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Abstract

The brain estimates visual motion by decoding the responses of populations of neurons. Extracting
unbiased motion estimates from early visual cortical neurons is challenging because each neuron
contributes an ambiguous (local) representation of the visual environment and inherently variable
neural response. To mitigate these sources of noise, the brain can pool across large populations of
neurons, pool each neuron’s response over time, or a combination of the two. Recent
psychophysical and physiological work points to a flexible motion pooling system which arrives at
different computational solutions over time and for different stimuli. Here we ask whether a
single, likelihood-based computation can accommodate the flexible nature of spatiotemporal
motion pooling in humans. We examined the contribution of different computations to human
observers’ performance on two global visual motion discriminations tasks, one requiring the
combination of motion directions over time, another requiring their combination in different
relative proportions over space and time. Observers’ perceived direction of global motion was
accurately predicted by a vector average read-out of direction signals accumulated over time and a
maximum likelihood read-out of direction signals combined over space, consistent with the notion
of a flexible motion pooling system that uses different computations over space and time. Further
simulations of observers’ performance with a population decoding model revealed a more
parsimonious solution: flexible spatiotemporal pooling could be accommodated by a single
computation that optimally pools motion signals across a population of neurons which accumulate
local motion signals on their receptive fields at a fixed rate over time.
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Introduction

The brain estimates visual motion by decoding the responses of populations of neurons.
Extracting unbiased motion estimates from early visual cortical populations is challenging:
each neuron contributes an ambiguous (local) representation of the visual environment
(Hubel and Wiesel, 1962) and inherently variable response (Schiller et al., 1976; Dean,
1981). To mitigate these sources of uncertainty, the brain can pool local motion
measurements across large populations of neurons, pool each neuron’s response over time,
or a combination of the two (For reviews, see Braddick, 1993; Mingolla, 2003; Born and
Bradley, 2005; Born et al., 2009; Smith et al., 2009).
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Recent psychophysical work suggests thats spatiotemporal pooling of local motion samples
is dynamic and flexible: rigid motion computations evolve over time and can switch when
stimulus attributes change (Stone et al., 1990; Stone and Thompson, 1992; Yo and Wilson,
1992; Burke and Wenderoth, 1993; Lorenceau et al., 1993; Cropper et al., 1994; Bowns,
1996; Amano et al., 2009). For example, the human motion system computes the vector
average direction of rigid motion at relatively short stimulus durations and low contrasts and
intersection of constraints (I0C) at longer durations and higher contrasts (Yo and Wilson,
1992; Cropper et al., 1994). Many of these computational dynamics are reflected in the
behavior of motion sensitive neurons in middle temporal (MT) cortex (Pack et al., 2001;
Pack and Born, 2001; Smith et al., 2005; Majaj et al., 2007) and ocular following and
smooth pursuit eye movements (Recanzone and Wurtz, 1999; Ferrera, 2000; Masson, 2004;
Born et al., 2006; Barthelemy et al., 2010), pointing to a flexible motion pooling system
which arrives at different computational solutions over time and for different stimuli.

Theoretical considerations suggest a more parsimonious pooling solution (Paradiso, 1988;
Foldiak, 1993; Seung and Sompolinsky, 1993; Sanger, 1996; Deneve et al., 1999; Weiss et
al., 2002; Jazayeri and Movshon, 2006; Stocker and Simoncelli, 2006), one that can
accommodate a range of phenomena with a single, coherent computation: the likelihood
function. It differs from other pooling computations since it generates not a single estimate
of a stimulus, but rather the probabilities that different stimuli could have elicited the
responses from a population of neurons. Moreover, visual likelihoods can be implemented
within a plausible population decoding framework (Jazayeri and Movshon, 2006) and can,
with certain assumptions (Weiss et al., 2002; Jazayeri and Movshon, 2006; Stocker and
Simoncelli, 2006), account for a wide range of perceptual behaviors, including orientation
discrimination (Regan and Beverley, 1985), perceived direction (Webb et al., 2007),
perceived velocity (Weiss et al., 2002; Stocker and Simoncelli, 2006) and cue combination
both within (Landy et al., 1995; Jacobs, 1999) and across modalities (Ernst and Banks,
2002; Alais and Burr, 2004).

Here we ask whether a single, likelihood-based computation can accommaodate the flexible
nature of spatiotemporal motion pooling in humans. We distinguished the contribution of
different computations by probing the underlying neural circuits with asymmetrical
distributions of local motion samples with distinct summary statistics. Our results point to a
single computation that optimally pools motion signals across a population of neurons which
temporally summate local motions within their receptive fields at a fixed rate over time.

