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Abstract
Targeted therapy of cancer using oncolytic viruses has generated much interest over the past few
years in the light of the limited efficacy and side effects of standard cancer therapeutics for
advanced disease. In 2006, the world witnessed the first government-approved oncolytic virus for
the treatment of head and neck cancer. It has been known for many years that viruses have the
ability to replicate in and lyse cancer cells. Although encouraging results have been demonstrated
in vitro and in animal models, most oncolytic viruses have failed to impress in the clinical setting.
The explanation is multifactorial, determined by the complex interactions between the tumor and
its microenvironment, the virus, and the host immune response. This review focuses on discussion
of the obstacles that oncolytic virotherapy faces and recent advances made to overcome them, with
particular reference to adenoviruses.
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1. Introduction
Cancer is a major cause of death globally. Although treatments for the disease have
improved significantly, conventional chemotherapy or radiotherapy still have limited effects
against many forms of cancer, not to mention a plethora of treatment-related side effects.
This situation signifies a need for novel therapeutic strategies, and one such approach is the
use of viruses. The ability of viruses to kill cancer cells has been recognized for more than a
century [1]. They achieve this by a number of mechanisms, including direct lysis, apoptosis,
expression of toxic proteins, autophagy and shut-down of protein synthesis, as well as the
induction of anti-tumoral immunity. Although clinical trials of several naturally-occurring
oncolytic viruses were started back in the 1950s, it was only in 1991 that a herpes simplex
virus-1 (HSV-1) with deletion of its thymidine kinase UL23 gene became the first
genetically-engineered, replication-selective oncolytic virus to be tested in the laboratory
[2]. In 2005, an adenovirus (Ad) with E1B 55K gene deletion (H101(Oncorine); Shanghai
Sunway Biotech, Shanghai, China) was approved in China as the world’s first oncolytic
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virus for head and neck cancer in combination with chemotherapy [3]. However, until now
the widespread use of oncolytic virotherapy is still far from reality. Promising laboratory
results have not been translated to improved clinical outcomes, and this appears to be
determined by the complex interactions between the tumor and its microenvironment, the
virus, and the host immunity. There are already a number of reviews on oncolytic viruses for
cancer treatment but this article will focus on the obstacles facing oncolytic virotherapy,
with particular reference to Ads, and the recent advances made to overcome these hurdles.

Mechanisms of tumor selectivity
The term ‘oncolytic viruses’ applies to viruses that are able to replicate specifically in and
destroy tumor cells, and this property is either inherent or genetically-engineered. Inherently
tumor-selective viruses can specifically target cancer by exploiting the very same cellular
aberrations that occur in these cells, such as surface attachment receptors, activated Ras and
Akt, and the defective interferon (IFN) pathway (Figure 1). Some viruses have been
engineered with specific gene deletion – these genes are crucial for the survival of viruses in
normal cells but expendable in cancer cells (Figure 2). Deletion of the gene that encodes
thymidine kinase, an enzyme needed for nucleic acid metabolism, results in dependence of
viruses such as HSV and vaccinia virus on cellular thymidine kinase expression, which is
high in proliferating cancer cells but not in normal cells. Vaccinia also produces the vaccinia
growth factor (VGF) that binds to and activates the epidermal growth factor receptor
(EGFR), creating an environment that supports its replication. It follows that deletion of
genes encoding for both thymidine kinase and VGF leads to further selectivity of vaccinia
virus in cancers with an activated EGFR-Ras pathway [4]. Another approach in conferring
tumor selectivity is to restrict virus replication by its dependence on transcriptional activities
that are constitutively activated in tumor cells. This can be achieved by the insertion of a
tumor-specific promoter driving the expression of a critical gene [5-11]. Others viruses
either possess naturally (e.g., Coxsackievirus A21 [12] and measles virus (MV) [13]) or
have been designed to have specific tropism based on the expression of cell surface
receptors unique to cancer cells [14-20].

More recently, gene silencing by RNA interference technology has been utilized to confer
tumor selectivity. MicroRNAs (miRNAs) or small interfering RNAs (siRNAs) regulate gene
expression post-transcriptionally by translation block or cleavage of specific,
complementary mRNA via the RNA-induced silencing complex (RISC). By inserting a
complementary sequence next to a critical viral gene, it is possible to confine virus
replication to tumor but not normal cells that express high levels of the corresponding
miRNA. This has been demonstrated by several groups [34-38]. Gürlevik et al. [39]
developed a recombinant Ad that encodes multiple RNA-interfering transcripts under the
control of a p53-responsive promoter. The transcripts could effectively silence a set of
critical viral genes. As p53 is a transcription factor often lost or mutated in human
malignancy, this virus could therefore replicate in cancer but not normal cells where
functional p53 would lead to an anti-viral RNA interference.

