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Abstract
Defining the neural and neurochemical substrates of response inhibition is of crucial importance
for the study and treatment of pathologies characterized by impulsivity such as attention-deficit/
hyperactivity disorder and addiction. The stop-signal task (SST) is one of the most popular
paradigms used to study the speed and efficacy of inhibitory processes in humans and other
animals. Here we investigated the effect of temporarily inactivating different prefrontal sub-
regions in the rat by means of muscimol microinfusions on SST performance. We found that
dorso-medial prefrontal cortical areas are important for inhibiting an already initiated response.
We also investigated the possible neural substrates of the selective noradrenaline reuptake
inhibitor atomoxetine via its local microinfusion into different sub-regions of the rat prefrontal
cortex. Our results show that both orbitofrontal and dorsal prelimbic cortices mediate the
beneficial effects of atomoxetine on SST performance. To assess the neurochemical specificity of
these effects we infused the α2-adrenergic agonist guanfacine and the D1/D2 antagonist α-
flupenthixol in dorsal prelimbic in order to interfere with noradrenergic and dopaminergic
neurotransmission, respectively. Guanfacine, which modulates noradrenergic neurotransmission,
selectively impaired stopping, whereas blocking dopaminergic receptors by α-flupenthixol
infusion prolonged go reaction time only, confirming the important role of noradrenergic
neurotransmission in response inhibition. These results show that, similar to humans, distinct
networks play important roles during SST performance in the rat and that they are differentially
modulated by noradrenergic and dopaminergic neurotransmission. This study advances our
understanding of the neuroanatomical and neurochemical determinants of impulsivity, which are
relevant for a range of psychiatric disorders.

Introduction
Behavioral inhibition is the ability to exert executive control over behavior when
environmental change requires the suppression of a prepotent response. This executive
control is operationalized by tasks measuring the inhibition of a motor response, of which
the stop-signal task (SST) is one of the most prominent. The stop-signal reaction time
(SSRT) is a measure of the speed of the inhibitory processes derived from the SST (Logan,
1994) and is retarded in many pathologies characterized by impulsive behaviour such as
drug addiction, attention-deficit/hyperactivity disorder (ADHD), schizophrenia and in
patients with prefrontal cortex (PFC) damage (Lipszyc and Schachar, 2010; Aron et al.,
2004; Feil et al., 2010). More detailed knowledge of the neuroanatomical and neurochemical
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substrates of response inhibition in the rat would improve our understanding of the neural
circuitries mediating behavioral and cognitive control.

Eagle et al. (2008b) found that rats with fiber-sparing lesions of the orbitofrontal cortex
(OFC) had longer SSRTs but no effects were observed after similar lesions of the prelimbic
(PL) or infralimbic (IL) cortices (Eagle and Baunez, 2010; Eagle and Robbins, 2003b).
However, there are still no data on the possible involvement of the rat anterior cingulate
cortex (ACC) in SST performance, which was investigated in this study, together with other
regions, using inactivation via muscimol microinfusion. Moreover, although evidence
suggests an important contribution of norepinephrine (NE) neurotransmission in modulating
prefrontal areas during response inhibition (Robbins and Arnsten, 2009), no evidence is yet
available on the precise neural substrates in rodents and this was the other main focus of this
study.

Atomoxetine is a relatively selective NE reuptake inhibitor that increases extracellular
availability of both NE and dopamine (DA) preferentially in PFC (Bymaster et al., 2002),
and is approved for the treatment of ADHD (Faraone et al., 2005). Administration of
atomoxetine improves SSRT in ADHD patients (Chamberlain et al., 2007), but also in
normal rats (Robinson et al., 2008) and humans (Chamberlain et al., 2006). A recent
pharmacological fMRI investigation in healthy volunteers showed that atomoxetine may
work by modulating brain activity in ventro-lateral PFC during stopping (Chamberlain et al.,
2009), consistent with the involvement of this area in SST performance (Aron et al., 2004;
Chambers et al., 2006). In the rat, it has been found that atomoxetine administration
produces positive BOLD activation in the OFC (Easton et al., 2007) and increases fos-like
immunoreactivity in medial PFC (Bymaster et al., 2002). However, the brain circuitries and
receptors that are modulated by atomoxetine to decrease impulsivity in the rat are not yet
known (Pattij and Vanderschuren, 2008).

In the present study, we investigated the neural substrates of response inhibition and the
prefrontal sites modulated by atomoxetine in the mediation of its suppression of impulsivity.
We then focused on one of the atomoxetine-sensitive sites to test whether the effects of
atomoxetine are likely to be mediated by DA or NE. We employed local infusions of the
selective α2-adrenergic agonist guanfacine, to more selectively manipulate noradrenergic
transmission, and of the mixed D1/D2 antagonist α-flupenthixol, to block PFC DA
transmission.