Materials and Methods

Subjects

Four human observers (3 male, 1 female) with normal or corrected-to-normal vision
participated. Three were authors (FR, TL and BSW) and one (DMG) was naive to the
purpose of the experiments.

Visual stimuli

Random dot kinematograms (RDKSs; examples shown in Fig. 1) were generated on a PC
computer running custom software written in Python, using components of Psychopy
(Peirce, 2007). Stimuli were displayed on an //yama Vision Master Pro514 CRT with a
resolution of 1280 x 1024 pixels, update rate of 75 Hz at a viewing distance of 76.3 cm.
Each RDK was generated anew prior to its presentation on each trial. Each image in a
motion sequence consisted of 226 dots (luminance 0.05 cd/m?) displayed within a circular
window (6 deg radius) on a uniform luminance background (25 cd/m?2). Continuous apparent
motion was produced by presenting the images consecutively at an update rate of 18.75 Hz,
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which is comparable to our previous work (Webb et al., 2007) and that used in other studies
of global motion (e.g. Williams and Sekuler, 1984; Watamaniuk et al., 1989; Watamaniuk &
Sekuler, 1992; Edwards and Badcock, 1995). Dot density and diameter were 2 dots/deg? and
0.1 deg, respectively. On the first frame in a motion sequence, dots were randomly
positioned in the circular window and were displaced at 5 deg/sec. Dots that fell outside
were wrapped to the opposite side of the window.

Psychophysical procedure

In a temporal two-alternative forced choice task, observers judged which of two RDKSs had a
more clockwise direction of motion. On each trial, standard and comparison RDKs (see Fig.
1) were presented in a random temporal order separated by a 1000 msec interval containing
a fixation cross (luminance 0.05 cd/m2) on a uniform luminance background. The standard
RDK was always composed of dots which moved in a common direction on each trial,
randomly chosen from a uniform distribution spanning 360 deg. The comparison RDK was
composed of dot directions drawn from a probability distribution with distinct measures of
central tendency (see Fig. 2A-C).

Temporal pooling experiments: both comparison and standard RDKs consisted of 25
images, presented for a total duration of 1300 msec. The comparison dots were all displaced
in a common direction on each image, sampled randomly and independently from the
distribution, generating a temporal sequence of directions.

In the first two experiments, the temporal statistics of the comparison RDK were
manipulated by independently varying the standard deviation (SD) of the half widths of the
distribution, assigning the left half as the clockwise (CW) SD and the right half as the
counter clockwise (CCW) SD. For the first experiment, dots directions were sampled at 5
deg intervals from a Gaussian distribution with a range of 180 deg. The SD of the CCW half
of the Gaussian was either 30, 40, 50 or 60 deg; corresponding values on the CW half were
30, 20, 10 or 0 deg, generating asymmetrically distributions of dot directions with an
increasingly distinct mode (Fig. 2A). For the second experiment, dot directions of the
comparison RDK were sampled from a Gaussian with CCW SDs of 30, 50, 70 or 90 deg and
CW SDs of 6, 10, 14 or 18 deg. Each half of the distribution was sampled at 5 and 1 deg
intervals, respectively, generating asymmetrical distributions of dot directions with an
increasingly distinct vector average (Fig 2B). For both experiments, the modal direction of
the comparison RDK was randomly chosen on each trial using the Method of Constant
Stimuli. In the third experiment, dots directions for the comparison RDK were sampled from
a uniform distribution with a total range of 180°. We assigned each half of the distribution a
different range and sampling density, sampling the CCW half at 5 deg intervals over a range
of 90, 110, 130 or 150 deg and CW half in linear intervals over a range of 90, 70, 50 or 30°.
This generated asymmetrical distributions with increasingly different medians and vector
averages (Fig 2C). The median direction of the comparison RDK was randomly chosen on
each trial using the Method of Constant Stimuli.

Spatiotemporal pooling experiments: both the comparison and standard RDKs consisted of
2, 4 or 8 images, presented consecutively for a total duration of 104, 208 or 416 msec. The
comparison RDK consisted of different mixtures of “spatio-temporal” (100-0%) and
“temporal” (0-100%) dot directions. “Spatio-temporal” dot directions are hereafter referred
to as “spatial”. “Spatial” directions were sampled independently from each other on the
current image and from their own direction on previous images; “temporal” dots were
displaced in a common direction on each image, independently of their direction on previous
images. “Spatial” and “temporal” dot directions were sampled in different proportions, with
replacement, from a single asymmetrical uniform distribution (see Figure 5). We chose this
distribution because it is diagnostic at distinguishing the predictions of a vector average
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from a maximum likelihood read-out of perceived direction (Webb et al., 2007). The median
direction of the comparison RDK was randomly chosen on each trial using the Method of
Constant Stimuli.

