent with a possible inhibitory effect of IL1α at the nadir of
production (Okuma et al. 2006). The changes in Inhbb mRNA levels seen after busulphan in
this study may, therefore, be related to disruption of the normal stage-dependent regulation
of Sertoli cell activity although the alteration in Il1a transcript levels after germ cell
depletion may also play a role. Sertoli cell Activin A production has also been shown to be
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germ cell stage-dependent (Okuma et al. 2006) but Inhba transcript levels per testis did not
change significantly after busulphan. This would suggest that there can be a complex effect
of overall germ cell depletion on Sertoli cell transcripts which normally are under stage-
dependent regulation. This may be because the overall effect of germ cell ablation will be a
balance between the stimulatory and inhibitory effects of stage regulation aggregated across
the whole testis.

Results from this study indicate, overall, that germ cells play a major (mostly inhibitory)
role in regulating Sertoli cell activity and that this regulation is primarily through the post-
meiotic cells. The effects of germ cell ablation were widespread, affecting 50% of the
mRNA species tested suggesting that the germ cells may have a greater overall effect on
Sertoli cell activity than endocrine factors which tend to be more specific (Johnston et al.
2004;Denolet et al. 2006). It is likely that the overall effect of germ cell action is to fine-tune
Sertoli cell activity during the different stages of spermatogenesis in order to maximise
spermatogenic output.
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Fig 1.
Testicular histology and testis weight following busulphan treatment. Adult mice were given
a single injection of busulphan and killed up to 50 days later. Tissue sections show
morphology in control testes (A ) and 5 days (B), 10 days (C), 15 days (D), 20 days (E), 30
days (F) and 50 days (G) after busulphan treatment. There was depletion of spermatogonia
10 days after busulphan treatment while spermatocytes were reduced by day 15 and by day
20 some tubules contained only elongated spermatids and spermatozoa. By 30 days tubulues
were largely devoid of germ cells and by 50 days early regeneration was apparent in some
tubules. Testis weight over the course of the experiment is shown in (H). The bar represents
30μm.
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Fig 2.
Levels of serum FSH (A) and intratesticular testosterone (B) following busulphan treatment.
Serum and tissue was collected at different times after a single injection of busulphan and
hormone levels measured as described in Materials & Methods. The results are expressed as
mean±SEM for four or five animals in each busulphan-treated group and 18 animals in the
control group. There was no significant (P<0.05) effect of busulphan on levels of either
hormone.
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Fig 3.
Effect of busulphan treatment on levels of 3 mRNA transcripts encoding markers of germ
cell differentiation. Expression was measured by real-time PCR, and results are expressed
relative to the external control luciferase. Data shows expression of the spermatogonial
marker Stra8, the spermatocyte marker Spo11 and the spermatid marker Tnp1. The results
are expressed as mean±SEM for four or five animals in each busulphan-treated group and 18
animals in the control group. Groups marked with an asterix (*) are significantly (P<0.05)
different to control values.
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Fig 4.
Effect of busulphan treatment on levels of mRNA transcripts encoding Leydig cell-specific
products. Expression was measured by real-time PCR, and results are expressed relative to
the external control luciferase. The results are expressed as mean±SEM for four or five
animals in each busulphan-treated group and 18 animals in the control group. Groups
marked with an asterix (*) are significantly (P<0.05) different to control values.
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Fig 5.
Fig 5A Effect of busulphan treatment on levels of mRNA transcripts encoding markers of
Sertoli cell-specific products. Expression was measured by real-time PCR, and results are
expressed relative to the external control luciferase. The results are expressed as mean±SEM
for four or five animals in each busulphan-treated group and 18 animals in the control group.
Transcripts showing no change in levels after busulphan treatment have been grouped here.
Fig 5B Effect of busulphan treatment on levels of mRNA transcripts encoding markers of
Sertoli cell-specific products. Expression was measured by real-time PCR, and results are
expressed relative to the external control luciferase. The results are expressed as mean±SEM
for four or five animals in each busulphan-treated group and 18 animals in the control group.
Transcripts showing a significant difference to control values (P<0.05, marked *) have been
grouped here and are ordered according to the time at which an effect of busulphan is first
seen.
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Fig 6.
Effect of busulphan treatment on levels of mRNA transcripts encoding BDEF36, GATA-1
and NR0B1 (DAX1). Expression was measured by real-time PCR, and results are expressed
relative to the external control luciferase. The results are expressed as mean±SEM for four
or five animals in each busulphan-treated group and 18 animals in the control group. Groups
marked with an asterix (*) are significantly (P<0.05) different to control values.
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