Materials and methods
Subjects

A total of 120 male Lister-Hooded rats (Charles River, Kent, UK) weighing 330-450 g at the
time of the experiment was used. Rats were housed in groups of four under a reverse light/
dark cycle (lights on 7 P.M.-7 A.M.) and maintained at 85% of their free-feeding weight,
with water available ad libitum. All experiments were conducted in accordance with the
United Kingdom Animals (Scientific Procedures) Act, 1986.

SST training
Rats were trained on the SST following a procedure modified from Eagle and Robbins
(2003a). Twelve operant chambers (Med Associates, Georgia, VT) – each encased in a
sound-attenuating box and fitted with two retractable levers located on either side of a food
magazine – were used. Rats were initially trained to press the right lever (required force
~0.15 N) to receive a reward pellet (Test Diet, 45mg precision-weight, purified ingredient
rodent tablets, Sandown Scientific). The lever was then retracted and collection of the
reward in the food magazine started the subsequent trial with re-introduction of the right
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lever. Once the animals completed at least two consecutive daily sessions of 100 trials
within 30 minutes, they were presented with the left lever and learned to press it to extend
the right one, which would result in the delivery of the reward if pressed within 30 s (limited
hold; LH). The LH – the time available for the rats to press the right lever after pressing the
left one – was progressively shortened until the rats reliably completed 100 trials with a LH
of 5s. Stop trials were then introduced using an auditory stop-signal (4500Hz, ~80dB tone,
100 ms) that lasted from the left lever press until the end of the LH period and the number of
total trials was set to 210. The LH and stop-signal were made progressively shorter until
they were kept constant for each animal. The final LH was 1.2 s and the stop-signal tone
length was further shortened until it reached 100 ms.

SST procedure
For all sessions, the task was initiated when the rats nose-poked into the central food well.
On go trials, the rats were rewarded with a food pellet for pressing the left followed by the
right lever in fast sequence within the duration of the LH. If the rats failed to press the right
lever before the end of the LH, they received a time-out period (TO; i.e., no reward, 5s
darkness, no levers available) and the trial was recorded as a go error. The latency of the go
response (go reaction time; GoRT) was defined as the time elapsed from the left to the right
lever presses. Stop trials, presented on 20% of total trials, were pseudo-randomly
interspersed amongst go trials. Stop trials began in the same manner as a go trial, but after
pressing the left lever, the animals were presented with the stop-signal and were rewarded if
they refrained from pressing the right lever for the duration of the LH. If the rats pressed the
right lever after the stop-signal presentation, they were punished with a TO. During training,
stop-signals were presented immediately after the rats pressed the left lever (zero delay,
ZD). During testing and for the calculation of the SSRT, stop-signals were delivered at a
predetermined delay (stop-signal delay, SSD) after a left lever press. The different SSDs
were presented in random order within the session.

Two baseline SST sessions were used to determine the inhibition function (Figure 1) and to
decide the best SSDs to employ during the experimental phase: in these baseline sessions,
rats were presented with four different SSDs (mean GoRT (mRT) −300, −200, −100, and
−50 ms) and ZD. For test sessions, two SSDs were used and were calculated from the mRT
averaged from three previous ZD sessions e.g. (mRT1 + mRT2 + mRT3 / 3) − X ms = SSD,
where ”− X ms” were chosen to produce on average 50% stop accuracy based on the
inhibition function data, and were: −300 and −100 ms, plus ZD (Figure 1). These SSDs
capture the central part of the inhibition function, which is the most informative part both
empirically and theoretically (Logan, 1994; Band et al., 2003). Control of the experimental
chambers and on-line data collection were conducted using the Whisker control system
(Cardinal and Aitken, 2001) and a customised software written in Visual Basic by ACM.

Surgery
Rats were allocated to groups matched for baseline performance and chronically implanted
with stainless steel guide cannulae (28 gauge; Plastic One, Roanoke, VA) aimed at the ACC,
medial PFC or ventro-lateral OFC. We chose to target separately the ACC and dorsal PL
(dPL) and ventral PL/IL sub-fields of the medial PFC based on evidence of distinct cortico-
cortical and cortico-subcortical connections. The dorso-medial sector (dmPFC;
encompassing both ACC and dPL; Heidbreder and Groenewegen, 2003) mainly projects to
motor and sensory areas, but not limbic regions, whereas the ventro-medial subdivision
(vmPFC) has stronger connections with limbic and associative areas (Heidbreder and
Groenewegen, 2003; Gabbott et al., 2005; Vertes, 2006; Hoover and Vertes, 2007).
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For the surgical procedure, rats were anesthetized with isoflurane (4% and reduced to 2% to
maintain anaesthesia) in oxygen and secured in a stereotaxic frame (David Kopf
Instruments, Tujanga, CA, USA) fitted with atraumatic earbars, with the incisor bar set at
−3.3 mm relative to the interaural line. Guide cannulae were implanted according to antero-
posterior (AP), medio-lateral (ML) and dorso-ventral (DV) stereotaxic coordinates
calculated from bregma and dura (in mm), and taken from Paxinos and Watson (1998). They
were: ACC: AP + 2.5; ML ± 0.75; DV − 1.7; dPL and vmPFC: AP + 3; ML ± 0.75; DV − 2;
OFC: AP + 3.2; ML ± 2.5; DV − 1.7. Injectors were extended 1, 1.5 or 2 mm from the
cannula tip to target the ACC/dPL, vmPFC and OFC, respectively. Three or four small
screws and cranioplastic cement were used to secure the guide cannulae in which removable
obturators were inserted in order to prevent occlusion. Finally, a protective screw-on dust
cap was secured on the guide cannulae. After surgery, animals were singly housed and left
undisturbed for 5-7 days, before being re-trained on the task.