Optimizing oncolytic viruses for improved anti-tumoral potency
Gene-manipulated oncolytic viruses such as Ad, herpes virus and vaccinia virus are being
developed as a new class of anti-tumoral agent [23,40,41]. Selective intratumoral replication
of the virus may lead to improved efficacy over non-replicating agents due to the self-
perpetuating nature of the treatment with virus multiplication, lysis of the infected tumor and
spread to adjacent cells. One potential limitation of this approach, however, is that gene
deletions resulting in tumor selectivity also frequently result in reduced oncolytic potency.
For example, dl1520 (ONYX-015; Onyx Pharmaceuticals, California, USA) is an oncolytic
Ad2/Ad5 hybrid with deletion of its E1B 55K and E3B genes. The E1B 55K protein is
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involved in p53 inhibition, viral mRNA transport and host cell protein synthesis shut-off
[42] (Figure 2), whilst E3B proteins are important for immune avoidance (see below). This
virus was the first engineered, replicating Ad to enter clinical trials for cancers including
those of the head and neck [43-45] and pancreas [46,47]. Whilst the virus has shown good
tumor selectivity and safety [48], durable objective responses with this virus as a single
agent have been limited and this could be partly due to the loss of other essential functions
of the E1B 55K and E3B genes. A recent finding by Thomas et al. [49] revealed that dl1520
was less efficient in lysing cells infected in the G1 phase of the cell cycle due to a reduced
rate of late viral protein synthesis, and this appears to be a result of the adenoviral gene
product encoded by open reading frame 1 of early region 4 (E4orf1). As such there is a need
to increase the potency of these viruses by identifying mutations that result in tumor
selectivity but not those that result in attenuated virus replication and oncolysis. Since the
first generation of replication-selective Ads was tested in pre-clinical experiments and
clinical trials, several advances have been made to improve potency by dissecting the
functions of different genes of Ad.

The adenoviral E1A is the earliest gene to be transcribed after virus entry into the host cell
[50]. E1A normally interacts with the retinoblastoma protein (pRb) (the latter is important in
regulating the G1-to-S cell-cycle checkpoint), and this pushes quiescent cells into S phase to
allow for virus replication (Figure 2). Therefore, dl922-947, the mutant Ad with specific
deletion of the E1A CR2 region (pRb binding site), was unable to replicate in quiescent
normal cells but was able to do so in cancer cells with defective G1-to-S checkpoint. This
virus has demonstrated superior anti-tumoral activity in vivo compared to dl1520 after
intratumoral and intravenous injections [29], although it might also target proliferating non-
malignant cells. In addition to its effect on virus release and spread [51,52], adenoviral E1B
19K is a functional homolog of Bcl-2 and is able to bind to Bax [53-55] and also prevent
Fas-mediated apoptosis [56]. Replication of the mutant Ad2 with E1B 19K deletion (dl250)
was significantly reduced in normal cells secondary to rapid apoptosis induction in the
presence of tumor necrosis factor-α (TNF-α), whilst the opposite occurred in cancer cells
due to multiple defects in the apoptotic pathways (e.g., p53 mutation, Bcl-2 overexpression)
[30] (Figure 2). Virus replication, spread and anti-tumoral potency was significantly better
than dl1520 and wild-type Ad2. E1B 19K-deleted Ad5-infected cancer cells also expressed
lower levels of EGFR and anti-apoptotic proteins [57].

Ads also produce the virus-associated (VA) RNAs. These are RNA polymerase III
transcripts that, amongst other functions, are obligatory for efficient translation of viral and
cellular mRNAs by blocking the double-stranded RNA-activated protein kinase (PKR)
[58,59], a natural host anti-viral defense system (Figure 1). We have shown that VAI-
deleted Ad5 (dl331) was able to selectively target Epstein-Barr virus (EBV)-associated
tumors such as Burkitt’s lymphoma and nasopharyngeal carcinoma [28]. This is because
EBV expresses the RNAs EBER1 and EBER2, whereby EBER1 could complement dl331 to
enable the synthesis of viral proteins. Interestingly, anti-tumoral efficacy in vitro and in vivo
was superior to wild-type Ad5 and this might be the result of PKR-induced apoptosis,
increased IFN-β production, and the adenoviral E3B gene deletion.

