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Abstract
Predictions provided by action-outcome probabilities entail a degree of (first-order) uncertainty.
However, these probabilities themselves can be imprecise and embody second-order uncertainty.
Tracking second-order uncertainty is important for optimal decision making and reinforcement
learning. Previous functional magnetic resonance imaging investigations of second-order
uncertainty in humans have drawn on an economic concept of ambiguity, where action-outcome
associations in a gamble are either known (unambiguous) or completely unknown (ambiguous).
Here, we relaxed the constraints associated with a purely categorical concept of ambiguity and
varied the second-order uncertainty of gambles continuously, quantified as entropy over second-
order probabilities. We show that second-order uncertainty influences decisions in a pessimistic
way by biasing second-order probabilities, and that second-order uncertainty is negatively
correlated with posterior cingulate cortex activity. The category of ambiguous (compared to non-
ambiguous) gambles also biased choice in a similar direction, but was associated with distinct
activation of a posterior parietal cortical area; an activation that we show reflects a different
computational mechanism. Our findings indicate that behavioural and neural responses to second-
order uncertainty are distinct from those associated with ambiguity and may call for a reappraisal
of previous data.
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Introduction
Probabilistic action-outcome associations provide uncertain predictions of the future, even
when their probabilities are known precisely, which we refer to as first-order uncertainty.
However, action-outcome probabilities themselves can be endowed with imprecision, that is,
second-order uncertainty. Understanding how uncertainty is encoded is paramount for all
probabilistic accounts of brain function (e.g. Friston, 2010), and tracking second-order
uncertainty in particular is indispensable for optimal decision making (Daw et al., 2005),
and associative learning (Pearce and Hall, 1980; Friston, 2010).

Economic theory furnishes a means to experimentally manipulate uncertainty in an explicit
manner, where first-order uncertainty is usually conceptualised as risk (von Neumann and
Morgenstern, 1944), and distinguished from second-order uncertainty (Knight, 1921),
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referred to as ambiguity (Ellsberg, 1961). The distinction arises from observations that when
winning probabilities of lotteries are known (non-ambiguous) or completely unknown
(ambiguous), individuals avoid ambiguous lotteries even when this avoidance is costly (see
for a review Camerer, 1999). Furthermore, neural responses to ambiguity in posterior
parietal cortex, posterior dorsolateral prefrontal cortex and anterior insula (Huettel et al.,
2006; Bach et al., 2009) suggest a representation that is distinct from those supporting first-
order uncertainty in economic gambles (Preuschoff et al., 2006; Tobler et al., 2007; Dreher
et al., 2006).

However, ambiguous and non-ambiguous lotteries differ in several aspects other than
second-order uncertainty. Therefore, it remains unclear whether ambiguity aversion and
neural responses to ambiguity reflect second-order uncertainty. Ambiguity aversion is
diminished when choices are made privately instead of publicly (Curley et al., 1986;
Trautmann et al., 2008), and when unfavourable first-order probabilities are precluded
(Larson, 1980; Keren and Gerritsen, 1999). Both ambiguity aversion (Chow and Sarin,
2002) and neural responses to ambiguity (Bach et al., 2009) are greatest when missing
information about first-order probabilities is potentially knowable (i.e. known to the
experimenter, and usable to infer the conditional first-order probabilities) (see also O’Neill
and Kobayashi, 2009). These findings suggest that factors other than second-order
uncertainty may confound experimental manipulations of ambiguity, such as beliefs about
the availability of missing knowledge to oneself and to others, e.g. the idea that one is being
cheated, or that one has to take action to get at the missing bit of information.

Hence, in this study we sought to quantify second-order uncertainty in ambiguous economic
gambles and establish its specific neural correlates. Additionally, by contrasting ambiguous
and non-ambiguous gambles, we could determine whether neuronal responses differed from
those evoked specifically by second-order uncertainty. Any difference would argue that
categorical manipulations of ambiguity may not serve as a ‘pure insertion’ of second-order
uncertainty (Friston et al., 1996). Experimentally, we depart from standard economic
experimental approaches that provide either all or no information about first-order
probabilities, and constructed ambiguous gambles, where some information is given in the
form of second-order probabilities that specify which conditional first-order probability will
be realised. By showing participants two coloured balls on the edges of a screen, each
denoting a first-order probability of getting electric shocks (see Figure 1), we could vary the
amount of this information (the second-order uncertainty) continuously, and quantify it by
its Shannon entropy (1948).

Materials and methods
Participants

24 healthy right-handed individuals took part in the behavioural experiment (12 male, 12
female, mean age ± standard deviation: 25.3 ± 4.5 yrs), and an independent sample of 20
healthy right-handed individuals participated in the imaging experiment (12 male, 8 female,
mean age ± standard deviation: 22.9 ± 2.5 yrs). The absence of visual impairments and
neurological or psychiatric symptoms/disorders was assessed via questionnaire. For the
imaging experiment, handedness was controlled with the Edinburgh Handedness Inventory
(Oldfield, 1971; mean ± standard deviation: 85.3 ± 22.1). Participants were recruited from
the general population by advertisement and were given a monetary compensation of £30
(behavioural experiment) or £40 (imaging experiment). All participants gave written
informed consent, and the study was approved by a NHS research ethics committee.
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Design
Our experiments took the following general form. Participants learned that the colour of a
ball presented on a computer screen was associated with a certain conditional first-order
probability of receiving three aversive electric shocks (figure 1A). On any trial, participants
could either choose to accept a gamble on this ball, or receive a single electric shock of the
same intensity. After learning these first-order probabilities, the gamble was rendered
ambiguous by presenting two coloured balls at the opposite edges of the screen and a ball
silhouette in between (see figure 1B).