Infusions
To habituate the animals to the infusion procedure, a mock infusion was performed two days
before the start of drug testing. Animals received either drug or vehicle according to a
randomized crossover design, allowing at least two days between infusions. Drugs were
delivered bilaterally at a volume of 0.5 μl/side, at a rate of 0.5 μl/min via polyethylene
tubing (0.28 mm internal diameter, 0.16 mm; Portex, Kent, UK) connected to a 10 μl
Hamilton glass syringe which was mounted on an infusion pump (Harvard Apparatus Ltd.,
Kent, UK). On test days, animals were gently restrained whilst the obturators were removed
and stainless-steel injectors (22 gauge; Plastic One) were carefully inserted into the
cannulae. Infusions started 1 min after the insertion of the injector and during infusions the
animals were left free to move on the lap of the experimenter. Efficacy of infusions was
assessed by monitoring the movement of an air bubble along the infusion tubing. The
injectors were left in place for additional 2 min to allow for diffusion of into the surrounding
tissue, and were subsequently removed and the obturators replaced. Animals were then
placed into the operant chamber and the test started after an additional 1 min. Only one
infusion test day for each treatment was given.

Histology
Animals were euthanized with a lethal dose of pentobarbital (~1.5 ml; Dolethal, Vetoquinol,
UK) and perfused transcardially with 0.01 M phosphate buffer saline (PBS) followed by 4%
paraformaldehyde. Brains were removed, fixed for 24h in 4% paraformaldehyde and then
dehydrated in 20% sucrose dissolved in 0.01 M PBS overnight. Coronal sections of 60 μm
thickness were obtained with a freezing microtome and mounted on glass slides, before
being stained with cresyl violet for cannula placement verification. Anatomical landmarks
were obtained from standard rat brain atlas images (Paxinos and Watson, 1998).

Experiment 1
Animals received intracerebral microinjections of either muscimol (Tocris; 0.5 μg/0.5 μl/
side) or vehicle (sterile PBS) in ACC, dPL, vmPFC or OFC. The same concentration of
muscimol and similar infusion procedures have been used in previous studies (e.g., Corcoran
and Maren, 2001; Souza et al., 2002; Kim and Ragozzino, 2005; Ragozzino and Rozman,
2007). Muscimol infusion causes fast and long-lasting reversible inactivation of neurons
without affecting fibers of passage (van Duuren et al., 2007).
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Experiment 2
Animals were microinjected with atomoxetine (Eli Lilly & co.) or its vehicle (sterile PBS) in
ACC, dPL, vmPFC or OFC. Atomoxetine was infused at the dose of 0.1 μg/0.5 μl/side. This
drug dose was chosen based on previous experiments (Bari et al., 2007).

Experiment 3
In this experiment, we modulated more selectively DA and NA in the dPL because infusions
in this area resulted in significant effects in experiments 1 and 2. We chose to antagonize
dopaminergic neurotransmission by α-flupenthixol infusions because it produces effects
similar to those of DA depletion (Robbins et al., 1990; Naneix et al., 2009) and because it is
devoid of unwanted side effects on feeding behavior (Park et al., 2002). On the other hand,
local infusion of α2-adrenergic agonists in dPL can potentially interfere with both NA and
DA transmission. We used guanfacine which preferentially binds to α2A-adrenoceptor and
which is less potent than other non-selective α2 agonists in decreasing DA release compared
to NA (Scholtysik et al., 1975; Saameli et al., 1982; Nami et al., 1983; Ihalainen and Tanila,
2002), and thus may preferentially affect NA at the low dose used in the present experiment.
Guanfacine (a generous gift from Pharmaceutics International; Uhlen and Wikberg, 1991)
was dissolved in sterile PBS and infused into the dPL at the dose of 0.005 μg/0.5 μl/side.
The mixed D1/D2 dopaminergic receptor antagonist α-flupenthixol (Sigma; Murrin, 1983)
was dissolved in sterile PBS and infused into the dPL at the dose of 15 μg/0.5 μl/side. Drug
doses were chosen based on previous pilot experiments and published reports that used
similar procedures (e.g., Broersen et al., 2000; Dunn and Killcross, 2006; Naneix et al.,
2009).