Gene products encoded by the adenoviral E3 region could also affect its oncolytic potency.
These include the E3 11.6K (or adenovirus death protein – ADP), which facilitates late
cytolysis of infected cells and release of progeny viruses [60]. Ads that overexpress ADP
showed better cell lysis and spread [61,62]. The effects of E3B and E3 gp19K genes on the
potency of oncolytic adenovirus will be discussed later.
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Arming oncolytic viruses with therapeutic genes
The discovery of the genetic basis of malignancy has in part promoted the development of
cancer gene therapy, which involves the introduction of exogenous nucleic acid to restore,
express or inhibit a particular gene of interest. Viruses are at present the most efficient gene
delivery system. A well-known example is Gendicine (Shenzhen SiBiono GeneTech,
Shenzhen, China), an Ad5 vector encoding the human TP53 gene that was approved in 2004
by China’s State Food and Drug Administration for the treatment of head and neck cancer
[63]. Although developed for safety reasons, one major shortcoming of using non-
replicating vectors such as Gendicine (by virtue of its E1A gene deletion) is that infectivity
is limited to only one cycle. In contrast, oncolytic viruses can replicate and spread in cancer
cells resulting in longer transgene expression. Together with tumor lysis this would lead to
better therapeutic efficacy. Arming oncolytic viruses with anti-cancer genes has been a
major focus in cancer virotherapy, and transgenes exploited include tumor suppressor, pro-
apoptotic, anti-angiogenic, “suicide”, and immunomodulatory genes.

Like Gendicine, oncolytic viruses could be armed with tumor suppressor or pro-apoptotic
genes that are frequently lost in cancer. One example is by the use of p16INK4A-armed
oncolytic Ad, which has shown good inhibition of gastric tumor xenografts [64]. Wang et al.
[65] developed an Ad in which the E1A gene is regulated by the human telomerase reverse
transcriptase (hTERT) promoter and hypoxia response element, together with p53 under the
strong cytomegalovirus (CMV) promoter. This virus showed tumor selectivity with efficient
p53 expression and oncolysis. Nonetheless, targeting a single gene is unlikely to have a
major impact on survival, given that in cancer a large number of genetic alterations affect
only a core set of signaling pathways and processes, as has been recently described for
pancreatic cancer [66]. Hence there should be a move from targeting these genes
individually to targeting cancer signaling pathways, such as arming oncolytic Ad with an
engineered transgene that encodes transforming growth factor (TGF)-β receptor II fused
with the human Fc IgG1, as studied by Hu et al. [67]. Anti-tumoral effects were observed
with a replication-selective (but not replication-deficient) virus encoding this gene,
highlighting the importance of virus replication. Viruses that enhance the apoptotic
pathways have also been studied. Jin et al. [68] and Chen et al. [69] utilized the chimeric
Ad5/35 carrying the gene encoding the TNF-related apoptosis-inducing ligand (TRAIL) to
promote receptor-independent infection (see below) and apoptosis of leukemic and gastric
cancer cells, respectively. Zhang et al. [70] treated pancreatic cancer cells by replacing the
gene for human somatostatin receptor 2 (lost in 90% of pancreatic cancers) and introducing
the gene for TRAIL by means of an oncolytic Ad, with good results in vivo. A reciprocal
approach is to ablate the function of oncogenes post-transcriptionally by arming oncolytic
Ad with small hairpin RNA (shRNA). Recent work includes those targeting hTERT [71],
Ki-67 [72], Survivin [73], and Apollon [74], all of which have shown efficient anti-tumoral
effects in vitro and in vivo.

The tumor microenvironment plays a critical role in promoting malignant cell growth and
progression, as well as restricting virus spread. One important issue is tumor angiogenesis.
A recent finding by Ikeda et al. [75] suggested that the replication-selective Ad OBP-301, in
which the E1 genes are under the control of the hTERT promoter, could stimulate peripheral
blood mononuclear cells (PBMCs) to produce IFN-γ that has anti-angiogenic properties,
resulting in reduced tumor vascularity and slowed growth in immunocompetent mice.
However, Kurozumi et al. [76] also showed that intratumoral treatment of rat glioma with
oncolytic HSV could promote neovascularization of the residual tumor, and this was
associated with a significant increase in the angiogenic factor CYR61. This could have an
impact on subsequent tumor growth and the observation suggests that a combination of
oncolytic virus with anti-angiogenic transgene might be needed; for this we refer the reader
to our recent article for a more comprehensive review [77]. Recent work includes the use of
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the anti-angiogenic factors endostatin/angiostatin [78-80], interleukin-18 (IL-18) [81,82],
canstatin [83], and trichostatin A [84], as well as arming viruses with genes that inhibit pro-
angiogenic molecules such as IL-8 [85] and vascular endothelial growth factor (VEGF)
[86,87]. Kang et al. [88] made use of a transcriptional repressor based on zinc-finger protein
to target the VEGF promoter. An oncolytic Ad armed with this gene significantly reduced
vessel density and tumor size of human glioblastoma xenografts in mice. The matrix
metalloproteinases (MMPs) are a family of proteolytic enzymes that degrade the
extracellular matrix and are essential for tumor spread and neovascularization. Oncolytic
viruses armed with genes that encode MMP inhibitors have shown encouraging results in
delaying tumor growth and angiogenesis [89,90].