Data analysis

For each experiment, observers completed a minimum of two runs of 180 trials. Data were
expressed as the proportion of trials on which subjects judged the comparison RDK to be
more CW than the standard RDK as a function of the angular difference between them. Each
psychometric function was fitted with a logistic of the form:

Peov=1/ (1+exp (L =x)/B)), 1

where P, is the proportion of clockwise judgements, p is the stimulus level at which
observers perceived the directions of the standard and comparison to be the same (point of
subjective equality or PSE), and gis an estimate of direction discrimination threshold.
Figure 2D shows psychometric functions obtained in the temporal pooling experiment.

Population decoding
Basic model

We begin with a brief description and then detail the full mathematical implementation of
the model simulations. We simulated observers’ trial-by-trial performance on the temporal
and spatiotemporal tasks with a physiologically-inspired population decoding model (c.f.
Wehbb et al., 2007). The stimuli, timing, psychophysical procedure and number of trials were
the same in the model simulations and human experiments. On each trial, we accumulated
the spiking responses of a population of model direction-selective neurons to the comparison
and standard RDKs. The central tendency direction of the comparison was randomly chosen
on each trial using the Method of Constant Stimuli. A decoder “read-out” the population
responses to the standard and comparison and judged which RDK had a more clockwise
direction of motion. Psychometric functions based on the model response were accumulated
for different forms of decoder.

Wherever practical our model and manipulations of its parameters were designed to mimic
the behavior of an MT population. The model consists of 360 independently responsive,
direction-selective neurons, where adjacent neurons’ preferred directions are separated by 1
deg. The sensitivity of the th neuron, centered at 6;to direction @is:

Si(0) =exp {-[(0 - 6:;/h])*log2} 2

where /£ is the bandwidth (half-height, half-width), fixed at 45 deg. This bandwidth is chosen
to be within the range obtained in previous psychophysical studies on the directional tuning
of motion mechanisms (Levinson and Sekuler, 1980; Raymond, 1993; Fine et al., 2004) and
physiological studies on the directional tuning of MT neurons (Albright, 1984; Felleman and
Kaas, 1984; Britten and Newsome, 1998). The response of the th neuron to a distribution of
dots directions D(6) is:

360
R; (D) =kZS,<(0)pr{D(0)} where k=R, 1. 3
0=1

Rmax 1S the maximum firing rate of the neuron (60 spikes/s), is stimulus duration and
pr{D(6)} is the proportion of dot directions. The spiking response ( 7;) is Poisson
distributed with a mean of R{D)
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p (D)=

R;(D)";i
( ,) exp{-R; (D)} 4

-

We considered three different physiologically-plausible population decoders’ estimates of
D. The log likelihood of Dwas computed by multiplying the response of each neuron by the
log of its tuning function (Seung and Sompolinsky, 1993; Jazayeri and Movshon, 2006):

360

logL (D) =Zn,-logRi (D). s
i=1

The maximum likelihood direction estimated from the population response is the value of &
for which logL(D) for all Dis maximal.
To estimate D with a winner-takes-all decoder, we read-off the value of 6;where 7; max -

To obtain the corresponding estimate from a vector average decoder we calculated the
average of the preferred directions of all neurons weighted in proportion to their response
magnitude:

360
n;sin (6;)
_1| =1
V;’Ytztanl | 6
2. nicos (6;)
i=1

Model parameter manipulations

To test systematically whether a likelihood-based pooling computation alone could
accommodate observers’ psychophysical performance in the spatiotemporal pooling
experiment, we parametrically manipulated the behavior of our direction tuned model
neurons.

First, we varied number of neurons in the population in the range /= 12-720. Second, we
varied the level at which the th neuron’s response could reach saturation, such that;

360

0
RD_;RSGI i (0+6;]0)

where Rsy;is a fixed level of response saturation, is direction and &spis the number of dot
directions at which the response reaches half its saturating level (fixed at 20), and n is the
slope of the curve (fixed at 0.5).

Third, we conferred temporal dynamics on the th neuron’s response with a decaying
exponential of the form:

360

R"D:ZRsuSi+ (Rmax - Rsus,-) exp—t/‘r, 8
=1

where Rgys;is the sustained part of the response, R max ;is the maximum response, z,is a
time constant and ¢is time (Priebe et al., 2002).
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Fourth, we implemented a simple form of temporal summation in which the th neuron
accumulates local motion signals on its receptive field as a power function of time, such
that:

360

Z (t,D) wao 9
i=1

where w is a scaling factor, zpis a time constant and Zis time.