Data analysis
Repeated measures ANOVA was used for the data analysis, with drug and SSDs as within-
subjects factors followed by Fisher’s LSD post-hoc test where appropriate (Howell, 1997;
Cardinal and Aitken, 2006). Mauchly’s test was used to assess departures from sphericity.
Significant interactions between drug and SSD for stop accuracy data were decomposed
using the simple main effect (SME) analysis. Measures analyzed included SSRT, mRT, go
accuracy and stop accuracy. SSRT was estimated using the protocol described by Logan
(1994). SSRTs from the two SSDs were averaged to give a single estimate for each rat, on
each test session. SSRT and stop accuracy (i.e., percent of stop trials in which the go
response was correctly inhibited) were adjusted for the presence of omission errors on go
trials in order to correct for the stop trials when an inhibition may not be attributed to a
successful stop, but accounted for by distraction. Adjustment was performed using the
correction factor of Tannock et al. (1989): adjusted p(inhibit) = observed p(inhibit) −
p(omission) / 1 − p(omission), where p represents the probability of inhibiting or omitting
the go response. However, differently from the SSRT, stop accuracy does not take into
account changes in GoRT and thus it may be more biased when these happen. Data were
analysed using SPSS 17.0 (SPSS, Chicago, IL, USA). Graphs were plotted using SigmaPlot
8.0 (SPSS, Chicago, IL, USA) to show group means with error bars representing standard
error of the mean (SEM). Asterisks indicate significant difference versus control condition
and the symbol # indicates only a main effect of drug when there is no interaction between
variables.

Results
Histology

Histological assessment revealed the position of the injector tips as represented
schematically in Figures 2, 3 and 4. Animals with injector placement outside intended areas
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or not performing according to the constraints of the “race model” (Logan, 1994) were
removed from the analysis. The final group sizes were: ACC, 4; dPL, 10; vmPFC, 10; OFC,
9, in Experiment 1; ACC, 14; dPL, 13; vmPFC, 13; OFC, 11, in Experiment 2; and dPL, 7
guanfacine and 7 α-flupenthixol in Experiment 3. Some of these animals were used in both
experiments 1 and 2 and were: OFC, 8; ACC, 3 and vmPFC, 3.

Experiment 1: Effects of intra-PFC muscimol infusions
ACC—Muscimol infusion in the ACC (Figure 5a) significantly slowed SSRT (F(1,3) =
10.8, p < .05), while mRT (F(1,3) = 1.05, ns) and go accuracy (F(1,3) = .95, ns) were not
affected, compared to vehicle infusion. Stop accuracy (Figure 7a) was significantly
decreased by muscimol infusion (F(1,3) = 58.9, p < .01) and there was a significant
interaction with SSD (drug × SSD, F(2,6) = 6.69, p < .05). SME analysis showed that stop
accuracy was significantly decreased by muscimol infusion at −300 ms (F(1,3) = 77.5, p < .
01), but not at ZD (F(1,3) = 2.51, ns) or −100 ms (F(1,3) = 2.49, ns).

dPL—Muscimol infusion in animals with cannulae targeting the dPL (Figure 5b)
significantly prolonged SSRT (F(1,9) = 8.9, p < .05). There were no differences in mRT
(F(1,9) = .22, ns) or go accuracy (F(1,9) = 4.16, ns). Stop accuracy (Figure 7a) was
significantly decreased by muscimol (F(1,9) = 13.7, p < .01), but there was no significant
interaction (drug × SSD, F(2,18) = 2.9, ns).

vmPFC—Bilateral muscimol infusion in vmPFC (Figure 5c) did not affect SSRT (F(1,9)
= .98, ns) or mRT (F(1,9) = 1.37, ns). Go accuracy was significantly decreased after
temporary inactivation of the vmPFC (F(1,9) = 7.92, p < .05). Stop accuracy (Figure 7a) was
not significantly different after muscimol infusion, but there was a significant interaction
between the treatment and SSD (F(1,9) = 2.91, ns; drug × SSD, F(2,18) = 7.36, p < .01).
SME analysis revealed that stop accuracy was lower after muscimol infusion only at −300
ms (F(1,9) = 6.16, p < .05). However, there was a trend towards a stop accuracy impairment
after muscimol infusion at ZD (F(1,9) = 5.03, p = .052) and toward an improvement at −100
ms (F(1,9) = 4.97, p = .053).