Gene-directed prodrug activation therapy (or suicide gene therapy) involves the delivery of a
gene that would lead to the expression of an enzyme, followed by the administration of a
prodrug that is activated selectively by this enzyme. One example is the HSV thymidine
kinase (HSV-TK)-ganciclovir method, whereby HSK-TV is able to monophosphorylate
ganciclovir, which is subsequently converted by cellular kinases to the triphosphorylated
forms, blocking DNA synthesis and inducing cell death. Most publications have described
the use of replication-deficient viruses with this approach, but recent studies that
demonstrated its efficacy using replication-selective oncolytic Ads include treatment for
prostate [91], gallbladder [92], and liver [93] cancers. Alternative combinations include
nitroreductase with the prodrug CB1954 (converted into an alkylating agent) [94], and
cytosine deaminase (CD) with 5-fluorocytosine, which is converted into the cytotoxic and
radiosensitizing 5-fluorouracil [95,96]. An Ad5 with E1B 55K deletion, ADP
overexpression and CD/TK fusion gene expression is currently in a phase III trial in
combination with radiotherapy for patients with prostate cancer.

The tumor environment and oncolytic viruses
Viruses are naturally larger than other anti-cancer agents such as chemicals and antibodies
(for example 90 nm and 300 nm for Ad and vaccinia virus, respectively). After intratumoral
injection, effective virus spread could be impaired by the extracellular matrix, areas of
fibrosis and necrosis, and surrounding normal cells in the tumor bed, although Kolodkin-Gal
et al. [97] found that the extracellular components collagen and mucin could restrict HSV-1
infectivity in normal colon, but these molecules were expressed in lesser amounts in colonic
carcinoma, facilitating its spread. Ganesh et al. [98] studied the co-administration of the
enzyme hyaluronidase with oncolytic Ads during intratumoral injection. This degraded the
major constituents of the extracellular matrix, hyaluronan, resulting in enhanced virus spread
in vivo. Induction of cancer cell death with an apoptosis-inducing agent prior to injection of
oncolytic HSV could also produce channels for effective virus spread [99]. Elevated
interstitial hydrostatic pressure as a result of fibrosis and vessel abnormalities poses another
physical barrier to successful virus delivery and this effect increases with tumor volume
[100]. Injected viruses could escape back through the injection site or by drainage into the
circulation, resulting in reduced efficacy and increased risk of systemic toxicities. Bazan-
Peregrino et al. [101] examined the retention of Ad5 in MDA-231 and ZR75.1 human breast
carcinoma xenografts after intratumoral injection. For MDA-231, occlusion of injection sites
with surgical adhesives and the use of small injected volumes resulted in significantly higher
virus retention within the tumors. ZR75.1, however, took up more Ad than MDA-231 when
identically infected, suggesting a role of tumor type in virus retention. Recently, tumor-
associated stromal cells have been shown to play a role in either enhancing or reducing the
efficacy of oncolytic Ads, depending on the tumor type [102]. Hypoxia, a common feature
in tumor tissues, has been found to reduce the replicative and oncolytic potential of Ads
despite the unaltered expression of surface receptors [103,104]. In this regard there might be
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a role for the development of oncolytic viruses in which replication is not attenuated by
hypoxia, such as vaccinia virus [105] or HSV [106,107].

For viruses that have reached the immediate vicinity of the tumor, cellular genetic changes
could prevent successful virus entry into the cells. For cellular entry of most Ads (those in
subgroups A, C, D, E and F – which include the commonly used Ad5), they must first bind
to the Coxsackie and adenovirus receptor (CAR) on the surface membrane via the knob
portions of their fibers, followed by internalization mediated by the viral penton proteins and
cellular integrins. CAR is ubiquitously expressed in epithelial cells, but its expression is
often downregulated in many cancer types due to activation of the Raf-MAPK pathway
[108]. Recent work has shown that the molecule leucine-rich repeat-containing protein 15
(LRRC15 or hLib), frequently overexpressed in tumor cells, could result in the redistribution
of CAR away from cell surfaces, thus impeding Ad infection [109]. In contrast, most
subgroup B Ads bind to CD46 [110], a receptor often upregulated in a number of tumor
types, including breast, cervical, liver, lung, endometrial and hematological malignancies
[111-113]. Several chimeric oncolytic Ad5 have been developed to contain the fiber tropism
of subgroup B Ads and they all have shown encouraging results [68,69,114-117]. The use of
intact subgroup B Ads as oncolytic agents is still under-explored but has great potential
[118,119]. They have different tropism and infectivity compared to chimeric viruses [120],
and are more beneficial in terms of a reduced propensity for neutralization by pre-existing
antibodies (see below). Besides CD46, evidence suggests that the subgroup B Ad, Ad11,
also utilizes another unidentified receptor [121,122], tentatively named ‘receptor X’ by Tuve
et al. [123]. They also discovered that the other subgroup B Ads, Ad16, -21, -35 and -50
exclusively use CD46, whereas Ad3, -7 and -14 use ‘receptor X’ but not CD46. It is possible
that Ad11 could infect a wider range of tumor cells and overcome receptor downregulation;
the latter is a known problem with Ad35 and CD46 [124]. Strauss et al. [125] showed that
Ads that utilize CAR or CD46 as primary attachment receptors failed to infect and lyse
ovarian cancer cells of the epithelial phenotype, which are found in in situ tumors and tumor
xenografts. These receptors are trapped in the tight junctions and therefore not accessible to
the virus. However, Ads that use receptor X (Ad3, -7, -11 and -14) could induce epithelial-
mesenchymal transition and result in efficient oncolysis.