Participants were instructed that the two coloured balls corresponded to two “bowling ball
players”, one of which would play his ball onto the lane. The ball silhouette was the final
position of the played ball, and was more likely to come from either of the two “players”,
and thus represent either of the two coloured balls, the closer it was to this ball. To solve this
problem optimally, one needs to infer the second-order probabilities that either coloured ball
would be sampled on the basis of how close the silhouette was to them, then combine these
with the two conditional first order probabilities, hence compute the expected first-order
probability of being shocked, and thus decide whether to accept the gamble or to receive a
single electric shock instead.

If the two balls at the edges of the screen have different colours, the second-order
probabilities can be inferred when the distributions of the final ball positions are known.
These distributions were fixed and indicated by colour bars with varying intensity (see
figure 1B). The second-order uncertainty is then dependent on the silhouette position and
was quantified as Shannon entropy of the second-order probabilities:

where, by Bayes’ rule and in the absence of prior knowledge

One can see from figure 1D that the silhouette is more informative (i.e., has less entropy H)
about the colour, the closer it is to one of the coloured balls on the edges of the screen. This
manipulation incidentally also varies the expected first order probability which was
decorrelated from entropy by using six different combinations/orderings of balls, and was
additionally taken into account for analysis (see data analysis).

In this way, we were able to measure acceptance of gambles and associated evoked brain
responses as a function of the entropy of the second-order probabilities. This design also
allowed us to collapse ambiguous gambles into a factor level to allow a categorical contrast
with non-ambiguous gambles where both colour options were the same (figure 1C). In this
case, the colour of the silhouette can be inferred with certainty, and the prediction is non-
ambiguous. The expected first order probability is then simply the conditional first order
probability associated with the colour of both balls.

Thus, the experiment followed an incomplete factorial design with a discrete factor
ambiguity (ambiguous vs. non-ambiguous) and a continuously varied factor entropy within
the ambiguous condition. This design incidentally also varied the additional discrete factors
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first-order probability (0.2, 0.5, 0.8) within the non-ambiguous and range of first-order
probabilities (0.3, 0.6) within the ambiguous condition.

Stimuli and gambles
There was one trial for each of 3 ball colours, in combination with the other possible ball
colours (ambiguous trials: 2 colours; non-ambiguous trials: 1 colour), originating position
(left or right), and possible ball position (ambiguous trials: 23; non-ambiguous trials: 14),
resulting in 276 ambiguous and 84 non-ambiguous trials, or 360 trials on the whole.

The three ball colours (black, orange, and blue) represented three different lotteries. All
three lotteries had the same stake (win: nothing; lose: three electric shocks), but different
(first-order) probabilities of being shocked (0.2, 0.5, and 0.8). The association of colour and
shock probability was balanced across subjects and learnt in a preceding discrimination
learning paradigm involving 144 learning trials (that is, 46 trials per ball colour, see
procedure).

Each trial started with a variable interval of 2 – 4 s (behavioural experiment) or 1.5 – 3.5 s
(imaging experiment), during which a lane and an empty feedback box were visible. Then,
two coloured balls were shown. Above the balls, two colour bars with varying intensity
indicated the probability that either ball would land on a given position on the lane if played.
This followed a linear probability density function with a maximum at the position of this
ball and reaching zero at the position of the opposite ball. A grey silhouette appeared
somewhere on the lane 0.5 s later (behavioural experiment) or immediately (imaging
experiment).

The position of the silhouette was determined as follows: the lane was divided into 23
(ambiguous trials) or 14 (non-ambiguous trials) intervals of equal cumulative landing
probability. The interval in which the ball occurred on a given trial was pseudo-randomized
and kept constant across all participants. This ensured that the entropy variation was
approximately the same for each participant. We randomly drew the exact position within
the landing interval from the corresponding probability density function, and this exact
position was taken into account for analysis. The grey silhouette also served as a timer,
fading away within 1.5 s (behavioural experiment) or 2 s (imaging experiment). Within this
time, participants had to make a decision to either accept or reject the lottery by pressing an
up or down arrow key on a standard computer keyboard.

The association of up and down button presses and reject or accept was balanced across
subjects and kept constant for each participant. It was signalled on each trial (e.g. up arrow:
fixed, down arrow: gamble), where the response option associated with the up key was
always presented on top of the other option to avoid stimulus-response incongruencies. If
participants did not make a choice, they received three electric shocks with certainty, and
these trials were excluded from analysis. After the decision time was over, we signalled
which colour was actually sampled (and thus, the conditional first-order probability) to
emphasise that it was pre-determined and consistent (Bach et al., 2009). This was shown in a
separate feedback box on the top half of the screen, together with an indication of the
participant’s choice (fixed option or gamble) and an indication of the electric stimulations
they would receive (one or three lightning-style electric shock signs, or the words no shock).
This feedback was visible for 1.5 s. At the same time, electric stimulations were delivered as
a 500 Hz train of electrical pulses (square wave, individual pulse duration: 1 ms, total
duration: 100 ms, 400 V, mean current ± standard deviation, behavioural experiment: 0.076
mA ± 0.044 mA, imaging experiment: 0.073 mA ± 0.037 mA) via a pin-shaped electrode
attached to the left forearm, repeated once (fixed option) or three times with 0.4 s inter
stimulus interval (gamble). Stimulation intensity was the same for the fixed option and
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gamble, and set in a pre-test assessment as slightly below the pain threshold (see procedure).
In 12 of 20 participants in the imaging experiment, 14 random stimuli below the pain
threshold were rated for intensity before and after the experiment, and there were no
differences in the mean ratings (p > .50).

Procedure
Upon arrival in the laboratory, the procedure was explained to participants in detail by
standardised written and additional oral instructions (see supplemental material). Then,
discomfort and pain thresholds for the electric stimulation were assessed with ascending
stimulation intensity. Shocks with randomly determined intensity below the pain threshold
were then delivered and rated by the participants to establish a stimulus-perception
relationship. Stimulus intensity was set slightly below the pain threshold to a clear
discomfort level. The same stimulus intensity was used for the single fixed shock and the
three shocks delivered after losing a gamble.