OFC—Muscimol infusion in OFC (Figure 5d) did not affect SSRT (F(1,8) = .17, ns). The
same treatment significantly increased mRT (F(1,8) = 9.44, p < .05). Moreover, go accuracy
was so much impaired after muscimol infusion (F(1,8) = 9.22, p < .05) as to impede a clear
interpretation of the SSRT data. There was no effect of drug on stop accuracy (F(1,8) = 1.88,
ns; Figure 7a), but there was a significant interaction between treatment and SSD (drug ×
SSD, F(2,16) = 15.91, p < .01). SME analysis showed that stop accuracy was higher at −100
ms (F(1,8) = 10.31, p < .05), but not at the other SSDs (ZD, F(1,8) = 1.92, ns; −300 ms,
F(1,8) = 1.51, ns) after muscimol infusion. The increase in stop accuracy at −100 ms is
likely to be caused by the strong decrease in go accuracy. A similar pattern of results was
obtained after infusion of a lower dose of muscimol (0.05 μg/0.5 μl/side) in the OFC during
pilot experiments (not shown).

Experiment 2: Effects of intra-PFC atomoxetine infusions
ACC—Atomoxetine infusion (0.1 μg/0.5 μl/side) into the ACC did not affect SSRT (Figure
6a; F(1,13) = .57, ns), mRT (F(1,13) = 3.39, ns), go accuracy (F(1,13) = 1.33, ns) or stop
accuracy (F(1,13) = .63, ns; drug × SSD, F(2,26) = .58, ns; Figure 7b).

dPL—Infusion of atomoxetine into the dPL significantly speeded SSRT (F(1,12) = 5.29, p
< .05; Figure 6b). There was no effect of atomoxetine on mRT (F(1,12) = .04, ns) or go
accuracy (F(1,12) = .002, ns). There was a trend towards an improvement in stop accuracy
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in animals treated with atomoxetine (F(1,12) = 4.4, p = .058; Figure 7b), but no interaction
between treatment and SSD (drug × SSD, F(2,24) = 1.35, ns).

vmPFC—There was no effect of atomoxetine infusion in vmPFC on SSRT (Figure 6c;
F(1,12) = .36, ns), mRT (F(1,12) = .43, ns), go accuracy (F(1,12) = 2.36, ns) or stop
accuracy (F(1,12) = .002, ns), although there was a trend towards a significant interaction
between drug and SSD (drug × SSD, F(2,24) = 3.3, p = .054; Figure 7b).

OFC—Atomoxetine infusion into the OFC significantly speeded SSRT (Figure 6d; F(1,10)
= 12.9, p < .01), but did not change mRT (F(1,10) = .18, ns) or go accuracy (F(1,10) = .11,
ns). Stop accuracy was not affected by atomoxetine infusion (F(1,10) = 2.88, ns; drug ×
SSD, F(2,20) = 2.61, ns; Figure 7b).

Experiment 3: Effects of guanfacine and α-flupenthixol infusions in dPL
Infusion of 0.005 μg/0.5 μl/side of guanfacine into the dPL (Figure 8a) significantly
lengthened SSRT (F(1,6) = 23.27, p < .01). The same treatment did not affect mRT (F(1,6)
= .29, ns) or go accuracy (F(1,6) = .35, ns). Stop accuracy was significantly decreased by
guanfacine infusion (F(1,6) = 9.11, p < .05; Figure 9) and there was an almost significant
interaction between treatment and SSD (drug × SSD, F(2,12) = 3.9, p = .05). SME analysis
showed that stop accuracy was not changed by the treatment at ZD (F(1,6) = .004, ns),
decreased at −300 ms (F(1,6) = 20.01, p < .01) and there was a trend toward an impairment
at −100 ms, (F(1,6) = 5.02, p = .06).

α-flupenthixol (15 μg/0.5 μl/side) infused into the dPL (Figure 8b) did not affect SSRT
(F(1,6) = 2.97, ns). There was no significant effect on go accuracy (F(1,6) = .29, ns) or stop
accuracy (F(1,6) = 1.7, ns; drug × SSD, F(2,12) = .86, ns; Figure 9). The only variable
affected by α-flupenthixol was the mRT, that was significantly increased by the treatment
(F(1,6) = 7.65, p < .05).

Discussion
In the present study, we found that reversible inactivation of the rat ACC or dPL prolonged
SSRT, impaired stop accuracy, but did not affect go-related measures. Moreover, our results
indicate that the non-stimulant ADHD drug atomoxetine acts in the dPL and OFC to
decrease impulsivity in the SST. Finally, local infusion of guanfacine, but not α-
flupenthixol, in the dPL produced effects opposite to those of atomoxetine infusion,
suggestive of NE over DA effects. Consistent with the present results, several studies have
highlighted the importance of the rat dmPFC in response inhibition in a variety of tasks
(Bari and Robbins, 2011). Lesion or inactivation of the dmPFC impairs rats’ ability to await
a trigger stimulus before emitting a response (Broersen and Uylings, 1999; Risterucci et al.,
2003; Narayanan et al., 2006). The present results demonstrate in addition that the dmPFC in
the rat is also involved in the rapid cancellation of an already initiated action, and thus
implicated in reactive response inhibition over a much faster time-scale.