Cellular signaling pathways can also affect virus infectivity. Recently our group [126] has
shown that certain pancreatic cancer cell lines overexpress the carcinoembryonic antigen–
related cell adhesion molecule 6 (CEACAM6), which antagonizes the Src signaling
pathway, downregulates cancer cell cytoskeleton proteins, and blocks Ad trafficking to the
nucleus. Knockdown of CEACAM6 by siRNA significantly enhanced the anti-tumoral
potency of oncolytic Ad5. For virus that has successfully entered the cell, it needs to
replicate for efficient cell lysis and virus spread. The protein p21CIP1/WAF normally inhibits
cyclin-dependent kinase 2 (CDK2) (Figure 2) and blocks the progression of the cell cycle
from G1 to S phase. Shiina et al. [127] showed that siRNA knockdown of p21CIP1/WAF

increased Ad replication and oncolysis. It was suggested that this could be due to the
inhibition of SET and proliferating cell nuclear antigen (PCNA) by p21CIP1/WAF, whereby
SET and PCNA normally increase viral DNA replication. In the case of vaccinia virus,
recent work has suggested that cells with activated c-Jun NH2-terminal kinase (JNK)
signaling cascade could activate PKR (Figure 1), thus reducing virus replication [128].

Cancer stem cells form part of the heterogenous tumor population. They not only contribute
to neoplastic progression and metastasis, but also to resistance to chemotherapy and
radiotherapy. Evidence has shown that oncolytic Ads are able to destroy these cells
[129-131]. Zhang et al. [132] have recently demonstrated that a telomerase-specific
oncolytic Ad armed with a gene that encodes the apoptotic TRAIL was able to preferentially
target stem-like esophageal cancer cells and prolong the survival of mice bearing tumors
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composed of these cells. Whilst this is of interest, cancer stem cells only form a small subset
of the tumor mass and the value of targeting them specifically will remain an issue to be
resolved.

Modification of the host immune response in favor of oncolytic viruses
Most studies of oncolytic viruses have been done, by necessity, on human tumor xenografts
in immunodeficient mice – far from reflective of the human condition. Unsurprisingly, data
from these studies have not been predictive for clinical trial results. The effects of the host
immune response on the efficacy of oncolytic viruses are complex. When stimulated,
immune cells could result in virus clearance but might also induce specific and non-specific
anti-tumoral activities. It appears that the innate immune response plays an important role in
virus clearance, whereas T cell-mediated responses are largely responsible for the anti-
tumoral effect [133-137].

For the treatment of metastatic or hematological malignancies, intravenous virus delivery
could be hindered by neutralizing antibodies, complement activation, non-specific uptake by
other tissues such as the liver and spleen, as well as poor virus escape from the vascular
compartment (Figure 3). For Ad, adhesion to blood cells could also lead to therapeutic
inhibition [138]. Numerous experiments have been done to modify the immune response in
favor of virus replication and tumor lysis. One method is by using an immunosuppressive
agent, such as cyclophosphamide, that has been shown to improve virus spread and anti-
tumoral efficacy [139-145]. Kurozumi et al. [146] found that single doses of the angiostatic
and anti-inflammatory cyclic peptide of arginine-glycine-aspartic (cRGD), given before an
oncolytic HSV, resulted in reduced tumor vessel permeability, leukocyte infiltration and
IFN-γ, leading to increased survival of rats with intracranial gliomas. Various data suggest
that pre-existing antibodies decrease virus spread after intravenous delivery [147-149], but
have a lesser effect on intratumoral injection [44,150,151]. Although antibodies could
prevent possible toxicity [152], they could also reduce efficacy. Possible ways to circumvent
this include plasmapheresis to deplete antibodies and the use of other viral strains with a
lower prevalence of antibodies in the human population. One example is Ad11 [118,119],
with a reported antibody prevalence of 10-31% compared to 45-90% for Ad5 [122,153-155].
These antibodies are mainly directed against the viral hexon proteins [156], suggesting that
the use of Ad11 virion might be better than chimeric Ad5/11, where the fibers are derived
from Ad11 but the rest, including hexon, belong to Ad5. A caveat to this is that for unknown
reasons, Ad11 appears to induce more pro-inflammatory cytokines and chemokines than
Ad5 or Ad5/11 in mice after systemic injection [120].