In a discrimination learning paradigm closely related to the bowling ball game, participants
could explore the three different gambles. One bowling ball was presented at a time, and
participants chose to accept or reject the gamble. Otherwise, the procedure was similar to the
one described above. Participants played 5 training trials without electric shocks in order to
habituate them to the task. Then, 144 trials followed in two 8 minute blocks. The last 24
trials were fully balanced and served to probe whether participants ordered their preference
according to the ordering of objective outcome contingencies (figure 2). Nine (behavioural
experiment) and 7 (imaging experiment) additional participants who did not have this
ordering of preference were not included in the experiment proper. (Note that this procedure
excludes both participants who did not learn the outcome contingencies and those who did
not have a preference over one or three electric shocks.) The experiment proper was then
explained with standardised written and additional oral instructions (see supplemental
material), and participants had 5 training trials without electric shocks. In the imaging
experiment, participants went into the scanner at this point and, while field maps were taken,
engaged in another 24 trials of the learning part in order to habituate them to the scanner
environment. Another 5 training trials for the experiment proper without electric shocks
followed. Then, participants engaged in the experiment proper, containing 360 trials in 5
blocks of 8 minutes or 72 trials each. Breaks between blocks lasted at least 30 seconds and
could be extended by participants. After the experiment, participants were asked to rate the
(first-order) shock probability for each of the three ball colours (How likely was it that
shocks would be delivered after the following ball?) on a horizontal visual analogue scale
from 0% to 100% (figure 2).

Image acquisition
Images were acquired on a 3 T whole body scanner (Trio, Siemens Medical Systems,
Erlangen, Germany) with a 12 channel head coil for RF transmission and signal reception.
Field maps were acquired with the standard manufacturer’s double echo gradient echo field
map sequence (TE, 10.0 and 12.46 ms; TR, 1020 ms; matrix size, 64 × 64), using 64 slices
covering the whole head (voxel size, 3 × 3 × 3 mm).

Whole-brain T1-weighted scans were acquired using a modified driven equilibrium Fourier
transform (MDEFT) sequence with optimised parameters as described previously
(Deichmann et al., 2004). 176 sagittal partitions were acquired with an image matrix of 256
× 240 (read × phase) and two-fold oversampling in read direction (head/foot direction) to
prevent aliasing (isotropic spatial resolution 1 mm; α, 16°; TR/TE/TI, 7.92 ms/2.48 ms/910
ms; band width, 195 Hz/Px). Special RF excitation pulses were used to compensate for B1
inhomogeneities of the transmit coil in superior/inferior and anterior/posterior directions.
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Images were reconstructed by performing a standard 3D Fourier Transform, followed by
modulus calculation. No data filtering was applied in k-space or in the image domain.

For functional images, we used BOLD signal-sensitive T2*-weighted transverse single-shot
gradient-echo echo-planar imaging (EPI; flip angle α, 90°; band width BW, 2298 Hz/Px;
phase-encoding (PE) direction, anterior-posterior; TE, 30 ms; TR, 3264 ms). The
manufacturer’s standard automatic 3D-shim procedure was performed at the beginning of
each experiment. Each volume contained 48 slices of 2 mm thickness (1mm gap between
slices; field of view, 192 × 192 mm2; matrix size, 64 × 64). BOLD sensitivity losses in the
orbitofrontal cortex and the amygdala due to susceptibility artefacts were minimized by
applying a z-shim gradient moment of −0.4 mT/m*ms, a slice tilt of −30° and a positive PE
gradient polarity (Weiskopf et al., 2007; Weiskopf et al., 2006). In each of five scanning
sessions, 147 functional whole-brain volumes were acquired. The first 5 volumes, or 16.3 s,
of each session were discarded to obtain steady-state longitudinal magnetization. Each
session was concluded by 8 volumes, or 26.1 s, of rest without stimuli. During EPI imaging,
we recorded respiration with a chest belt and heart rate with a pulse oxymeter on the left
little finger.

Image analysis
EPI images were generated online using the scanner manufacturer’s reconstruction method.
Further processing was done using statistical parametric mapping (SPM8; Wellcome Trust
Centre for Neuroimaging, London, UK; www.fil.ion.ucl.ac.uk/spm) on Matlab 7.4
(MathWorks, Natick, MA, USA). Images were corrected for geometric distortions caused by
susceptibility-induced field inhomogeneities. A combined approach was used which corrects
for both static distortions and changes in these distortions due to head motion (Andersson et
al., 2001; Hutton et al., 2002). The static distortions were calculated for each subject from a
field map that was processed using the FieldMap toolbox as implemented in SPM8. Using
these parameters, the EPI images were then realigned and unwarped, a procedure that allows
the measured static distortions to be included in the estimation of distortion changes
associated with head motion. No participant moved more than 6 mm in any direction during
scanning. The motion-corrected images were then co-registered to the individual’s
anatomical MDEFT image using a 12-parameter affine transformation, and normalised to
the Montreal Neurological Institute (MNI) T1 reference brain template (re-sampled voxel
size 2 × 2 × 2 mm). Normalized images were smoothed with an isotropic 8 mm full-width at
half-maximum Gaussian kernel. The time series in each voxel were high-pass filtered at
1/128 Hz to remove low-frequency confounds as is standard in SPM8.

We modelled neuronal responses as a mixture of categorical (ambiguity vs. non-ambiguity)
and parametric effects (linear effect of entropy within ambiguous gambles). The categorical
effect involves that of entropy (entropy is always zero in non-ambiguous and non-zero in
ambiguous gambles) but is confounded by a range of qualitative differences between the two
conditions, whereas the parametric effect involves variation of entropy alone. Based on
previous findings (Bach et al., 2009) we hypothesised that a categorical contrast of
ambiguity vs. non-ambiguity would be driven by factors unrelated to entropy. Hence,
different brain regions should be activated in this categorical contrast to that associated with
a continuous variation of entropy. Crucially, because entropy and expected first-order
probability are both a function of the second-order probabilities, expected first-order
probability was taken into account for all analyses involving entropy, such that none of our
results can be explained by an effect of expected first-order probability.

Specifically, we modelled trial onset and trial outcome across all blocks as stick functions
convolved with a canonical haemodynamic response function (Friston et al., 1994). Trial
onset was modelled separately for both trial types and for correct (i.e. making a choice
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between accepting and rejecting the gamble) and missing responses (2.2% of all trials, range
across participants 0% - 13%). Only correct responses were analysed. Range of first-order
probabilities (only for ambiguous trials), expected first-order probability, second-order
uncertainty, and choice were modelled as parametric modulators for each of the four trial
onset regressors and were serially orthogonalised in this order such that the regressor
pertaining to second-order uncertainty only explained variance not already explained by
range of first-order probabilities and expected first-order probability. Trial outcome was
modelled as a single stick function, parametrically modulated by the number of shocks
received.

To account for serial acquisition of different slices in one volume and differences in the
shape of the haemodynamic response function, time and dispersion derivatives for each
regressor were included into the model. Regressors of no interest were movement
parameters derived from the realignment procedure and regressors for variance caused by
the cardiac (Glover et al., 2000) and respiratory cycle (Birn et al., 2006), and a separate
constant for each block.

In additional analyses, to account for possible condition differences that might be explained
by reaction time differences, these were z-transformed for each participant, multiplied with a
stick function centred at trial onset, convolved with a hemodynamic response function and,
together with time and dispersion derivatives, included in the model as separate regressors
of no interest (i.e. not orthogonalised to any other regressor). This regressor will explain all
variance in haemodynamic responses that relates to reaction times. If some variance in the
other regressors can also be explained by reaction times, SPM will disregard variance that is
shared between these regressors and thus discard brain responses that could be explained by
reaction times.

Because trial onset and outcome were so close together in time (2 s), haemodynamic
responses to these events will be correlated (for the canonical responses implemented in
SPM, R2 = 0.56). That means that we cannot effectively disambiguate whether an effect of
trial type was caused by the presence of ambiguity, or by the resolution of ambiguity with
the outcome. In order to do so, one would have had to forego presenting outcomes which
was not possible within our study design (see discussion). Crucially however, within
ambiguous trials, one can distinguish responses to second-order uncertainty, and response to
the resolution of second-order uncertainty (i.e. second-order surprise, or self-information),
because the latter depends on the actual outcome that varies on a trial-by-trial basis and is
therefore only mildly correlated with entropy. Additional analyses therefore separated
outcome into ambiguous/non-ambiguous trials and modelled entropy of the grey silhouette
and surprise of the ball outcome (quantified as self-information, i.e. negative log of the
probability of that ball outcome, given the second-order probabilities).

Statistical parametric maps were generated from linear contrasts of interest, involving only
trials where a response was given (ambiguous > non-ambiguous trials, entropy, range of
possible first-order probabilities in ambiguous trials, first-order probability in non-
ambiguous trials) in each participant. A second level random effect analysis (RFX) was then
performed using one sample t–tests on contrast images obtained in each participant for each
comparison of interest (df = 19). We report clusters with a voxel-level threshold of p < 0.001
(uncorrected) and a cluster-level threshold of p < .05 (cluster-level corrected across the
whole brain for family-wise error). In regions of interest for which we had prior hypotheses
(posterior inferior frontal gyrus/sulcus, anterior insula, posterior parietal cortex, orbitofrontal
and dorsomedial prefrontal cortex, amygdala), results were small volume corrected for
family-wise error within a sphere of 15 mm diameter around peak coordinates as reported by
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Bach et al. (2009), Huettel et al. (2006) and Hsu et al. (2005), and reported at a voxel-level
threshold of p < .05. This is indicated in the results section and result tables.

Analysis of choice behaviour
Our analysis of choice behaviour had three goals: (1) to confirm that participants took the
expected first-order probability conveyed by the ball position into account when making a
decision (i.e. regardless of the second-order uncertainty also conveyed by the ball position).
(2) To determine whether participants accounted for the categorical difference between
ambiguity and non-ambiguity when making a decision and what computational algorithm
they used in so doing. (3) To ascertain whether, and by which computational mechanism,
participants accounted for entropy in their choice. Because the categorical difference
between ambiguity and non-ambiguity also involves entropy, but encompasses additional
factors that are inseparable, we needed to ensure that this categorical difference was already
accounted for when analysing the effect of entropy within ambiguous trials. Therefore, in
this step, we used the algorithm that best explained the categorical effect of ambiguity, and
complemented this algorithm with additional attributes to account for entropy only within
ambiguous trials.

The above aims were implemented in a step-wise Bayesian model comparison. To achieve
goal (1), a simple decision algorithm was built, based on expected utility theory (von
Neumann and Morgenstern, 1944) that uses the average of both conditional first-order
probabilities as expected first-order probability (i.e. does not take the ball position into
account), weights all possible outcomes (0, 1, or 3 electric shocks) by a standard power
utility function with one free parameter, and computes a choice probability using a softmax
rule with another free parameter. This was then compared against a more plausible baseline
algorithm (ideal Bayesian or rational observer) where expected first-order probability is a
function of second-order and conditional first-order probabilities (i.e. does take the ball
position into account).

In addressing goal (2), note that the baseline model was built on the assumption that
compound (i.e., hierarchical) lotteries can be reduced to single-stage bets (von Neumann and
Morgenstern, 1944) by calculating an expected first-order probability, which would be
incompatible with aversion to ambiguity or to second-order uncertainty (Halevy, 2007). We
therefore compared the baseline model to a number of models from the economic literature
that drop the compound lotteries axiom, all of which are listed in table 1, described in
mathematical detail in the supplemental material and reviewed comprehensively in Camerer
(1999).

As detailed, the model that best explained the categorical difference between ambiguous and
non-ambiguous gambles, namely the SOP model (see table 1 for a description), was then
complemented to accommodate for an effect of entropy within ambiguous trials (goal 3).
The models took an analogous form as for step 2, with the difference that they multiplied the
respective free parameter by mean-centred entropy for each ambiguous gamble (with the
exception of the minimax model that cannot usefully be modified by entropy and was
therefore dropped, see table 1).

Hence, model comparison was conducted in three steps, comparing (1) the simple with the
baseline model, (2) the baseline with ambiguity models, and (3) the best ambiguity model
with entropy models. This step-wise model comparison is feasible as all steps refer to
independent variance components, and is more robust than simultaneous comparison of all
possible model combinations. To make allowance for the expected explanatory power of
more complex models in the absence of any true difference, model complexity was
penalised using Akaike information criterion (AIC) and the Bayesian information criterion
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(BIC) which led to similar results unless stated otherwise. Note these approaches are simply
two different approximations to the true Bayesian model evidence; though not originally
motivated from a Bayesian perspective, model comparisons based on AIC are
asymptotically equivalent to those based on Bayes factors (Akaike, 1973; Penny et al.,
2004), see also Burnham & Anderson (2004) for a Bayesian perspective on AIC. We
assumed that different individuals might implement different models and performed a
random-effects analysis where the structure of the model is assumed to be a random variable
across participants as described previously (Stephan et al., 2009). This analysis computes the
proportion of individuals that implement each model and an exceedance probability that
states how likely it is that each model is more frequent than any other, in the population
from which the sample of subjects were drawn. In the absence of conventions on exceedance
probabilities, we defined a probability of p > .95 as decisive, to be comparable to standard
model comparison. Also, we used family wise comparison of models as pointed out in the
results section (Penny et al., 2010). All models used the objective conditional first-order
probability. Additional analyses taking account of the subjective probability as stated in
post-experimental ratings (see procedure) led to similar results. To enhance statistical power,
data from both experiments was combined for choice analysis. Analysis of the individual
experiments lead to very similar results.

Results
Reaction times

To control for possible effects of ambiguity on decision difficulty, we analysed reaction
times (RT). Responses in ambiguous trials were considerably slower than in non-ambiguous
trials (behavioural experiment: 987 ± 44 ms vs. 850 ± 50 ms; p < .001; imaging experiment:
1095 ± 47 ms vs. 958 ± 39 ms; p < .001). There was no significant correlation between RT
and entropy.

Choice behaviour associated with ambiguity and entropy
Firstly, the baseline (ideal observer) model performed better than the simple model
(exceedance probability p > .999), showing that participants took the ball position into
account to compute expected first-order probability, as instructed. Secondly, we found that
models which take account of a categorical difference between ambiguous and non-
ambiguous gambles were better at explaining the data than the baseline model (exceedance
probability p > .999). Figure 3 (left panel) shows the exceedance probabilities (i.e.
probabilities that this model is more frequent in the population than any other) for individual
models. The model that most frequently accounted for the difference between ambiguous
and non-ambiguous lotteries was the SOP model (see table 1, and see supplementary
material for all formulae). In this model, conditional expected outcomes are non-linearly
weighted by exponentiating them with a constant – for both ambiguous and non-ambiguous
trials – and then combined using the unbiased second order probabilities (Segal, 1987;
Klibanoff et al., 2005). Hence, for a typical ambiguity-averse individual in an ambiguous
trial, the combination of two weighted conditional expected outcomes will be less valuable
than weighting the average expected outcome under non-ambiguous conditions and so
explain a difference between ambiguous and non-ambiguous lotteries. In economic theory,
this is analogous to a non-linear utility function explaining individual risk preferences.
Thirdly, models which account for entropy within ambiguous gambles explained the data
better than a model that did not when analysing AIC (p > .95), while BIC with its heavier
penalisation of additional parameters preferred the simpler model. As shown in figure 3
(right panel), the “pessimistic” weighting model performed best where the amount and
direction (optimistic vs. pessimistic) of a second-order probability weighting was dependent
on the actual amount of entropy (i.e., pessimistic weighting with above-average entropy, and
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vice versa). This is achieved, in the model, by multiplying the second-order probability of
the worst outcome scenario with a variable that is greater than one if entropy is higher than
average, and smaller than one if entropy is below average. There was even stronger evidence
(i.e. for both AIC and BIC) that models which did not use SOP to account for the effect of
entropy were more frequent than the model using SOP (p > .99), implying different
mechanisms accounting for the effects of ambiguity and entropy.

Taken together, this suggests that both the categorical presence of ambiguity (as opposed to
non-ambiguity) and the amount of entropy within these ambiguous gambles are taken into
account when making a decision. However, there is strong evidence that the mechanism by
which the decision is influenced is different for the mere presence of ambiguity and for
variations in the associated degree of entropy. The algorithm that best explained choice
differences between ambiguous and non-ambiguous lotteries leaves the second-order
probabilities unbiased, whereas the algorithm accounting for entropy biases appears to bias
second-order probabilities.

Brain regions responsive to entropy and ambiguity
Our modelling data pointed to distinct processes associated with ambiguity and its entropy.
Thus, we used fMRI to test the validity of our model in so far as it predicts dissociable brain
responses to categorical ambiguity on the one hand and its entropy on the other. Data are
summarised in table 2. The main contrast of interest was the effect of entropy within
ambiguous trials. Here, we found an association between entropy and BOLD responses in
bilateral posterior midline areas, including the posterior cingulate and cuneus, extending
laterally into adjacent parts of the parietal, occipital, and temporal cortices, and also into
areas outside of the gray matter, possibly due to between-subjects anatomical variability and
smoothing (figure 4A-D; estimated BOLD responses in figure S1, supplemental data). These
BOLD responses were greater when entropy was lower with no responses observed for the
opposite contrast. In order to exclude that these responses were caused by the surprise of
outcomes (which is, on the average, related to entropy), we modelled outcomes separately
for the two trial types, and added a regressor accounting for the instantaneous second-order
surprise of the ball outcome in ambiguous trials. This revealed the same association of
entropy with BOLD responses in a slightly smaller cluster (4925 voxels). Positive responses
to surprise in the posterior parietal cortex failed to reach whole-brain level corrected
significance (p = .06), whereas negative responses to surprise were found in the medial right
cuneus (see table S1 in supplemental material). To exclude the possibility that choice might
explain brain activations relating to second-order uncertainty, we switched the serial
position of the regressors for second-order uncertainty and choice. This did not impact on
our reported results and brain responses were similar in location and extent (4996 voxels).

In contrast, a categorical difference between ambiguous and non-ambiguous trials (table 2;
figure 4E; estimated BOLD responses in figure S1, supplemental data) showed enhanced
BOLD responses in left posterior parietal cortex (pPAR), overlapping with clusters found
previously (Bach et al., 2009; Huettel et al., 2006). To exclude reaction time differences
between conditions as explaining a difference in BOLD response, we co-varied these out in
an additional analysis. This yielded a smaller (335 voxel) cluster in the same location. No
brain region showed a greater response in non-ambiguous compared to ambiguous trials, in
keeping with a previous observation (Bach et al., 2009). Notably, responses in the pPAR
overlapped with those seen for the effect of entropy (compare figure 4D and E). However,
the direction of the effect in this region was in diametrical opposition: the BOLD response in
this region was negatively correlated with entropy, but positively correlated with ambiguity.
Given the opposite sign of the association, one might conclude that responses to ambiguity
are not driven by the difference in entropy between these two conditions, but other factors.
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For some individuals, the presence of ambiguity is likely to be more relevant than for others.
We explored inter-individual differences in the brain response to ambiguity (figure 4F) and
showed that higher rejection rates for ambiguous gambles (hence: ambiguity aversion) were
associated with enhanced responses to ambiguous > non-ambiguous gambles in the right
inferior frontal gyrus. This cluster was not found in the main contrast ambiguous > non-
ambiguous gambles but was in the vicinity of a cluster reported previously and survived
small volume correction within a sphere around this location (Huettel et al., 2006). There
was no association of ambiguity aversion with brain responses to entropy, again underlining
the distinction between categorical ambiguity and entropy in ambiguity.

Our design incidentally also varied the range of possible outcome probabilities, and the
expected risk probability. The difference between ambiguous trials with a high range of
possible outcome probabilities (i.e. between 0.2 and 0.8) and those with a low range (i.e. 0.2
to 0.5 or 0.5 to 0.8), represented in the contrast low > high outcome probability range,
showed a localised BOLD response in the left prefrontal cortex (see figure S2C,
supplemental data). This cluster survived small volume correction around peak coordinates
reported previously (Huettel et al., 2006). Note that our paradigm requires participants to
form neural representations of three previously learned shock probabilities; and behavioural
analyses indicated this was the case. In keeping with this, brain responses associated with
higher risk probability were observed in the right posterior parietal cortex and bilateral
dorsolateral prefrontal cortex (see figure S2A and B).

Discussion
Uncertainty about action-outcome associations pervades most real-life decisions and can be
conceptualised in a hierarchical probabilistic model where uncertainty of future outcome
predictions is termed first-order uncertainty, and uncertainty about the associations
themselves second-order uncertainty. To investigate the neural representation of second-
order uncertainty, previous studies have relied on the economic concept of ambiguity where
second-order uncertainty can be either zero (no ambiguity) or maximal (ambiguity);
however this categorical contrast is confounded with qualitative factors. Hence, in the
present study we continuously varied the second-order uncertainty of ambiguous lotteries
continuously as the entropy of second-order probabilities and contrasted this with non-
ambiguous lotteries that did not contain second-order uncertainty.

Three main findings emerge. First, decisions on the lotteries appeared to depend on the
amount of second-order entropy such that participants were biased towards avoiding a
lottery with high second-order entropy, in keeping with a previous study that qualitatively
varied second-order uncertainty in ambiguous gambles but fell short of a precise definition
(Keren and Gerritsen, 1999). Bayesian comparison suggested that this effect on choice is
achieved by biasing the second-order probabilities towards the worst possible outcome
scenario when second-order entropy is high (and vice versa when second-order uncertainty
is low). Secondly, BOLD responses to second-order entropy were found in a large posterior
midline area encompassing posterior cingulate cortex (PCC) and precuneus, with stronger
responses when entropy was low. Thirdly, we replicate previous findings that the mere
presence of ambiguity is avoided when compared to non-ambiguous lotteries (Slovic and
Tversky, 1974; Becker and Brownson, 1964; Yates and Zukowski, 1976; Curley et al., 1986;
MacCrimmon and Larson, 1979; Keren and Gerritsen, 1999). Model comparison indicated
that this was achieved by non-linearly weighting the conditional expected outcomes before
combining them into an expected outcome, without biasing second order probabilities
(Segal, 1987; Klibanoff et al., 2005). BOLD responses to this contrast were seen in posterior
parietal cortex (pPAR), replicating two previous studies (Huettel et al., 2006; Bach et al.,
2009). Additionally, within posterior prefrontal cortex BOLD responses in this same
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contrast varied with the amount of ambiguity aversion on a between-subjects level, an area
previously implicated in processing ambiguity (Huettel et al., 2006; Bach et al., 2009).

In interpreting these results, we first note that second-order entropy and the contrast
ambiguity vs. non-ambiguity engage different brain areas and appear to evoke different
computational processes. The latter contrast has previously been taken to reflect differences
in second-order uncertainty (because non-ambiguous lotteries have zero second-order
uncertainty), but this disregards confounds such as having to publicly reveal uncertainty
attitudes (Curley et al., 1986; Trautmann et al., 2008), the possibility of very unfavourable
first-order probabilities (Keren and Gerritsen, 1999; Larson, 1980), and search for
potentially knowable information (Chow and Sarin, 2002; Bach et al., 2009). Also, the very
logic of ambiguous lotteries seems more complicated than of non-ambiguous ones and
might therefore be aversive. Our findings suggest that the neural representation of ambiguity
may not be driven by second-order uncertainty but may reflect these confounding factors, a
conclusion that qualifies previous findings (Huettel et al., 2006; Bach et al., 2009). At the
same time, ambiguity aversion might not be driven by second-order uncertainty either, thus
calling into question the conceptualisation of ambiguity as “missing information” (Camerer,
1995).

By manipulating second-order uncertainty in a continuous and unconfounded manner as
second-order entropy, we demonstrate an encoding in a posterior midline network with
greater responses when uncertainty is lower. This effect survives controlling for surprise at
the time point of the outcome and is therefore driven by the presence of uncertainty rather
than its resolution. Several explanations might account for this. First, our behavioural data
indicate that lotteries with high second-order uncertainty are devaluated. Previous fMRI
studies have found PCC responses representing reward size or subjective value in different
paradigms (Smith et al., 2009; Kable and Glimcher, 2007; Ballard and Knutson, 2009;
Peters and Buchel, 2009; Kable and Glimcher, 2010). Hence, the stronger signal with lower
entropy could be interpreted as reflecting higher subjective value of less uncertain lotteries.

However, other areas commonly associated with subjective value (namely striatum and
prefrontal/orbitofrontal regions) do not track second-order entropy in the present task. An
alternative possibility therefore is that posterior midline areas implicated in the “default
mode” network (Raichle et al., 2001; Buckner et al., 2008) are actively suppressed when
processing demands (i.e. uncertainty) are high, an observation in keeping with findings that
PCC is involved in retrieval of self-relevant memory (Summerfield et al., 2009), and that its
activity predicts task errors (Li et al., 2007). Similar reasoning has been deployed to explain
findings of smaller prefrontal deactivations in easy as compared to difficult perceptual
decisions (Tosoni et al., 2008; Ho et al., 2009).

However, BOLD responses in PCC can also be conceived as directly related to second-order
entropy. Greater responses with lower uncertainty would then point to the notion that
precision (or amount of information) is encoded. How this encoding is achieved at a
neuronal level remains to be determined although we note a proposal that allows for a
representation in a large neural population (see for a review Friston, 2009; 2010). For future
investigations it might be useful to reframe the decision making model that best explained
the data in a (more general) Bayesian framework with “pessimistic” priors that enjoy more
weight when the likelihood function has higher uncertainty. Thus, it would be possible to
study the effect of pessimistic priors separately from the effect of the likelihood function in
order to disambiguate effects of subjective value and second-order uncertainty.

With respect to the categorical effect of ambiguity we replicated activation in posterior
parietal cortex (pPAR) (Bach et al., 2009; Huettel et al., 2006) which we have previously
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interpreted as reflecting more demanding expected value calculations. Ambiguity might also
engage behavioural mechanisms to find out an unknown bit of information, an explanation
we previously used to explain responses in anterior insula/posterior prefrontal cortex. No
such responses were found in the present study. We suggest that BOLD responses related to
outcome search would possibly not occur with the very short anticipation times
implemented in the present study (2 s) as opposed to longer times (4.5 to 6 s) used in
previous studies. Note, however, that an effect was found in this area for participants with
high ambiguity aversion such that differences between this and the previous study may also
relate to sample differences in ambiguity aversion. We did not find any responses in brain
areas identified in Hsu et al. (2005), in particular amygdala and orbitofrontal cortex (OFC).
Although concerned with ambiguity, the latter study collapsed different kinds of situations
involving a lack of information during analysis of fMRI data. Thus, in our view there is no
convincing empirical evidence that the amygdala or OFC respond to ambiguity.

Model comparison demonstrated that a second order probability (SOP) model was most
frequent in explaining the effect of ambiguity on choice, where conditional expected
outcomes are non-linearly weighted before being combined with the unbiased SOP into an
expected outcome (Segal, 1987; Klibanoff et al., 2005). A plethora of models accounting for
ambiguity has been proposed in the economic literature, mainly based on theoretical/
axiomatic considerations (see for a review Camerer, 1999); to the best of our knowledge we
present the first Bayesian model comparison based on choice data.

Several potential limitations of the present study remain to be resolved. Firstly, although
there is strong evidence that ambiguity and second-order entropy are accounted for by
different computational mechanisms, we acknowledge that the evidence is weaker in
determining the precise model by which second-order entropy is taken into account. Thus, it
would be desirable to replicate our findings in an experimental setup specifically designed to
distinguish between the most likely models from our study. Also, we did not test alternative
formulations of second-order uncertainty (e.g. variance). A limitation concerning BOLD
responses to ambiguity is that onset and offset of the lottery were close together in time such
that it is not possible to disambiguate responses to the presence of ambiguity and its
resolution. Note that this does not discount the BOLD effect of second-order uncertainty
where responses to uncertainty itself, and to the surprise of the outcome, could be
disambiguated.

Tracking second-order uncertainty is crucial for any hierarchical model of perception or
learning, such as hierarchical Bayesian (and related predictive coding schemes) (e.g. Friston,
2010) and volatility models used to account for context-sensitive learning (Behrens et al.,
2007). Indeed, recent findings suggest that the changes in precision during perceptual
discrimination are a key determinant of neuronal activity (Hesselmann et al., 2010). We
extend such ideas to explicit decisions by showing that second-order uncertainty in
ambiguous lotteries influences choice, possibly by a mechanism that biases second-order
probabilities. This second order uncertainty is negatively correlated with BOLD activity in a
posterior midline network encompassing the PCC. However, ambiguity as defined within an
economic perspective activates different brain regions and appears to exert its effect on
choice via a different mechanism. Hence, we argue that behavioural and neural responses to
ambiguity might not be driven by second-order uncertainty, calling for a reinterpretation of
previous data, and for further research into the mechanisms by which second-order
uncertainty acts to guide learning and decision-making.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Experimental setup. (A) Preceding learning task. In each of 144 trials, participants saw a
coloured ball. Each of three ball colours represented a gamble (framed as “lottery ticket”)
with a different first-order probability (0.2, 0.5, 0.8) of getting three electric shocks, or
nothing. Participants chose between that gamble and one certain electric shock of the same
magnitude. A fading grey silhouette directly above it indicated the time that was allowed for
the decision. (B) Experiment proper. On each of 276 ambiguous trials, two coloured balls
appeared, indicating two possible first-order probabilities. It was explained that these balls
represented two bowling ball players, one of which would play his ball that would be shown
as a silhouette. Thus, the closer the silhouette appeared to one of the two balls, the more
likely it was to represent this ball. Again, a decision had to be made between the gamble and
one certain shock. (C) In 84 additional non-ambiguous trials, the two balls had the same
colour. The position of the grey silhouette is uninformative in this case. (D) Second-order
uncertainty, quantified as Shannon entropy H of the second-order probabilities of which
conditional first-order probability would be realised, given the silhouette position. It can be
seen that this quantity is highest in the middle between the two balls. (E) Timeline. After a
variable inter-trial interval, the gamble was presented, together with an indication of which
key to press (this was held constant within participants and varied between). While the
silhouette faded out, a decision had to be made within 1.5 s (behavioural experiment), or 2 s
(imaging experiment). The choice, the ball that was being played, and the ultimate outcome,
were then shown in the feedback box above the bowling ball lane.
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Figure 2.
In a preceding learning task consisting of 144 trials, participants learned the outcome
probabilities of the three coloured balls. Choices for the last 24 balanced trials of this part
are shown on the left. After the experiment proper, participants were asked for explicit
estimates of the outcome probabilities of the three coloured balls, as shown on the right. All
results are mean ± standard error for participants that were included into the analysis
(behavioural experiment: N = 24, imaging experiment, N = 20). Participants whose choice
proportions and subjective probability estimates did not monotonically vary with outcome
probability were excluded from scanning/analysis.
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Figure 3.
Exceedance probabilities (i.e. probability that a given model is more frequent in the
population than the other models) of a random-effects Bayesian model comparison. Results
are shown for the Akaike information criterion (AIC); see text for Bayesian information
criterion (BIC). Exceedance probabilities of the winning models are decisive (p > .95). The
models are detailed in table 1 and in the supplemental material.
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Figure 4.
A-D: BOLD responses to low second-order uncertainty (i.e. Shannon entropy of second-
order probabilities) within ambiguous trials. E: Different responses were found for the
contrast ambiguity vs. non-ambiguity (note that responses in the posterior parietal cortex,
panels D/E, are high for ambiguity where entropy is higher than in non-ambiguity, but also
high for low entropy within ambiguous trials, suggesting that responses to ambiguity are not
driven by entropy). F: Responses to ambiguity vs. non-ambiguity in right inferior frontal
gyrus covaries with ambiguity aversion on a between-subject level.
All contrasts are overlaid on an average normalised T1 image from the whole sample and
are in neurological convention. Responses in panel A-E survive whole brain correction for
family-wise error at a cluster-level threshold of p < .05 and a voxel-level threshold of p < .
001; responses in panel F are small volume corrected for family-wise error at a voxel-level
threshold of p < .05.
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Table 1

Summary of models analysed to account for the influence of ambiguity and second-order uncertainty on
choice (see also figure 3).

Models accouting for ambiguity Models accounting for ambiguity and second-order uncertainty*

Baseline

Baseline (ideal observer) model,
assuming the reduction of compound
lotteries axiom and taking into account
the silhouette position for the calculation
of expected outcome probability

Baseline SOP
Baseline second order probability (SOP)
weighting model without additional parameters
to account for entropy

Utility weighting
Utility weighting model, using different
utility functions for ambiguous and non-
ambiguous decisions

Utility
weighting

Utility weighting model, assuming modulation
of the utility function in ambiguous trials

EU weighting
additive

Expected utility additive weighting
model, adding a constant to the expected
utility of ambiguous choices

EU weighting
additive

Expected utility additive weighting model,
adding a variable amount to the expected utility
of ambiguous choices

EU weighting
multiplicative

Expected utility multiplicative weighting
model, multiplying the expected utility
of ambiguous choices with a constant.

EU weighting
multiplicative

Expected utility multiplicative weighting
model, multiplying the expected utility of
ambiguous choices with a variable

Ep weighting

Expected probability weighting model,
non-linearly weighting the expected
probabilities in ambiguous choices by
exponentiating them with a constant.
(Hsu et al., 2005)

Ep weighting
Expected probability weighting model,
exponentiating expected outcome probability of
ambiguous choices with a variable

Pessimistic
weighting

Pessimistic weighting model, biasing the
second order probabilities towards the
worse scenario in ambiguous choices
(Ghirardato et al., 2004; Huettel et al., 2006)

Pessimistic
weighting

“Pessimistic” weighting model,
overestimating/underestimating the second
order probability of the worse scenario

Minimax
Minimax model, where choice in
ambiguous trials is based on the
worse scenario only

  not applicable

SOP

Second order probability (SOP) model,
where the conditional expected outcomes
are non-linearly weighted before being
combined with the unbiased second-
order probabilities into an expected
outcome (Segal, 1987; Klibanoff et al., 2005)

Combined SOP
Combined second order probability (SOP)
model, where the second order probabilities
are additionally weighted by entropy.

*
Based on the second order probability model, additional models were formed that accounted for entropy within ambiguous choices by having an

additional free parameter that is modulated by mean-centred entropy.
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