The SSRT depends also on the speed at which the stop-signal is encoded. Neurons in
dmPFC selectively respond with phasic excitatory activity to infrequent, meaningful and
reward-predictive stimuli (Jodo et al., 2000), and transient inactivation of this area impairs
the behavioral response to such stimuli (Ishikawa et al., 2008b, a). This evidence suggests a
role for the rat dmPFC in redirecting the attention to the stop-signal during SST
performance. However, others have reported that the majority of dmPFC neurons are
selectively involved in the inhibitory component of a task, but not modulated by the
attentional requirements (Narayanan and Laubach, 2006; Hayton et al., 2010), thus
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favouring the inhibitory hypothesis. More work is necessary to separate the attentional from
the inhibitory component of SST performance.

Previous lesion studies did not find any impairment in SST performance after excitotoxic PL
lesions (Eagle and Robbins, 2003b). Although a more extensive area was affected in that
study, this discrepancy could be due to augmented sensitivity of the present, compared to the
previous, paradigm or to possible functional recovery following the lesion. SST performance
might be more sensitive to acute PFC inactivation, since other areas may compensate for the
permanent loss of dmPFC contribution to response inhibition (Lomber, 1999; Martin and
Ghez, 1999). Eagle and colleagues (2008b) demonstrated that excitotoxic lesions of the OFC
prolong SSRT in rats. In the present study, temporary inactivation of the OFC disrupted
general performance by producing large impairments in go accuracy and prolonging the go
response. Under these conditions, SSRT estimates may not be accurate, thereby preventing
firm conclusions concerning the contribution of the OFC to this measure.

Blocking NE reuptake by systemic administration of atomoxetine improves stop-signal
inhibition in both rats (Robinson et al., 2008) and humans (Chamberlain et al., 2006). On the
contrary, increasing DA availability by blocking its reuptake (Bari et al., 2009) or by L-dopa
administration (Overtoom et al., 2003) does not affect SSRT – although intra-striatal DA
antagonists do influence SST performance (Eagle et al., 2011). However, experiments that
make use of systemic drug administration leave open important questions concerning the
specific neural substrate and the neurochemical systems that mediate the observed
behavioral effects (Robbins and Arnsten, 2009; Floresco and Jentsch, 2011), thus
experiments 2 and 3 addressed these issues.

We found that locally blocking NE reuptake in dPL and OFC by atomoxetine
microinfusions selectively speeded SSRT. These two discrete areas of the rat PFC possess
bidirectional connections with the locus coeruleus (LC; Zhu and Aston-Jones, 1996; Jodo et
al., 1998) and may exert top-down control on the release of NE in forebrain areas (Arnsten
and Goldman-Rakic, 1984; Robbins, 2005), facilitating the influence of cognitive processes
on behavioral output (Usher et al., 1999; Aston-Jones and Cohen, 2005a). Thus, enhancing
NE activity in PFC may render LC neurons more responsive to behaviorally relevant stimuli
that trigger a sudden change in – or an interruption of – ongoing behavior (Aston-Jones and
Cohen, 2005b; Bouret and Sara, 2005; Dayan and Yu, 2006). In turn, phasic NE release by
LC neurons may enhance stimulus-evoked neural responsiveness in both sensory and motor
areas (Foote and Morrison, 1987; Berridge and Waterhouse, 2003). In the SST, this would
facilitate the processing of the stop-signal, thus improving stopping performance.

Alternatively, or in addition, atomoxetine may exert its beneficial effects by enhancing the
efficacy of frontal-basal ganglia networks for inhibitory control (Eagle and Baunez, 2010).
This is consistent with tract-tracing studies which have shown that both OFC and dPL
project to adjacent sectors of the striatum (Gabbott et al., 2005; Schilman et al., 2008) that
are also implicated in response inhibition in rats (Eagle and Robbins, 2003a) and humans
(Zandbelt and Vink, 2010).