Instead of injecting naked virions, using cells as delivery vehicles could hide the viral
antigen from antibodies and complements. This so-called “Trojan horse” strategy involved
infecting the body’s cells in vitro and administering these cells back systemically, which
would then carry the oncolytic virus to the tumor environment. Cells that have been tested
include mesenchymal stem cells [157-159], monocytes [160], outgrowth endothelial cells
[160], tumor cells [161-163], T cells [164-166], and dendritic cells (DCs) [165]. Ong et al.
[167] showed that MV-infected T cells could facilitate tumoral delivery in low, but not high
antibody concentration. Power et al. [168] tested a number of carrier cells including solid
tumor and leukemic cells, and demonstrated that the efficacy of oncolytic vesicular
stomatitis virus (VSV) was significantly improved compared to naked virion injection.
Interestingly, Zhu et al. [169] demonstrated that mice pre-immunized with HSV exhibited
reduced growth of S-180 tumor after intratumoral treatment with HSV. PBMCs from
seropositive mice showed greater cytotoxicity in vitro compared to naïve mice, with higher
IFN-γ induction. It is not known if this also applies to intravenous virus delivery or to other
oncolytic viral species. Whilst the cell carrier approach has yielded promising data in vivo,
numerous issues must be considered before clinical application, including the best cell type
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to use, ease of infection, tumor-targeting capabilities, protection of virus from the host
immune response, virus delivery, and tumorigenicity. Recently Kangasniemi et al. [170]
have demonstrated that silica gel-encapsulated Ads allowed for extended release of the
viruses and slightly delayed the development of anti-Ad antibodies. This method has anti-
tumoral activity, but comparison with other methods of administration was not performed.

After intravenous delivery the liver, part of the reticuloendothelial system, is the
predominant site of Ad5 sequestration with significant hepatocyte transduction [171,172].
Ad5 is known to cause liver toxicity, and its use has raised some concerns after the death of
Jesse Gelsinger in 1999 from Ad5-based gene therapy injected directly into the hepatic
artery [173]. A landmark study by Waddington et al. [174] showed that liver transduction is
mediated by interaction of the adenoviral hexon protein with the blood coagulation factor X.
This provides a further rationale for the development of other Ad serotypes for oncolytic
therapy, such as Ad11 and Ad35 as they bind weakly to factor X compared to Ad5 [118] or
other Ad5 chimera. In CD46 transgenic mice, Ad11 persisted much longer in the circulation
after intravenous delivery compared to Ad5 together with the absence of liver transduction
[120,122]. As for Ad5, ways to reduce liver uptake include recent experiments performed by
Barry et al. They studied the effect of Kupffer cell depletion (by pre-dosing mice with non-
replicating Ad5) and warfarin treatment (to inhibit vitamin K-dependent coagulation factors)
and found that this approach significantly increased the anti-tumoral effect of systemically
delivered oncolytic Ad5 in nude mice [175]. Good results have also been demonstrated by
coating Ad5 with high molecular weight polyethylene glycol [176] or by genetic
modification of the hexon protein to ablate blood factor binding [177] for liver detargeting.

A plethora of immunostimulatory genes have been inserted into the genome of oncolytic
viruses with the aim of stimulating effective anti-tumoral immune responses. Recent
examples include the heat shock proteins [179,180], chemokine (C-C motif) ligand 5
(CCL5) [181], IFN [182], granulocyte macrophage colony-stimulating factor (GM-CSF)
[183-185], IL-12 [186], IL-18 [81,82], and IL-24 [187,188]. Vaccinia virus normally
expresses a number of type I IFN-inhibiting proteins to counteract the cellular IFN anti-viral
response. Because cancer cells frequently have an inactivated IFN pathway, anti-IFN gene-
deleted vaccinia could selectively replicate in these cells. Kirn et al. [189] utilized this
mutant and inserted a gene that encodes IFN-β (which itself has anti-proliferative, anti-
angiogenic, and immunomodulatory anti-tumoral effects), and demonstrated enhanced
tumor selectivity and potency in vivo. Shashkova et al. [190] used a four-pronged approach
by co-infecting cancer cells with a replicating oncolytic Ad with ADP overexpression and
IFN-α expression, given together with a non-replicating virus encoding the gene for TRAIL,
with impressive results. The currently used oncolytic MVs were derived from the attenuated
Edmonston tag (Edmtag) strain. Significantly, they lack antagonizing activity against the
host anti-viral IFN immune response, thus inhibiting virus spread. Recombinant MV
encoding the measles phosphoprotein (P) gene product from wild-type MV, an IFN
antagonist, has been found to exhibit reduced IFN sensitivity and better oncolytic potency in
vivo [191]. A recombinant VSV vector which expresses a gene from human CMV has been
found to have increased anti-tumoral activity in vivo [192]. The expressed protein inhibited
the natural killer (NK) cell-activating ligand CD155, resulting in decreased accumulation of
NK and NKT cells at the infected tumor site and elevated virus replication.