Fifth, within each simulated trial we imposed a correlation structure on the noise in our
population of neurons. Using a method described by Huang and Lisberger (2009), we first
compute the desired correlation structure (¢) across the th and j#h pairs of neurons as

~(aPD,)’

¢; j=Crmax€Xp | —————
T APDa o)

, 10

where cay is the maximum possible correlation between all pairs of neurons, APD; jis the
difference in preferred directions of pairs of neurons, T yis rate at which correlations decay
as a function of APD, and APDyx is fixed at 180 deg. Using a method developed by
Shadlen et al. (1996) we enforce the desired noise correlations across the population by
calculating the matrix square root (Q) of the desired correlation matrix

=00 1

such that every eigenvalue has a non-negative real part. We then multiply a vector of
independent normal deviates with unit variance and zero mean (2) by Q

y=0z, 12

generating a matrix with covariance ¢. To derive a matrix of responses with a given
correlation structure, we scale and offset ). The responses of the population to a distribution
of dot directions can then be calculated as:

Ric (D)=R; (D) ++R; (D)y:, 13

where R;{D) is a 1 by N vector of correlated responses that depend on each neuron’s
direction preference (8;) (For a complete derivation and discussion of this approach, see
Shadlen et al. (1996), APPENDIX 1: Covariance).

We first ask which pooling computations govern performance on a task that required human
observers to combine local motion directions over time (temporal pooling experiment). Each
psychometric function was fitted with a logistic (Equation 1; see Fig. 2D) to determine the
stimulus level at which observers perceived the global directions of the standard and
comparison RDKs to be the same (point of subjective equality or PSE). Figure 2D shows
that skewing the distribution of directions in the comparison RDK caused a large (~45 deg)
shift in the perceived direction of this observer away from the modal towards the median
and vector average direction. This huge shift in perceived direction occurred without a
concomitant change in the precision of discrimination performance (slopes of the two
psychometric functions are similar).
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The behavior of this individual was representative of the performance of all observers.
Perceived direction corresponded very closely to the vector average stimulus direction
calculated over time, diverging substantially from the modal and median direction of
motion. Figure 3A-C shows how the perceived direction of all observers changes as a
function of skew in different comparison distributions (Fig. 2A-C). Symbols represent each
subject’s PSE; dotted, dashed and solid lines represent the modal, median and vector
average direction of motion of the comparison RDK, respectively. When the comparison
RDK was generated from a Gaussian distribution with a CCW SD of 60 deg (Fig. 2A
bottom panel), the modal direction of the comparison had to be rotated by ~45 deg, on
average, for the standard and comparison to be perceived moving in the same direction (Fig.
3A). With a CCW SD of the dot distribution equal to 90 deg, the modal direction of the
comparison needed to be rotated by about 20 degrees in order for observers to perceive the
comparison and the standard moving in the same direction (Fig. 3B). Similarly, when
comparison directions were drawn from a uniform distribution with CCW range of 150 deg,
the median direction had to be rotated by about 20 degrees to be perceived moving in the
same direction as the standard (Fig. 3C). Unlike perceived direction, observers’
discrimination thresholds were relatively independent of degree of skew in the comparison
distributions (Fig. 3D-F).

A vector average read-out (Equation 6) from a model population of direction-selective
neurons (see Materials and Methods for basic model details) also predicted observers’
perceived direction (Fig. 4A-C) and the pattern of discrimination thresholds (Fig. 4D-F) in
the temporal pooling experiment. This finding contrasts with our previous work, where we
found that maximum likelihood was a robust estimator of performance on a task that
required observers to pool local motion samples across space (Webb et al., 2007). These
discrepant results appear consistent with the notion of a flexible motion pooling system
which can adopt different computations to address different stimulus demands, as others
have found for the perception of rigid motion (Stone et al., 1990; Yo and Wilson, 1992;
Burke and Wenderoth, 1993; Lorenceau et al., 1993; Cropper et al., 1994; Bowns, 1996;
Amano et al., 2009).

To test whether a flexible pooling process can account of these discrepant results, we
designed an additional experiment containing components of the previous two. The task and
design were the same as above with the following exceptions. The comparison RDK
consisted of different mixtures of “spatial” and “temporal” dot directions and was presented
at three different stimulus durations (See Materials and Methods). All dot directions in the
comparison RDK were drawn, with replacement, from a distribution which was particularly
diagnostic at distinguishing between the predictions of a maximum likelihood and vector
average read-out of perceived motion direction. Figure 5 shows examples of how we
sampled different mixtures of “spatial” and “temporal” directions from this distribution.
Note how the temporal dot directions dominate when the numbers of spatial and temporal
dots are equally balanced in the comparison distribution (50% spatial, 50% temporal). The
predominance of temporal directions in spatiotemporal motion stimuli tightly constrains the
behavior of model neurons which can accommodate performance on the spatiotemporal
pooling task. We will return to this important point below.

Figure 6 and 7 shows the performance of observers in the spatiotemporal experiment.
Perceived direction (Fig. 6) and discrimination thresholds (Fig. 7) are plotted for three
different stimulus durations as a function of the percentage of temporal dots in the
comparison (Note that the percentage of temporal dots is inversely related to the percentage
of spatial dots). Varying the mixture of temporal and spatial dots in the comparison RDK
caused large (up to 25 deg) shifts in observer’s perceived direction, PSEs varying between
-10 (100% spatial dots) and 15 deg (100% temporal dots). Stimulus duration modulated this
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relationship between perceived direction and percentage of temporal dots in the comparison
- an effect that was most apparent when the numbers of spatial and temporal dots were
equally balanced (Fig. 6). For all observers, increasing the relative percentage of temporal
dots (thus reducding percentage of spatial dots) in the comparison RDK caused
discrimination thresholds to rise. For one observer (F.R.) the relationship between
discrimination thresholds and percentage of temporal dots was modulated by stimulus
duration: thresholds were larger at shorter stimulus durations. This effect was not marked for
the other two observers.

Figure 6D shows the average perceived direction of the three observers. The dashed lines on
the right show that a vector average decoder (Equation 6) accurately estimated perceived
direction at the three stimulus durations (indicated by different shades of grey) when RDKs
were populated by temporal dots. In contrast, a maximum likelihood decoder (Equation 5)
accurately estimated perceived direction at the three stimulus durations (indicated by a
single black dashed line because the estimates were the same for three durations) when
RDKSs were populated by spatial dots. Yet with either population decoder alone, we were
unable predict the duration-dependence of the relationship between perceived direction and
percentage of temporal dots in the comparison. These data suggest a flexible form of motion
pooling, one that uses different computations in space and time.

In principle, a single, likelihood-based computation could account for the dynamics of
spatiotemporal motion pooling. Likelihoods are derived from the tuning and response
properties of individual motion sensitive neurons (Jazayeri and Movshon, 2006), which
raises the possibility that the behavior of the input neurons rather than the pooling
computations themselves govern the flexibly of spatiotemporal motion pooling. Our basic
model neurons lacked many of the well known characteristics of motion-sensitive neurons,
including non-linear response saturation (e.g. Albrecht & Geisler, 1991, Sclar, Maunsell &
Lennie, 1990), temporal response integration (for reviews see Born, Tsui & Pack, 2009,
Smith, Majaj & Movshon, 2009), temporal summation (e.g. Showden and Braddick, 1991;
Watamaniuk and Sekuler, 1992; Burr and Santoro, 2001) and a correlation structure to the
noise across the population of neurons (e.g. Bair, Zohary & Newsome, 2001, Kohn & Smith,
2005, Zohary, Shadlen & Newsome, 1994). To test whether a likelihood-based pooling
computation alone could accommodate observers’ psychophysical performance in the
spatiotemporal pooling experiment, we systematically introduced some of these
characteristics to our population of MT neurons (for details, see Materials and Methods).
The left column in Figure 8 shows examples of the effects of manipulating the model
neurons’ behavior on the response of the population when the numbers of spatial and
temporal directions are equally balanced in the comparison distribution (50% spatial, 50%
temporal). Samples from the distribution (inset in each panel) were presented to the model
for a total duration of 104 ms (2 images). The right column shows how these manipulations
of the model neurons changes a maximum likelihood read-out (Equation 5) of the
relationship between perceived direction and percentage of temporal dots in the comparison.

When the numbers of spatial and temporal dots were equally balanced in the comparison
they did not have equivalent effects on the population response (/= 180 neurons). As the
temporal dots all had the same direction this inevitably swamped the population response,
negating the relative contribution of spatial directions (Fig. 8A). The predominance of
temporal directions saturated maximum likehood’s estimate of perceived direction. Varying
the the total number of neurons in the population (A=12-720) had very little impact on this
effect: maximum likelihood produced equivalent estimates of perceived direction regardles
of whether the comparison stimulus was populated by 50, 75 or 100% of temporal directions
(Fig. 8B).
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We attempted to mitigate the effects on the read-out by fixing the the level at which all
neurons’ responses saturate. This flattened the peak of the population response (Fig. 8C;
Equation 7, R = 40 spikes/s) and eradicated the saturation of maximum liklihood’s
estimate of perceived direction, particularly when temporal directions outweighed spatial
directions (Fig. 8D). However, we could not find a fixed level of response saturation that
produced maximum likelihood estimates of perceived direction which corresponded to
observers’ pattern of performance in the spatiotemporal experiment (Fig. 6).

Perfectly correlated noise between neurons with similar direction preferences (Equation 10,
C max = 1) with correlation strength decaying as a function of the difference in preferred
directions of pairs of neurons (Equation 10, T = 0.5) both increased and broadened the peak
of the population response (Fig 8E). Different patterns of correlated noise across the
population mitigated the saturating effects on the read-out such that the gradient of the
relationship between the maximum likelihood perceived direction and percentage of
temporal dots (Fig. 8F) was very similar to that of observers (Fig. 6). However, changes to
the noise structure did not accomodate the way in which stimulus duration modulated this
relationship.

Conferring a form of temporal integration where each neuron’s response has a maximum
(Equation 8, R max /= 60 spikes/s) and decays to a sustained level (Equation 8, Rss;= 2
spikes/s) exponentially over time (Equation 8, =20 ms) both reduced and slightly
broadened the population response (Fig. 8G). But varying the time constant of integration
(7) did not capture the way in which stimulus duration affects performance on this task (Fig.
8H).

Our last manipulation to the model is built on a well known characteristic of motion
sensitive neurons in MT: responses saturate at very small numbers of dot directions
(Snowden et al., 1991; Snowden et al., 1992). Implementing a simple form of temporal
summation where each neuron accumulates local directional signals present within its
receptive field as a power function of time (Equation 9, Y (4 D) ) both reduced and
broadened the population response (Fig. 81). Together these changes to the population
response were suffcient to counteract the dominance of temporal directions and boost the
relative contribution of spatial directions to the read-out. By fixing the rate at which
neuron’s accumulated direction signals, maximum likilihood was able to read-out different
numbers of directions over different time epochs. This simple, physiologically plausible
change to the direction-selective neurons produced a family of functions (Fig. 8J) that
closely approximates the relationship we found in the spatiotemporal experiment.

Figure 9A show the maximum likelihood read-out from this model which most accurately
predicts observers’ perceived direction in the spatiotemporal experiment. When the input
neurons summed local directions at a fixed temporal rate (Equation 9, 7= 0.36), the
correspondence between the model predictions and observers performance (Fig. 6D) is
striking. [This model can also accommodate observers’ performance in the temporal
experiments (data not shown)]. For comparison, we decoded corresponding estimates of
perceived direction from same population of neurons using winner-takes-all (Fig. 9C) and
vector average (Fig. 9E). Winner-takes-all predictions are relatively accurate but hugely
variable, and vector average predictions diverged substantially from the empirical data. All
three decoders produced predictions which captured the relative change in observers’
discrimination thresholds as the percentage of temporal directions increase (and percentage
of spatial directions decrease) in the spatiotemporal experiment (Fig 9B, D & F). Yet only
winner-takes-all approximated the absolute threshold levels (Fig 9D.).
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Discussion

A simple computational model built on realistic physiological principles could
accommodate the dynamic nature of human observers’ psychophysical performance on two
tasks which required the pooling of motion directions over space and time. We did not have
to invoke an adaptive pooling mechanism that derives different computational solutions over
space and time to explain observers’ perception. Our modeling suggested a more
parsimonious solution, whereby the flexible nature of spatiotemporal pooling can be
accommodated by a single computation that optimally pools motion signals across a
population of neurons which effectively “count” the total number of dots on their receptive
fields at a fixed rate over time.

Our results suggest that flexible pooling emerges naturally from the dynamics of the input
neurons rather than residing with the pooling computations themselves. This conclusion
differs from other psychophysical studies of motion perception (Stone et al., 1990; Stone
and Thompson, 1992; Yo and Wilson, 1992; Burke and Wenderoth, 1993; Lorenceau et al.,
1993; Cropper et al., 1994; Bowns, 1996; Zohary et al., 1996; Amano et al., 2009), which
suggest that the visual system can adaptively switch between different pooling computations
depending upon the nature of the stimulus. Many studies have found that different pooling
computations coincide with the perception of weak (low contrast, short duration, 1-D), and
strong (high contrast, long duration, 2-D) forms of rigid motion. Moreover, when a
distribution of dot directions is skewed asymmetrically, the perceived direction can be
biased away from the mean towards the modal direction of global motion (Zohary et al.,
1996), suggesting that the visual system has access to the entire distribution of local
directions and adopts a flexible decision strategy (Zohary et al., 1996). Yet it is not clear
how the brain decides on which computations to choose within an adaptive pooling
framework. Much of the psychophysical evidence in favor of adaptive pooling does not
distinguish stimulus-from mechanism-based pooling computations (Stone et al., 1990; Stone
and Thompson, 1992; Yo and Wilson, 1992; Burke and Wenderoth, 1993; Lorenceau et al.,
1993; Cropper et al., 1994; Bowns, 1996; Zohary et al., 1996; Amano et al., 2009). Without
distinguishing the computational description of a visual stimulus from the underlying
putative mechanism, it is impossible to know whether a single, mechanism-based
computation can fully explain the pooling process. Indeed many of the adaptive rigid motion
effects and the perceptual switch between different motion-based summary statistics can be
accommodated by computational models that optimally read-out the motion percept with a
single, likelihood computation (Weiss et al., 2002; Webb et al., 2007).

We have extended this work to show that computations built on well known physiological
properties of MT neurons can accommodate flexible spatiotemporal pooling of local motion
signals at a range of stimulus durations in human vision. Temporal pooling improves the
precision with which motion signals can be discriminated (van Doorn and Koenderink,
1982; Snowden and Braddick, 1991; Watamaniuk and Sekuler, 1992; Fredericksen et al.,
1994; Neri et al., 1998; Burr and Santoro, 2001), but the time window over which signals
are accumulated depends upon speed, spatial frequency, contrast and temporal structure of
the stimulus (Nachmias, 1967; Vassilev and Mitov, 1976; van Doorn and Koenderink, 1982;
Thompson, 1982 ; De Bruyn and Orban, 1988; Bialek et al., 1991; Buracas et al., 1998; Bair
and Movshon, 2004). Even though responses saturate at very small numbers of dot
directions (Snowden et al., 1991; Snowden et al., 1992) and most of the information about
the direction of constant motion is available soon after stimulus onset, MT neurons can
transmit more information about stimuli with rich temporal structure (Buracas et al, 1998).
Our modeling predicts that the way in which motion sensitive neurons respond to stimuli
with rich temporal structure also contributes to the flexible pooling of motion signals read-
out from MT. The form of temporal summation is not critical to this argument. In our model,
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the rate at which MT neurons accumulate local directions grew exponentially over time, but
the type of temporal summation described in other psychophysical studies (Showden and
Braddick, 1991; Watamaniuk and Sekuler, 1992; Fredericksen et al., 1994; Neri et al., 1998;
Burr and Santoro, 2001) may well have performed equally well.

A few studies have emphasized the contribution of rapidly saturating MT responses at small
numbers of dot directions (Snowden et al., 1991; Snowden et al., 1992) to the pooling of
local motion signals (Simoncelli and Heeger, 1998; Dakin et al., 2005), but to our
knowledge none have shown how the temporal accumulation of local motion signals
mediates flexible pooling. Counting the number of dot directions is equivalent to summing
motion energy (Britten et al., 1993), and our results are broadly consistent with the notion
that motion-sensitive neurons behave like spatiotemporal energy detectors (Watson and
Ahumada, 1983; van Santen and Sperling, 1984; Adelson and Bergen, 1985; Watson and
Ahumada, 1985; Heeger, 1987; Simoncelli and Heeger, 1998). Recent models of visual
motion pooling have extended motion energy models and shown how the non-linear
dynamics of input neurons can contribute to the subsequent pooling of visual motion signals
(Rust et al., 2006; Tsuil et al., 2010), reinforcing the notion that the complex dynamics of
spatiotemporal pooling is inherited rather than adaptively computed at the pooling stage.

We have shown that a single, likelihood-based computation can accommaodate the flexible
nature of spatiotemporal motion pooling in human vision. Because likelihoods are derived
from the tuning and response properties of individual motion sensitive neurons, flexible
pooling emerges naturally from the temporal dynamics of these input neurons. This general
principle obviates the need to invoke different computations to accommaodate the complex
dynamics of motion pooling.
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Figure 1.

Examples of random-dot-kinematograms (RDKSs) used in the temporal and spatiotemporal
experiments. In each experiment, observers judged whether sequentially presented standard
or comparison RDKs had a more clockwise direction of motion. 7emporaland spatial dot
directions were sampled with replacement from an asymmetrical probability distribution
with distinct measures of central tendency. All dots in the temporal comparison were
displaced in the same randomly sampled direction on each image, generating a temporal
sequence of directions across images; individual dots in the spatial comparison were
displaced in independently sampled directions on each image, generating a spatial
distribution of directions on each image. The comparison RDKs used for the spatiotemporal
experiments consisted of different mixtures of spatia/and femporal dot directions.
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median (white), vector average (gray) and modal (black) direction of the comparison RDKSs.
(D) Directions sampled with replacement from the comparison distributions shown in the

top and bottom panels of (A). When the comparison distribution is symmetrical the

perceived direction of the standard RDKs aligns with the three measures of central tendency
of the comparison RDK. When the comparison distribution is asymmetrical only the vector

average direction aligns with the perceived direction of the standard RDK The smooth lines
through the data points are the best fitting solutions to Equation 1.
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Figure 3.

Vector average of direction distributions accumulated over time predicts the temporal
pooling of local motion directions. (A-C) Symbols show the perceived direction of four
observers as a function of different comparison distributions. Lines show the temporal
vector average (solid), median (dashed) and modal (dotted) direction of the comparison
distribution. (B) Note the median direction has been offset from the mode to reduce clutter.
(D-F) Symbols show the direction discrimination thresholds of four observers as a function

of different comparison distributions. Error bars are 95% CI.
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Figure 4.

Vector average read-out from a physiologically imspired model predicts the temporal
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pooling of local motion directions. (A-C) White circles show the average perceived direction
of four observers as a function of different comparison distributions. Solid lines show the

perceived directions estimated by a vector average decoder (Equation 6). (D-F) White

circles show the average direction discrimination thresholds of four observers as a function
of different comparison distributions. Black circles show vector average decoder’s estimate

of direction discrimination thresholds. Error bars are 95% CI.
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Figureb5.

Spatial and temporal dot directions sampled in different proportions from a single
asymmetrical uniform distribution. Rows show different relative percentages of spatial and
temporal dot directions. Columns show the samples obtained over time on each positional
update of the dots.
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Figure6.

Different population decoders predict the spatial and temporal pooling of local motion
directions. (A-C) Symbols show the perceived direction of three observers at three stimulus
durations, plotted as a function of the percentage of temporal dots (inversely related to the
percentage of spatial dots) in the comparison. (D) Symbols show the average perceived
direction of observers plotted and notated as in (A-C). Dashed lines on the right are the
perceived direction at three stimulus durations estimated by a vector average decoder
(Equation 6) when all the dots are “temporal”; black dashed lines on the left of the plot are
the perceived direction at three stimulus durations estimated by a maximum likelihood
decoder (Equation 5) when all of dots are “spatial” (the maximum likelihood estimates are
the same for the three durations). Error bars are 95% CI.
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Figure?7.

Direction discrimination thresholds in the spatiotemporal pooling experiment. (A-C)
Symbols show the direction discrimination thresholds of three observers at three stimulus
durations, plotted as a function of the percentage of temporal dots in the comparison. (D)
Symbols show the average direction discrimination thresholds of observers plotted and
notated as in (A-C). Error bars are 95% CI.
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Figure8.

Effects of manipulating the behavior of input neurons on maximum likelihood’s estimate of
perceived direction in the spatiotemporal pooling experiment. Left column shows basic
mode/ population responses to of equally balanced (50%, 50%) spatial and temporal samples
from a comparison distribution (inset in each panel), presented for a total duration of 104
ms. The left panels show examples of changes to the shape of the population response
caused by varying: (A) numbers of neurons in the population (A= 180 neurons); (B) level at
which neurons’ responses saturate (Equation 7, Rs= 40 spikes/s); (C) correlation structure
of the interal noise across the population of neurons (Equation 10, C nax = 0.5); (D) time
constant of temporal response integration (Equation 8, z,= 20 ms); and (E) rate at which
neurons respond to the number of dot directions on their receptive fields (Equation 9, Y (¢, D)
=18). Right column shows how varying the model parameters N, Rszs, C max » Trand Y (¢ D)
modulated maximum likelihood’s estimate of perceived direction in the spatiotemporal
experiment. Varying the rate at which neurons respond to the total number of dots on their
receptive field was the only manipulation to the basic mode/which approximated observers’
performance at different stimulus durations.
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Computations governing spatiotemporal pooling of local motion directions. (A) Maximum
likelihood read-out from model neurons which sum local directions at a fixed rate over time
(Equation 9, zp = 0.36) accurately predicts human observers’ perceived direction at different
stimulus durations in the spatiotemporal pooling experiment. Corresponding estimates of
perceived direction from winner-takes-all and vector average decoders are accurate but
hugely variable (C) and completely inaccurate (E), respectively. Maximum likelihood (B),
winner-takes-all (D) and vector average (F) decoders all approximate the general pattern of
observers’ direction discrimination thresholds in the spatiotemporal pooling experiment.

Error bars are 95% CI.
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