The lack of effect of intra-ACC atomoxetine is consistent with the sparse noradrenergic
innervation of this area (Morrison et al., 1979; Loughlin et al., 1982), as opposed to more
caudal cingulate sub-regions that are heavily innervated by the LC (Heidbreder and
Groenewegen, 2003). Atomoxetine had no effect also in the vmPFC, a region that projects to
the ventral, but not dorsal striatum (Gabbott et al., 2005) and that provides only limited input
to the LC (Cedarbaum and Aghajanian, 1978; Luppi et al., 1995; Samuels and Szabadi,
2008). Moreover, vmPFC inactivation did not affect SSRT, confirming that this region is not
directly implicated in SST response inhibition.
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Blocking NE reuptake affects extracellular levels of both NE and DA in PFC (Tanda et al.,
1997; Moron et al., 2002) due to the high affinity of the NE transporter for DA and the
paucity of DA reuptake sites in this area (Ciliax et al., 1995; Sesack et al., 1998). Thus,
although it has been shown that atomoxetine improves working memory performance via
α2-adrenergic and DA D1 receptors (Gamo et al., 2010), the neurochemical specificity of its
effects on response inhibition has not yet been determined (Floresco and Jentsch, 2011). To
better define the likely relative contributions of NE and DA in PFC to SST performance we
microinfused the α2A-adrenergic agonist guanfacine or the D1/D2 dopaminergic antagonist
α-flupenthixol into the rat dPL, thus interfering with NA and DA neurotransmission,
respectively. Guanfacine microinfusions selectively prolonged SSRT, which is consistent
with studies showing that PFC infusions of α2-adrenergic agonists decrease extracellular
NE levels (van Veldhuizen et al., 1993; Dalley and Stanford, 1995). A possible effect of
guanfacine on PFC DA cannot be completely excluded (Gresch et al., 1995). However,
against this view, α-flupenthixol infusions did not affect SSRT, but slowed the go response
similar to the effects observed following systemic injections (Eagle et al., 2007). These
findings support the suggestion that it is the speed of the go rather than the stop response
that is under control of dopaminergic neurotransmission within the PFC (Eagle et al.,
2008a).

The effects of centrally-infused guanfacine on SSRT are consistent with previous studies
using a systemic route of administration in humans (Muller et al., 2005) or rats (Bari et al.,
2009). Intra-dPL guanfacine may impair stopping either by activating postsynaptic α2
receptors on pyramidal neurons or by its action at presynaptic α2 autoreceptors located on
noradrenergic terminals (Aoki et al., 1998). In the first case the net effect would be the
suppression of glutamate synaptic transmission (Ji et al., 2008), whereas in the latter,
guanfacine would cause a decrease of NE and DA release from pre-synaptic terminals
(Devoto et al., 2001). However, the dissociable effects of guanfacine and α-flupenthixol
infusions on stop- and go-related measures respectively, suggest a selective action of
guanfacine on noradrenergic neurotransmission at the dose used here.

Guanfacine produces beneficial effects on working memory (Arnsten and Pliszka, 2011) in
tasks possibly necessitating a different level of PFC activation compared to the SST. For
example, working memory tasks require subjects to attenuate the response to potentially
distracting stimuli and α2-adrenergic agonists might accomplish this by decreasing neural
responses to isolated excitatory inputs (distractors) through inhibition of hyperpolarization-
activated/cyclic nucleotide (HCN) channels, while strengthening network responsiveness to
recurrent excitation (Carr et al., 2007; Wang et al., 2007). Conversely, increasing NE
availability by α2 antagonists might make neurons more responsive to unpredictable salient
stimuli, improving performance in the SST and in other tasks requiring not a narrow
attentional focus (cf., Milstein et al., 2007; Bondi et al., 2010; Gamo et al., 2010), but
flexible attentional shifts (e.g., Devauges and Sara, 1990; Lapiz and Morilak, 2006).