Antigen-specific activation and proliferation of lymphocytes are regulated by interaction of
the peptide-antigen-major histocompatibility complex (MHC) with the T cell receptor, as
well as both positive and negative signals from co-stimulatory molecules expressed on
antigen-presenting cells (APCs). The most important of the APCs are the DCs. DCs are
capable of capturing antigens secreted or shed by tumor cells and upon maturation, present
the peptides to T cells. Endo et al. [193] showed that virus replication led to the production
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of uric acid in cancer cells, which stimulated DCs to produce IFN-γ and IL-12. IFN-γ
subsequently induced the expression of the proteosome activator PA28, which functions to
generate tumor antigenic peptides required for MHC class I presentation, resulting in the
induction of cytotoxic T lymphocytes (CTLs) against tumor cells. Lapteva et al. [194] and
Ramakrishna et al. [195] demonstrated that increased DC migration and maturation by
oncolytic Ad encoding β-defensin-2 or macrophage inflammatory protein 1α (MIP-1α) and
Fms-like tyrosine kinase-3 ligand (Flt3L) significantly enhanced anti-tumoral immune
responses. Chuang et al. [196] used another approach whereby tumor-bearing mice were
first primed with DNA encoding a highly immunogenic foreign antigen ovalbumin (OVA),
followed by intratumoral injection of vaccinia virus encoding the same antigen. The DNA
vaccination served to generate OVA-specific CTLs against infected cancer cells, and the
virus resulted in further oncolysis. A study by Diaz et al. [135] revealed that depletion of
regulatory T cells reduced the efficacy of oncolytic VSV, due to the relief of anti-viral
immune response suppression. Anti-tumoral immune activity could be improved by adoptive
T cell transfer or incorporation of tumor-associated antigen into the virus. Huang et al. [197]
utilized an oncolytic Ad armed with IL-12 and 4-1BB ligand, and demonstrated impressive
results in mice bearing B16-F10 melanoma tumors. Amongst other functions, 4-1BB ligand
(expressed on DCs) enhances T cell proliferation and IL-12 promotes their differentiation.
The anti-tumoral effect was even greater when the virus was given together with DCs.

The E3 region of the adenoviral genome is divided into E3A (encodes the 12.5K, 6.7K,
gp19K and 11.6K proteins) and E3B (10.4K, 14.5K and 14.7K proteins) and is involved in
immune response evasion and virus release from cells. Because it is dispensable, this region
is frequently deleted in many adenoviral mutants to provide more space for therapeutic gene
insertion, although recent work has suggested that transgene expression was higher if gene
was inserted at regions other than E3, such as L3 [198]. Deletion of the whole E3B region,
however, could attenuate the virus oncolytic potency by increasing macrophage infiltration
and expression of TNF and IFN-γ [51,133]. Potency could be restored by selective deletion
of E3 gp19K whilst retaining other E3 regions [133,199]. In addition to the inhibition of NK
cell activation [200], gp19K is an endoplasmic reticulum membrane glycoprotein that
inhibits the transport of MHC class I to the cell surface and delays its expression to avoid
killing by CTLs [201,202]. CTL evasion is common in tumor cells and therefore the
function of gp19k is redundant in these cells. Deletion of this gene, however, would ensure
normal cells infected with this virus are eradicated, and in effect this confines virus
replication to tumor cells.