In summary this study demonstrated that, as in humans (Aron et al., 2007; Duann et al.,
2009), multiple prefrontal loci are involved in SST performance and in the effects of
atomoxetine on response inhibition in the rat. Thus, atomoxetine in PFC selectively
improved SSRT possibly by enhancing the top-down influence of prefrontal regions on
subcortical structures. These effects are likely mediated via noradrenergic mechanisms,
since interfering primarily with NE – but not DA – neurotransmission prolonged SSRT,
whereas the newly-identified role of the ACC in response inhibition might be modulated
differently. The present findings significantly advance our understanding of the neural
circuitry and neurochemical systems implicated in response inhibition in the rat, which is
important for the translational investigation of pathologies characterized by impulsivity.
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Figure 1.
a) Schematic illustration of the SST structure. A standard session consists of 210 trials to be
completed within 30 minutes. On go trials (80 % of total trials) the left and right levers have
to be pressed in rapid sequence within the duration of the limited hold (LH; 1.2 sec) in order
to receive a reward, which is delivered in the central food well. On the remaining 20 % of
the trials (stop trials), an auditory stop-signal will be played after the left lever has been
pressed and after a variable stop-signal delay (SSD), which is calculated from each rat’s go
mean reaction time (mRT): zero delay (ZD), mRT −300 and mRT −100 ms. The
presentation of the stop-signal instructs the animal that the ongoing response to the right
lever has to be inhibited in order to obtain the reward. Triangles represent the approximate
time of presentation of the stop-signal during the go response. b) Representative inhibition
function obtained by plotting the SSDs against the probability of successful response
inhibition. SSDs for the experimental phase (−300 and −100 ms) are chosen from the central
part of the inhibition function, which is the most informative part both empirically and
theoretically (Logan, 1994; Band et al., 2003).
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Figure 2.
Schematic representation of the position of the injector tips in Experiment 1 (muscimol
microinfusions; 0.5 μg/0.5 μl/side) as revealed by histological analysis. The sagittal view
approximately shows the areas targeted by injectors on the horizontal plane. Empty
triangles, anterior cingulate cortex (ACC, n=4); filled circles, dorsal prelimbic cortex (dPL,
n=12); empty circles, ventro-medial prefrontal cortex (vmPFC, n=10); filled triangles,
orbitofrontal cortex (OFC, n=9). Drawings adapted from Paxinos and Watson (1998).
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Figure 3.
Schematic representation of the position of the injector tips in Experiment 2 as revealed by
histological analysis. The sagittal view approximately shows the areas targeted by
atomoxetine (0.1 μg/0.5 μl/side) microinjections on the horizontal plane. Empty triangles,
anterior cingulate cortex (ACC, n=14); filled circles, dorsal prelimbic cortex (dPL, n=13)
empty circles, ventro-medial prefrontal cortex (vmPFC, n=13); filled triangles, orbitofrontal
cortex (OFC, n=11). Drawings adapted from Paxinos and Watson (1998).
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Figure 4.
Schematic representation of the position of the injector tips in Experiment 3 as revealed by
histological analysis. a) Guanfacine (0.005 μg/0.5 μl/side) and b) α-flupenthixol (15 μg/0.5
μl/side) were microinfused into the dorsal prelimbic (dPL, n=7 for both). Drawings adapted
from Paxinos and Watson (1998).
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Figure 5.
Effects of 0.5 μg/0.5 μl/side of muscimol in a) anterior cingulate cortex (ACC), b) dorsal
prelimbic cortex (dPL), c) ventro-medial prefrontal cortex (vmPFC) and d) orbitofrontal
cortex (OFC) on stop-signal reaction time (SSRT; left), mean go reaction time (mRT;
center) and go accuracy (right). Muscimol infused into the ACC or dPL prolonged SSRT
without affecting go-related measures. The same drug infused into the vmPFC or OFC
impaired go-related measures disrupting global performance on the task. In these conditions
of very low go accuracy (OFC), SSRT estimates may not be reliable. (* p < .05)
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Figure 6.
Effects of 0.1 μg/0.5 μl/side of atomoxetine in a) anterior cingulate cortex (ACC), b) dorsal
prelimbic cortex (dPL), c) ventro-medial prefrontal cortex (vmPFC) and d) orbitofrontal
cortex (OFC) on stop-signal reaction time (SSRT). The selective norepinephrine reuptake
inhibitor atomoxetine in dPL and OFC improved response inhibition decreasing SSRT,
without significant effects on go-related measures (not shown). The same drug infused into
the ACC or vmPFC did not have any effect on SSRT and other stop-signal task variables. (*
p < .05 and ** p < .01)
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Figure 7.
Effect of a) muscimol and b) atomoxetine infusions into the anterior cingulate cortex (ACC),
dorsal prelimbic (dPL), ventro-medial prefrontal cortex (vmPFC) and orbitofrontal cortex
(OFC). Muscimol (0.5 μg/0.5 μl/side) significantly impaired stop accuracy in ACC and
dPL. In this latter region, stop accuracy was decreased across SSDs whereas in the former,
decomposition of the interaction revealed a significant effect only at −300 ms. Effects in
OFC and vmPFC are likely to be caused by the drug’s effect on go accuracy (Figure 5).
Atomoxetine (0.1 μg/0.5 μl/side) did not affect significantly stop accuracy in any PFC
subregion at the dose tested suggesting that its effects are selective to the SSRT. (* p < .05,
simple main effect analysis; # p < .01, main effect only)
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Figure 8.
Effects of a) guanfacine and b) α-flupenthixol microinfusions into the dorsal prelimbic
cortex (dPL) on stop-signal reaction time (SSRT), mean go reaction time (mRT) and go
accuracy. The α2A-adrenergic agonist guanfacine (0.005 μg/0.5 μl/side) selectively
prolonged SSRT, whereas the mixed D1/D2 antagonist α-flupenthixol (15 μg/0.5 μl/side)
prolonged go reaction time, without any effect on stopping. (* p < .05 and ** p < .01)
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Figure 9.
Effects of guanfacine (left) and α-flupenthixol (right) on stop accuracy. Guanfacine infusion
(0.005 μg/0.5 μl/side) significantly impaired stop accuracy across delays, whereas α-
flupenthixol (15 μg/0.5 μl/side) did not have any significant effect on this measure (# p < .
05, main effect only).
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