Conclusions
The field of oncolytic virotherapy is expanding and viruses continue to hold promise as
effective treatments in combination with chemotherapy or other therapeutic modalities. As
continuing work is being done to improve the currently available oncolytic viruses, novel
viral species are also emerging and worth exploring, for example the porcine Seneca Valley
virus [203], myxoma virus [204], Sindbis virus [205], and Semliki Forest virus [206].
Viruses have unique properties in comparison to small molecular drugs. They can replicate
and spread in addition to carry anti-tumoral therapeutic genes. However, during the course
of evolution the human body has developed ways to overcome infection and this has
imposed a significant barrier towards achieving maximum therapeutic efficacy of oncolytic
viruses. Recent advances in our understanding of tumor biology and virology have helped to
overcome some of these hurdles, and different groups have successfully targeted features
that varied from virus delivery to altering the host immune response. It is hoped that this
collective effort will finally pave way for the development of effective and safe viruses for
cancer therapy.
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Figure 1.
Mechanisms of tumor selectivity of several oncolytic viruses. The interferon (IFN)/double-
stranded RNA-activated protein kinase (PKR) pathway is a natural anti-viral defense
system. IFNs produced by infected cells result in the upregulation of PKR. On binding to
viral double-stranded RNA (dsRNA), PKR autophosphorylates, which in turn
phosphorylates the α subunit of eIF-2. Phosphorylated eIF-2α sequesters eIF-2B, a guanine
nucleotide exchange factor. Without eIF-2B, the GDP bound to eIF-2 cannot be exchanged
for GTP. As a result eIF-2 is unable to bring the initiator transfer RNA (tRNA) to the 40S
ribosomal subunit, and the synthesis of viral protein is inhibited. Inactivated IFN and
activated Ras pathways are frequently found in cancer (the latter could inhibit PKR), and
some naturally-found viruses can replicate selectively in cancer but not normal cells,
including the Newcastle disease virus (NDV) [21], reovirus [22], vaccinia virus [23], and
vesicular stomatitis virus (VSV) [24]. The herpes simplex virus (HSV) protein ICP34.5
interacts with cellular phosphatase 1α to dephosphorylate eIF-2α, leading to synthesis of
proteins needed for virus replication. Deletion of gene that encodes for ICP34.5 (RL1)
results in selective replication in tumors with a defective IFN/PKR pathway [25]. The
influenza virus NS1-deleted mutant is also dependent on this defective pathway [26].
Adenoviruses normally produce virus-associated (VA) RNAs to inhibit PKR. As such,
engineered VAI-deleted adenovirus (dl331) could replicate selectively in tumors with an
activated Ras pathway [27]. Epstein-Barr virus (EBV) also expresses RNAs similar to VA
RNAs and these can complement dl331, resulting in selectivity in EBV-associated tumors
[28].
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Figure 2.
Engineered replication selectivity of oncolytic adenoviruses (Ads) by deletion of the E1A,
E1B 19K or E1B 55K gene. Retinoblastoma protein (pRb) is normally hypophosphorylated
and binds to transcription factors of the E2F family to regulate the G1-to-S checkpoint of the
cell cycle. Upon stimulation by mitogenic signals, upregulation of cyclins enables cyclin-
dependent kinases (CDKs) to phosphorylate pRb, releasing E2F that leads to the expression
proteins needed for DNA synthesis and thus cell cycle progression. E2F upregulates
p14ARF, which inhibits Mdm2. Mdm2 normally results in p53 degradation. p53 is a
transcription factor that is upregulated and activated by stress signals such as virus infection
or DNA damage. It results in the expression of proteins that induce apoptosis (Bax), cell
cycle arrest (p21CIP1/WAF via its inhibition of CDK2) or DNA repair. p16INK4A is a tumor
suppressor that inactivates CDK4/6. The adenoviral E1A proteins bind to pRb to release
E2F, so that viral DNA could be replicated. E1A also promotes the acetylation of pRb by
p300/CBP, causing pRb to associate with Mdm2 to inhibit p53. Because cancer cells are
often in the S phase, E1A CR2-deleted Ad5 mutant (dl922-947) could selectively replicate
in and destroy replicating cancer cells but not normal resting cells [29]. E1B 19K binds to
and inhibits Bax. The tumor selectivity of E1B 19K-deleted Ad2 (dl250) is due to multiple
defects in the apoptotic pathways, where survival of the virus in normal cells would be
limited owing to rapid apoptosis induction in the presence of tumor necrosis factor-α (TNF-
α) [30]. E1B 55K interacts with the adenovirus E4 open reading frame 6 (E4orf6) protein to
form an E3 ubiquitin ligase complex that targets p53 for degradation. It also induces the
expression of cyclin E as well as simultaneously inhibits cellular mRNA export and
promotes the export of late viral mRNAs. E1B 55K-deleted Ad could replicate in tumor
selectively because of non-functioning p53 [31], cyclin E overexpression [32], and E1B
55K-independent late viral RNA export in cancer but not normal cells [33].
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Figure 3.
Obstacles to successful delivery of oncolytic viruses to tumor cells. After intravenous
injection, viruses are neutralized by pre-existing antibodies and complement activation.
Adenoviruses (Ads) also interact with blood cells. Recent work has revealed that Ad5 binds
to erythrocytes via the Coxsackie and adenovirus receptor (CAR) and complement receptor
1 (CR1) in the absence and presence of anti-Ad5 antibodies, respectively [178].
Sequestration into other organs and the reticuloendothelial system is a particular problem,
often with resulting toxicities. From the blood stream, viruses have to pass through a
mixture of extracellular matrix, cells (including normal and immune cells) and high
interstitial fluid pressure before reaching the tumor. They then have to attach to the cellular
receptor (often trapped in tight junction), be internalized, translocate to the nucleus,
replicate, produce structural and other proteins, lyse the cell and release their progenies –
some of these steps could be inhibited by factors such as the natural host immune response,
hypoxic environment, soluble factors, and genetic changes in the tumor cell.

Wong et al. Page 25

Viruses. Author manuscript; available in PMC 2010 June 11.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts


