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Abstract
In this paper, we describe a dynamic causal model (DCM) of steady-state responses in
electrophysiological data that are summarised in terms of their cross-spectral density. These
spectral data-features are generated by a biologically plausible, neural-mass model of coupled
electromagnetic sources; where each source comprises three sub-populations. Under linearity and
stationarity assumptions, the model's biophysical parameters (e.g., post-synaptic receptor density
and time constants) prescribe the cross-spectral density of responses measured directly (e.g., local
field potentials) or indirectly through some lead-field (e.g., electroencephalographic and
magnetoencephalographic data). Inversion of the ensuing DCM provides conditional probabilities
on the synaptic parameters of intrinsic and extrinsic connections in the underlying neuronal
network. This means we can make inferences about synaptic physiology, as well as changes
induced by pharmacological or behavioural manipulations, using the cross-spectral density of
invasive or non-invasive electrophysiological recordings. In this paper, we focus on the form of
the model, its inversion and validation using synthetic and real data. We conclude with an
illustrative application to multi-channel local field potential data acquired during a learning
experiment in mice.
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INTRODUCTION
This paper is concerned with modelling steady-state or stationary responses recorded
electrophysiologically using invasive or non-invasive techniques. Critically, the models are
parameterised in terms of neurophysiologically meaningful parameters, describing the
physiology and connectivity of coupled neuronal populations subtending observed
responses. The model generates or predicts the cross-spectral density of observed responses,
which are a simple but comprehensive summary of steady-state dynamics under linearity
and stationarity assumptions. Furthermore, these cross-spectral features can be extracted
quickly and simply from empirical data. In this paper, we describe the model and its
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inversion, with a focus on system identifiability and the validity of the proposed approach.
This method is demonstrated using local field potentials (LFP) recorded from Pavlovian fear
conditioned mice. In subsequent papers, we will apply the model to LFP data recorded
during pharmacological experiments.

The approach described below represents the denouement of previous work on dynamic
causal modelling of spectral responses. In Moran et al (2007), we described how neural-
mass models, used originally to model evoked responses in the electroencephalogram (EEG)
and magnetoencephalogram (MEG) (David et al 2003; 2005; Kiebel et al 2007), could also
model spectral responses as recorded by LFPs. This work focussed on linear systems
analysis and structural stability, in relation to model parameters. We then provided a face-
validation of the basic idea, using single-channel local field potentials recorded from two
groups of rats. These groups expressed different glutamatergic neurotransmitter function, as
verified with microdialysis (Moran et al 2008). Using the model, we were able to recover the
anticipated changes in synaptic function.

Here, we generalise this approach to provide a full dynamic causal model (DCM) of coupled
neuronal sources, where the ensuing network generates electrophysiological responses that
are observed directly or indirectly. This generalisation rests on two key advances. First, we
model not just the spectral responses from each electromagnetic source but the cross-
spectral density among sources. This enables us to predict the cross-spectral density in
multi-channel data, even if it has been recorded non-invasively through, for example, scalp
electrodes. Second, in our previous work we made the simplifying assumption that the
neuronal innovations (i.e. the baseline cortical activity) driving spectral responses were
white (i.e., had uniform spectral power). In this work, we relax this assumption and estimate,
from the data, the spectral form of these innovations, using a more plausible mixture of
white and pink (1/f) components.

This paper comprises three sections. In the first, we describe the DCM, the cross-spectral
data-features generated by the model and model inversion given these features. In the
second section, we address the face-validity of the model, using synthetic data to establish
that both the form of the model and its key parameters can be recovered in terms of
conditional probability densities. The parameters we look at are those that determine post-
synaptic sensitivity to glutamate from extrinsic and intrinsic afferents. In the final section,
we repeat the analysis of synthetic data using multi-channel LFP data from mice, acquired
during cued recall of a conditioned fear memory. This section tries to establish the construct
validity of DCM in relation to the previous analyses of functional connectivity using cross-
correlogram analysis. These show an increase in the coupling between the hippocampus and
amygdala using responses induced by conditioned fear-stimuli. We try to replicate this
finding and, critically, extend it to establish the changes in directed connections that mediate
this increased coupling.

THE DYNAMIC CAUSAL MODEL
In this section, we describe the model of cross-spectral density responses. Much of this
material is based on linear systems theory and the differential equations that constitute our
neural-mass model of underlying dynamics. We will use a tutorial style and refer interested
readers to appendices and previous descriptions of the neural-mass model for details. We
first consider the generative model for cross-spectral density and then describe how these
cross-spectral features are evaluated. Finally, we review model inversion and inference.
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A generative model for cross-spectral density
Under stationarity assumptions, one can summarize arbitrarily long electrophysiological
recordings from multi-channel data in terms of cross-spectral density matrices, g(ω)c at
frequency ω (radians per second). Heuristically, these can be considered as a covariance
matrix at each frequency of interest. As such, these second-order data-features specify,
completely, the second-order moments of the data under Gaussian assumptions. Cross-
spectral density is useful because it represents the important information, in long time-series,
compactly. Furthermore, it brings our data modelling into the domain of conventional
spectral analysis and linear systems theory. The use of linear systems theory to derive the
predicted spectral response from a non-linear dynamical system assumes that changes in the
(neuronal) states of the system can be approximated with small perturbations around some
fixed-point. One can motivate this assumption easily, given there are no profound
perturbations to the subject's neuronal state, during data acquisition.

The neural mass model—The underlying dynamic causal model is defined by the

equations of motion (t) = f(x,u) at the neuronal level. In this context, they correspond to a
neural-mass model that has been used extensively in the causal modelling of EEG and MEG
data and has been described previously for modelling spectral responses (Moran et al 2007;
2008). This model ascribes three sub-populations to each neuronal source, corresponding
roughly to spiny stellate input cells, deep pyramidal output cells and inhibitory interneurons.
Following standard neuroanatomic rules (Felleman & Van Essen 1991), we distinguish
between forward connections (targeting spiny stellate cells), backward connections
(targeting pyramidal cells and inhibitory interneurons with slower kinetics) and lateral
connections (targeting all subpopulations); see Figure 1 and Moran et al (2007). Each
neuronal source could be regarded as a three-layer structure, in which spiny stellate cells
occupy the granular layer, while infragranular and supragranular layers contain both
pyramidal cells and inhibitory interneurons.

Each subpopulation is modelled with pairs of first-order differential equations of the
following form:

(1

The column vectors xV and xI, correspond to the mean voltages and currents, where each
element corresponds to the hidden state of the subpopulation at each source. These
differential equations implement a convolution of a subpopulation's presynaptic input to
produce a postsynaptic response. The output of each source is modelled as a mixture of the
depolarisation of each subpopulation. Due to the orientation of deep pyramidal cell
dendrites, tangential to the cortical surface, this population tends to dominate LFP
recordings. We accommodate this by making the output of each source, g(x) a weighted
mixture of xV with weights of 60% for the pyramidal subpopulation and 20% for the others.
The presynaptic input to each subpopulation comprises endogenous, E(x), and exogenous,
C(u), components:

Endogenous inputs—In a DCM comprising s sources, endogenous input E(x) is a
weighted mixture of the mean firing rates in other subpopulations (see Figure 1). These
firing rates are a sigmoid activation function of depolarisation, which we approximate with a

linear gain function; S(xi) = Sxi  s×1. Firing rates provide endogenous inputs from
subpopulations that are intrinsic or extrinsic to the source. Subpopulations within each
source are coupled by intrinsic connections, whose strengths are parameterised by γ = {γ1,
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…,γ5}. These endogenous intrinsic connections can arise from any subpopulation.
Conversely, endogenous extrinsic connections arise only from the excitatory pyramidal cells
of other sources. The strengths of these connections are parameterised by the forward,

backward and lateral extrinsic connection matrices AF  s×s, AB  s×s and AL  s×s

respectively. The postsynaptic efficacy of connections is encoded by the maximum
amplitude of postsynaptic potentials He,i = diag(H1,…,Hs) (note the subscripts in Figure 1)
and by the rate-constants of postsynaptic potentials, κ = diag(κ1,…,κs) for each source. The
rate-constants are lumped representations of passive membrane properties and other
spatially distributed dynamics in the dendritic tree.

Exogenous inputs—Exogenous inputs C(u) = Cu are scaled by the exogenous input

matrix C  s×s so that each source-specific innovation u(t)  s×1 excites the spiny
stellate subpopulation. We parameterise the spectral density of this exogenous input, g(ω)u,
in terms of white (α) and pink (β) spectral components:

(2

Neuronal responses—The cross-spectral density is a description of the dependencies
among the observed outputs of these neuronal sources. We will consider a linear mapping
from s sources to c channels. In EEG and MEG this mapping is a lead-field or gain-matrix

function, L(θ)  c×s, of unknown spatial parameters, θ, such as source location and
orientation. Generally, this function rests upon the solution of a well-posed electromagnetic
forward model. For invasive LFP recordings that are obtained directly from the neuronal
sources, this mapping is a leading diagonal gain-matrix, L = diag(θ1,…θs) where the
parameters model electrode-specific gains. The observed output at channel i is thus si(t) =
Lig(x), where g(x) is the source output (a mixture of depolarisations) and Li represents the i-

th lead-field or row of the gain-matrix. In other words, Li = 1×s is the change in observed
potential caused by changes in source activity. These observed outputs can now be used in a
generative model of source cross-spectral measures.

Cross-spectral density—The neuronal model comprises a network of neuronal sources,
each of which generates stationary time-series in a set of recording channels. These steady-
state dynamics are expressed, in the frequency domain, as cross-spectral densities, gij(ω), at
radial frequencies ω, between channels i and j. Under linear systems theory, the cross-
spectral density induced by the k-th input or innovation uk(t), is simply the cross-transfer

function  times the spectral density of that innovation, gk(ω)u. This transfer function is

the cross-product of the Fourier transforms of the corresponding first-order kernels, 

and  (and in the case of i = j may be regarded as the modulation or self-transfer
function).

(3

The convolution kernels mediate the effect of the k-th input, at time t in the past, on the
current response recorded at each channel. In general, they can be regarded as impulse
response functions and describe the output at the i-th channel, si(t), produced by a spike of
the k-th exogenous input, uk(t). The kernel for each channel obtains analytically from the
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Jacobian  = ∂f/∂x describing how the system's hidden neuronal states, x(t), couple inputs
to outputs. For channel i, and input k the kernel is

(4

This means the kernels are analytic functions of (t) = f(x,u) and s(t) = Lg(x); the network's
equations of motion and output function respectively. The use of the chain rule follows from
the fact that the only way past inputs can affect current channel outputs is through the
hidden states. It is these states that confer memory on the system. In Appendix I, we present
an alternative derivation of the cross-spectral density using the Laplace transform of the
dynamics in state-space form. This gives a more compact, if less intuitive, series of
expressions that are equivalent to the kernel expansion. In this form, the Jacobian is known
as the state transition matrix.

To furnish a likelihood model for observed data-features we include a cross-spectral density
ψij induced by channel noise and add a random observation error to the predicted cross-
spectral density. Finally, we apply a square root transform to the observed and predicted
densities to render the observation error approximately Gaussian (Kiebel et al 2005).

(5

The spectral densities, ψc and ψs model the contributions of common noise sources (e.g., a
common reference channel) and channel-specific noise respectively. As with the neuronal
innovations we parameterise these spectral densities as an unknown mixture of white and
pink components. The observation error ε ~ N(0, Σ(λ)) has a covariance function, Σ(λ) =
exp(λ)V(ω), where λ are unknown hyperparameters and V(ω) encodes correlations over
frequencies1.

Equations 1 to 5 specify the predicted cross-spectral density between any two channels
given the parameters of the observation model {α,β,λ,θ} and the neuronal state equations,
{κ,H,γ,A,C}. This means that the cross-spectral density is an analytic function of the

parameters  = {α,β,κ,H,γ,A,C,λ,θ} and specifies the likelihood p(gc| ) of observing any
given pattern of cross-spectral densities at any frequency. When this likelihood function is

1In our work, we use an AR(1) autoregression model of errors over frequencies, with an AR coefficient of one half and ensure that the
error covariance components associated with the cross-spectral density between channels i and j are the same as the corresponding
component for the cross-spectral density between channels j and i.
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supplemented with a prior density on the parameters, p( ) (see Moran et al 2007 and Table

1), we have a full probabilistic generative model for cross-spectral density features p(gc, )

= p(gc| )p( ) that is specified in terms of biophysical parameters. Next, we look at how to
extract the data features this model predicts.

Evaluating the cross-spectral density
The assumptions above establish a generative model for cross-spectral features of observed
data under linearity and local stationarity assumptions. To invert or fit this model we need to
perform an initial feature selection on the raw LFP or M/EEG data. In this section, we
describe this procedure, using a vector auto-regression (VAR) model of the multi-channel
data and comment briefly on its advantages over alternative schemes. We use a p-order
VAR-model of the channel data y, to estimate the underlying auto-regression coefficients

A(p)  c×c (where c is the number of channels2).

(6

Here the channel data at the n-th time point, yn, represents a signal vector over channels. The
autoregressive coefficients A(k) are estimated using both auto- and cross-time-series
components. These, along with an estimated channel noise covariance, Eij provide a direct
estimate of the cross-spectral density, gij(ω)c = f(A(p)), using the following transform:

(7

The estimation of the auto-regression coefficients, A(k)  A(p) uses the spectral toolbox in
SPM (http://www.fil.ion.ucl.ac.uk) that allows for Bayesian point estimators of A(p), under
various priors on the coefficients. Details concerning the Bayesian estimation of the VAR-
coefficients can be found in Roberts and Penny (2002). Briefly, this entails a variational
approach that estimates the posterior densities of the coefficients. This posterior density is
approximated in terms of its conditional mean and covariance; p(A|y,p) = N(μA,ΣA). These
moments are optimised through hyperparameters νE and νA (with Gamma
hyperpriors;Γ(103,10−3)) encoding the precision of the innovations e and the prior precision,
respectively3:

(8

2For computational expediency, if there are more than eight channels, we project the data and predictions onto an eight-dimensional
subspace defined by the principal components of the prior covariance matrix in channel space

where  is the prior variance of the i-th spatial or gain parameter.
3ỹ comprise the time lagged data.
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Equation 7 uses the posterior mean of the coefficients to provide the cross-spectral density
features.

Alternatively, non-parametric methods could be used to quantify the cross-spectral density;
e.g., a fast Fourier transform (FFT). The advantage of our parametric approach is its
structural equivalence to the generative model itself: We use uninformative priors but place
formal constraints on the estimation of cross-spectral density through the order p of the
VAR-model. This has important regularising properties when estimating the spectral
features. Principled constraints on the order are furnished by the DCM above and follow
from the fact that the order of the underlying VAR process is prescribed by the number of
hidden neuronal states in the DCM. Heuristically, if one considers a single source, the
evolution of its hidden states can be expressed as a p-variate VAR(1) process

(9

where η(t) corresponds to exogenous input convolved with the system's kernel.
Alternatively, we can represent this process with a univariate AR(p) process on a single
state. Because there is a bijective mapping between source activity and measurement space,
the multivariate data can be represented as a VAR(p) process. We provide a formal
argument in Appendix II for interested readers.

The number of hidden states per source is twelve (see Figure 1) and this places an upper
bound on the order of the VAR model4. The relationship between the VAR model order and
the number of hidden sates can be illustrated in terms of the log-evidence ln p(y | p) for
VAR models with different orders: We convolved a mixture of pink and white noise
innovations with the DCM's first-order kernel (using the prior expectations) and used these
synthetic data to invert a series of VAR models of increasing order. Figure 2 shows the
ensuing model evidence jumps to a high value when the order reaches twelve, with smaller
increases thereafter.

Model inversion and inference
Model inversion means estimating the conditional density of the unknown model parameters

p( | gc,m) given the VAR-based cross-spectral density features gc for any model m defined

by the network architecture and priors on the parameters, p( |m). These unknown
parameters include (i) the biophysical parameters of the neural-mass model, (ii) parameters
controlling the spectral density of the neuronal innovations and channel noise, (iii) gain
parameters and (iv) hyperparameters controlling the amplitude of the observation error in
Eqn. 5. The model is inverted using standard variational approaches described in previous
publications and summarised in Friston et al (2007). These procedures use a variational
scheme in which the conditional density is optimized under a fixed-form (Laplace)
assumption. This optimisation entails maximising a free-energy bound on the log-evidence,
ln p(gc|m). Once optimised, this bound can be used as an approximate log-evidence for
model comparison in the usual way. Comparing DCMs in a way that is independent of their
parameters is useful when trying to identify the most plausible architectures subtending
observed responses (Penny et al 2004; Stephan et al 2007) and is used extensively in
subsequent sections. The focus of this paper is on the approximate log-evidence ln p(gc|m)

4In practice, we do not use the upper bound but use p = 8 for computational expediency; this seems to give robust and smooth spectral
features.
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and conditional densities p( | gc,m) and, in particular, whether they can support robust
inferences on neural-mass models and their parameters.

IDENTIFIABILITY AND FACE VALIDITY
In this section, we try to establish the face-validity of the DCM and inversion scheme
described in the previous section. Here, we use synthetic datasets generated by models with
known parameters. We then try to recover the best model and its parameters, after adding
noise to the data. We will address both inference on models and their parameters. This
involves searching over a space or set of models to find the model with the greatest
evidence. One then usually proceeds by characterising the parameters of the best model in
terms of their conditional density. In both inference on models and parameters, we used the
same model employed to analyse the empirical data of the next section. This enabled us to
relate the empirical results to the simulations presented below.

Inference on model- space
For inference on models, we generated data from three two-source networks using extrinsic
connections from the first to the second source, from the second to the first and reciprocal
connections. To assess inference on model-space, we used each of the three models as a
forward model of the three model-specific data sets. We hope to show that the inversion
scheme identified the correct model in all three cases. In all three models exogenous
neuronal inputs entered both sources and the connections were all of the forward type. These
three models are also evaluated in the empirical analysis. The parameter values for all three
models were set to their prior expectations5, with the exception of the extrinsic connections,
for which we used the conditional estimates of the empirical analysis. Data were generated
over frequencies from 4 to 48 Hz and observation noise was added (after the square root
transform). The variance of this noise corresponded to the conditional estimate of the error
variance from the empirical analysis.

The resulting three data sets were then inverted using each of the three models. For each
data set, this provided three log-evidences (one for each model used to fit the spectral data).
We normalised these to the log-evidence of the weakest model to produce log-likelihood
ratios or log-Bayes factors. The results for the three models are shown in Table 2a. These
indicate that, under this level of noise, DCM was able to identify the model that actually
generated the data. In terms of inference on model-space, we computed the posterior
probability of each model by assuming flat or uniform priors on models; under this
assumption p(y | mi) ∞ p(mi | y), which means we can normalise the evidence for each
model, given one data set and interpret the result as the conditional probability on models.
These are expressed as percentages in Table 2b and show that we can be almost certain that
the correct model will be selected. In summary, Bayesian model comparison with DCM
seems to be able to identify these sorts of models with a high degree of confidence, with
conditional probabilities close to one for correct models and close to zero for incorrect
models.

Inference on parameter- space
For inference on parameters, we looked at the effects of changing the maximum amplitudes
of excitatory postsynaptic potentials (EPSP), which control the efficacy of intrinsic and
extrinsic connections and the effects of changing the extrinsic connections themselves.

5These expectations are biologically plausible amplitudes and rate constants that have been used in previous instances of the model
(Jansen et al 1993; David et al 2005) and are summarized in Moran et al 2007 and Table 1. In this study, prior variances on the
intrinsic connectivity parameters were set to zero.
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These effects are encoded in the parameters He  and AF , respectively. We addressed
identifiability by inverting a single model using synthetic data with different levels of noise.
By comparing the true parameter values to the conditional confidence intervals, under
different levels of noise, we tried to establish the accuracy of model inversion and how this
depends upon the quality of the data. As above, we chose different levels of noise based
upon the error variance estimated using real data. Specifically, we varied the noise levels
from 0.001 to 2 times the empirical noise variance, allowing a broad exploration of relative
signal-to-noise ratios (SNR).

The model we used is the same model identified by the empirical analyses of the next
section. This model comprised two sources and two LFP channels with no cross-talk
between the channels. The parameter values were based on the estimates from the empirical
analysis. Specifically, source 1 sent a strong extrinsic connection to source 2, whose
excitatory cells had a relatively low postsynaptic response (Figure 3). All parameter values

were set to their prior expectation, except for the parameters of interest  and .

In our DCM, parameters are optimised by multiplying their prior expectation with an
unknown log-scale parameter that is exponentiated to ensure positivity. Hence, a log-scale
parameter of zero corresponds to a scale-parameter of one, which renders the parameter
value equal to its prior expectation. By imposing Gaussian priors on the log-scale
parameters we place log-normal priors on the parameters per se. To model reduced

postsynaptic amplitudes in source 2,  had a log-scale parameter of −0.4 representing a
exp(−0.4) = 67% decrease from its prior expectation. The log-scale parameter encoding the

forward connection from source 1 to source 2, namely , was set to 1.5, representing a
exp(1.5) = 448% increase from its prior expectation. Both sources received identical
neuronal innovations, comprising white and pink spectral components (as specified in
Equation 2 above). Data were generated over frequencies from 4 to 48 Hz.

Posterior density estimates for all parameters, p( | gc,m) were obtained for 128 intermediate
noise levels between one thousandth and twice the empirical noise variance. The conditional

expectation or MAP (maximum a posteriori) estimates of  and  are shown in Figure 4
(hashed red line). The (constant) true parameter values are indicated by the solid red line,
and the prior value is in grey. The shaded areas correspond to the 90% confidence intervals
based on the conditional or posterior density. The lower panels show the conditional

probabilities  and  that the parameters differed from their prior
expectations.

It can be seen that the conditional expectation remained close to the true values for both
parameters, despite differences in their conditional precision, which decreased with
increasing levels of observation noise. This can be seen in the shrinking Bayesian
confidence intervals (grey area) and in the small increase in conditional probabilities with

less noise. This effect is more marked for the estimates of ; where the confidence
intervals splay at higher noise levels. This jagged variance in the confidence interval itself
reflects the simulation protocol, in which each data set comprised a different noise
realisation. In addition, the lowest conditional probability (that the parameter posterior
estimate differed from the prior) for all simulations, occurred for this EPSP parameter where

 at a high noise level of 1.83. In contrast, the connection strength parameter
remained within tight confidence bounds for all noise levels and produced a minimum

conditional probability, . This minimum occurred again as expected, at a
high noise levels of 1.72 times the empirical noise level.. One can also see, for both
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parameters a trend for conditional estimates to shrink towards the prior values at higher
noise levels; this shrinkage is typical of Bayesian estimators; i.e. when data become noisy,
the estimation relies more heavily upon priors and the prior expectation is given more
weight (Friston et al 2003). Importantly, while the 90% confidence bounds generally
encompass the true values, the prior values remain outside. In summary, under the realistic
levels of noise considered, it appears possible to recover veridical parameter estimates and
be fairly confident that these estimates differ from their prior expectation.

EMPIRICAL DEMONSTRATION
In this section, we present a similar analysis to that of the previous section but using real
data. Furthermore, to pursue construct-validity, we invert the model using data acquired
under different experimental conditions to see if the conditional estimates of various
synaptic parameters change in a way that is consistent with previous analyses of functional
connectivity using cross-correlograms. These analyses suggest an increase in coupling
between the amygdala and hippocampus that is expressed predominantly in the theta range.
This section considers the empirical data set-up, experimental design and inference on
models and parameters. We interpret the conditional estimates of the parameters, in relation
to the underlying physiology, in the Discussion.

Empirical LFP data
Local field potential data were acquired from mice (adult male C57B/6J mice, 10 to 12
weeks old) during retrieval of a fear-memory, learned in a Pavlovian conditioning paradigm
using acoustic tones (CS+ and CS−) and foot-shock (US). A previous analysis of these data
(Seidenbecher et al 2003) points to the importance of theta rhythms (∼5Hz) during fear-
memory retrieval (Pape and Stork, 2003; Buzsaki, 2002). Specifically, Seidenbecher et al
(2003) demonstrated an increase in theta-band coupling between area CA1 of the
hippocampus and the lateral nucleus of the amygdala (LA) during presentation of the CS+.
Moreover, theta synchrony onset was correlated with freezing, a behavioural index of fear-
memory (Maren et al 1997). For the purposes of demonstrating our DCM, we here revisit
the data of a single animal and show that this ‘on/off’ theta synchrony can be explained with
plausible neurobiological mechanisms at the synaptic level, using the methodology
described in the previous sections.

LFP data were recorded from two electrodes in the LA and the CA1 of the dorsal
hippocampus. The data comprised six minutes of recording, during which four consecutive
CS− tones and four consecutive CS+ tones were presented, each lasting ten seconds.
Freezing behaviour was seen prominently during the CS+. Preliminary analysis, using time-
frequency spectrograms, revealed that the hippocampal region exhibited strong background
theta rhythms, during CS+ and CS− epochs (Fig. 5a and b); whereas theta activity in lateral
amygdala was prominent only during the CS+ stimulus. Figure 5 displays the first CS+ and
CS− epochs of fear recall. Cross-spectra were computed for three-second epochs that
followed the onset of freezing behaviour in the four CS+ epochs and order-time matched CS
− epochs. Cross-spectral densities were computed from 4 to 48 Hz, using an eighth-order
VAR model, for each epoch and averaged across conditions (Figure 6). This revealed
spectral features that corroborated the analysis of Seidenbecher et al (2003); with
pronounced fast theta activity in the hippocampus and a marked theta peak in the cross-
spectral density. The amygdala showed a broader spectrum, with a preponderance of lower
theta activity and a theta peak in, and only in, the CS+ trial.
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Dynamic causal modelling
These cross-spectral densities were then inverted using a series of generative models. These
models were used to test the direction of information flow during heightened theta
synchrony following CS+. Given key experimental differences between CS− and CS+ trials,
we introduced log-scale parameters βki to model trial-specific variations in specified
parameters:

(10

βki is the k-th experimental effect on the i-th parameter and  is the value of the i-th
parameter i in the j-th trial or condition.. These effects are meditated by an experimental
design matrix X, which encodes how experimental effects are expressed in each trial.

Equation 10 is a generic device that we use to specify fully parameterised experimental
effects on specific parameters in multi-trial designs. In this example, β1i is simply a log-
scale parameter (Table 1) specifying the increase (or decrease) in CS+ relative to CS− trials.
The parameters showing trial-specific effects were the extrinsic connections and excitatory
post synaptic amplitudes; all other parameters we fixed over trials.

Inference on models—The extrinsic connection types in our DCM are based on
connections between isocortical areas (Felleman & Van Essen 1991); however, in this
analysis we are dealing with allocortical (CA1) and subcortical (LA) brain regions that have
no clearly defined hierarchical relationship. Therefore, our first step was to establish which
connection type best explained the measured LFP data. We approached this using model
comparison using DCMs with reciprocal connections between CA1 and LA. The
connections in these models were (model 1) forward; (model 2) backward; (model 3)
lateral; (model 4) a combination of forward and backward and (model 5) a combination of
all three. Bayesian model comparison based on the log-evidence indicated that the most
likely type of inter-regional connections was of the ‘forward’ type (model 1); where
connections originate from pyramidal cells and target excitatory interneurons. Figure 7a
shows the relative model evidences for the five models (i.e., the log-Bayes factor with
respect to the worst model).

Next, employing the optimal connection type, three different input schemes were tested to
find where driving inputs, i.e. from cortical regions, enter during CS+ and CS− epochs.
These DCM's included; (model 1) comprising exogenous inputs to both CA1 and LA;
(model 2) exogenous input to hippocampal region CA1 only and (model 3) the lateral
amygdala only. Figure 7b shows that the best model is model 1; where inputs enter both the
lateral amygdala and hippocampal CA1.

Having established a causal architecture for the inputs, three further models were tested to
examine whether connections were bidirectional or unidirectional. These results are
displayed in Figure 7c, where model 1 had bidirectional connections, model 2 had
unidirectional hippocampal to amygdala connections and model 3 had connections from
amygdala to hippocampus. We see that the most plausible model contains bidirectional
connections between hippocampus and amygdala.

This series of model searches can be regarded as a heuristic search over model space to
identify the most likely model; clearly the combinations of connection types and
architectures entail a very large model space. Effectively, we finessed the search of this
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space using a top-down strategy by optimising various model attributes, starting with
complex models and removing connections to identify the best. The accuracy of this model
was impressive; the fits to the cross-spectral data or shown in Figure 8 and are almost
indistinguishable from the observed spectra. Having identified this model we now turn to
inference on its parameters.

Inference on parameters—We now look at the conditional probabilities of key
parameters showing trial-specific or conditioning effects, under the most plausible model.
These parameters were the extrinsic connection strengths and intrinsic postsynaptic
efficacies. When comparing the CS− and CS+ trials, we observe decreased amygdala-
hippocampal connectivity and increased hippocampal-amygdala connectivity. Figure 9
shows the MAP estimates of β1i, which scale the extrinsic connections relative to 100%
connectivity in CS−. In addition, there were small increases in postsynaptic efficacy in the
amygdala for the CS+ relative to CS− Quantitatively, hippocampus-amygdala connectivity
increased by 26%, with a conditional probability of 99.97% that this effect was zero. In
contrast, amygdala-hippocampus forward connections decreased by 72%, with a conditional
probability of almost one. The relative change of intrinsic amygdala excitatory postsynaptic
amplitude was 8% with a high conditional probability 99.85% that the increase was greater
than zero. In contrast, changes in hippocampal excitatory postsynaptic amplitude were
unremarkable, (0.002%) and with a conditional probability that was close to chance
(69.70%).

In summary, these results suggest that the hippocampus and amygdala influence each other
through bidirectional connections. Steady states responses induced by CS+, relative to CS−
stimuli appear to increase the intrinsic sensitivity of postsynaptic responses in the amygdala
and with an additional sensitization to extrinsic afferents from the hippocampus. At the same
time the reciprocal influence of the amygdala on the hippocampus is suppressed. These
conclusions are exactly consistent with early hypotheses based on correlations (see below).

DISCUSSION
We have described a dynamic causal model (DCM) of steady-state responses that are
summarised in terms of cross-spectral densities. These spectral data-features are generated
by a biologically plausible, neural-mass model of coupled electromagnetic sources. Under
linearity and stationarity assumptions, inversion of the DCM provides conditional
probabilities on both the models and the synaptic parameters of any particular model. This
scheme enables inference about synaptic physiology and changes induced by
pharmacological or behavioural manipulations, using the cross-spectral density of invasive
or non-invasive electrophysiological recordings.

Usually, in Dynamic Causal Modelling, data prediction involves the integration of a
dynamical system to produce a time-series. In the current application, the prediction is over
frequencies; however, the form of the inversion remains exactly the same. This is because in
DCM for deterministic systems (i.e., models with no system or state noise) the time-series
prediction is treated as a finite-length static observation, which is replaced here with a
prediction over frequencies. The only difference between DCM for time-series and DCM for
cross-spectral density is that the data-features are represented by a three dimensional array,
covering c×c channels and b frequency-bins. In conventional time-series analysis the data-
features correspond to a two-dimensional array covering c channels and b time-bins.

Our simulation studies provide some face-validity for DCM, in terms of internal
consistency. DCM was able to identify the correct model and, under one model, parameter
values were recovered reliably in settings of high observation noise. Changes in the
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postsynaptic responsiveness, encoded by the population maximum EPSP, were estimated
veridically at levels below prior threshold, with a conditional confidence of more than 74%;
even for the highest levels of noise. Similarly, inter-area connection strength estimates were
reasonably accurate under high levels of noise. With noisy data, parameter estimates tend to
shrink towards their prior expectation, reflecting the adaptive nature of the weights afforded
to prior and data information in Bayesian schemes.

We have presented an analysis of empirical LFP data, obtained by invasive recordings in rat
CA1 and LA during a fear conditioning paradigm. A previous analysis of these data
(Seidenbecher et al 2003) showed prominent theta band activity in CA1 during both CS+
and CS− conditions, whereas LA expresses significant theta activity during CS+ trials only.
Using an analysis of functional connectivity6, based on cross-correlograms of LA/CA1
activity in the theta range, Seidenbecher et al (2003) demonstrated an increase in
connectivity between these two brain regions during CS+ trials. This is consistent with a
trial-specific enabling or gating of the CA1→LA connection during retrieval of conditioned
fear in the CS+ condition, leading to a transient coupling of LA responses to the condition-
independent theta activity in CA1. However, this analysis of functional connectivity was
unable to provide direct evidence for directed or causal interactions. This sort of evidence
requires a model of effective connectivity like DCM. The DCM analysis in the present study
confirmed the hypothesis based on the cross-correlogram results of Seidenbecher et al
(2003). The DCM analysis showed a selective increase in CA1→LA connectivity during CS
+ trials, accompanied by a decrease in LA→ CA1 connection strength. An additional
finding was the increase in the amplitude of postsynaptic responses in LA during CS+ trials.
This result may represent the correlate of long term potentiation of LA neurons following
fear conditioning (Rodrigues et al 2004; LeDoux, 2000). In summary, one could consider
these results as a demonstration of construct validity for DCM, in relation to the previous
analyses of functional connectivity using cross-correlograms.

The analysis of parameter estimates was performed only after Bayesian model selection. In
the search for an optimum model, we asked (i) which connection type was most plausible,
(ii) whether neuronal inputs drive CA1, LA or both regions; and (iii) which extrinsic
connectivity pattern was most likely to have generated the observed data (directed
CA1→LA or LA→CA1 or reciprocal connections). The results of sequential model
comparisons showed that there was a very strong evidence for a model in which (i) extrinsic
connections targeted excitatory neurons, (ii) neuronal inputs drove both CA1 and LA and
(iii) the two regions were linked by reciprocal connections. While there is, to our
knowledge, no decisive empirical data concerning the first two issues, the last conclusion
from our model comparisons is supported strongly by neuroanatomic data from tract-tracing
studies. These have demonstrated prominent and reciprocal connections between CA1 and
LA (see Pitkänen et al 2000 for a review). This correspondence between neuroanatomic
findings and our model structure, which was inferred from the LFP data, provides further
construct validity, in relation to neuroanatomy.

In conclusion, this study has introduced a novel variant of DCM that provides mechanistic
explanations, at the level of synaptic physiology, for the cross-spectral density of invasive
(LFP) or non-invasive (EEG) electrophysiological recordings. We have demonstrated how
this approach can be used to investigate hypotheses about directed interactions among brain
regions that cannot be addressed by conventional analyses of functional connectivity. A
previous (single-source) DCM study (Moran et al 2008) of invasive LFP recordings in rats
demonstrated the consistency of model parameter estimates with concurrent microdialysis

6Functional connectivity is defined as the statistical dependence between two biophysical time-series, whereas effective connectivity
refers to the directed and casual influence one biophysical system exerts over another (Friston et al 2003)
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measurements. The current study is another step towards establishing the validity of models,
which we hope will be useful for deciphering the neurophysiological mechanisms that
underlie pharmacological effects and pathophysiological processes (Stephan et al 2006).
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Appendix I: Laplace Description of Cross-spectral Density
Consider the State Space Model for a particular neuronal source

where A is the state transition matrix or Jacobian, x are the hidden states (cf. Equation 1)
and y is the source output. The Laplace transform gives

(AI.1)

Evaluating at s = jω gives the frequency output of the system. Given that the cross-spectrum

for two signals i and j is defined as  and that inputs to the system are seen by both
sources, we can write the output cross-spectral density as

(AI.2

where Hi is computed from the transition matrices of each source directly. Furthermore,
assuming white noise input we see from

(AI.3

that Hi are the Fourier Transforms of the impulse responses. In our model, we supplement
the input with pink (1/f) noise to render the input biologically plausible input. We can now
see directly how the cross-spectral density in Eqn. A1.2 and Equation 3 are equivalent, in
terms of system response to the unit impulse.

Appendix II: VAR model order selection from the number of Hidden States
Consider the discrete-time signal described by the difference equation

(AII.1

The Laplace transform of a sampled signal is known as the Z-transform
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(AII.2

For the AR model of AII.1 we obtain a Z domain representation

(AII.3

Now consider again the state-space form of each source in Equation AI.1. We see that the
form of H(s) is a polynomial quotient, where the denominator is the characteristic
polynomial of the Jacobian A. This contains powers of s up to the number of columns in A,
indexed by the number of hidden states; i.e. the length of vector x. Hence, for q roots by
partial fraction expansion we obtain

(AII.4

Using the s-z relation s + β = 1 − z−1e−βT, we obtain the order of the AR model p,
determined by the number of roots of the Jacobian q to give the delay z−p in Equation AII.3.
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Fig. 1.
Schematic of the source model with intrinsic connections. This schematic includes the
differential equations describing the motion of hidden electrophysiological states. Each
source is modelled with three subpopulations (pyramidal, spiny-stellate and inhibitory
interneurons) as described in (Jansen and Rit, 1995). In this figure these subpopulations have
been assigned to granular and agranular cortical layers, which receive forward, backward
and lateral connections from extrinsic sources in the network.
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Fig. 2.
The log-evidence for different order VAR models. The variational Bayes approach
described in the text provides the log model evidence for different VAR model orders. This
analysis illustrates a large increase in model evidence up to order twelve (black) and small
increases thereafter (grey). This increase in evidence occurs at an order that is equal to the
number of poles of the DCMs transfer function (see Appendix II).

Moran et al. Page 18

Neuroimage. Author manuscript; available in PMC 2009 February 18.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Fig. 3.
Simulated two source model where excitatory responses are modulated via a scaling of an

intrinsic maximum EPSP parameter in source 2:  and an extrinsic connection from

source 1 to source 2: . The inversion scheme was tested by recovering the posterior
estimates of these parameters, under different levels of observation noise (see Figure 4).

Moran et al. Page 19

Neuroimage. Author manuscript; available in PMC 2009 February 18.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Fig. 4.
Conditional densities of parameter estimates using the two-source simulations. The data
were generated under known parameter values (red line) and mixed with noise (one
thousandth to twice the empirical noise estimate). The EPSP parameter (Top left) was
exp(−0.4) = 67% of its prior expectation. The MAP estimates for this log-scale parameter
(plotted in hashed red) display a characteristic shrinkage toward the prior of zero at high
levels of noise (90% confidence intervals are plotted in grey). The extrinsic connection

parameter (Top right)  displays a similar behaviour, when simulated at exp(1.5) = 448%
of its prior expectation. The grey lines show the prior value (of zero) used for the
simulations. The bottom graphs show the conditional probabilities that the MAP estimates of
the log-scale parameters differ from their prior expectation.
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Fig. 5.
CS+ (Left) and CS− (Right) spectrograms. Time-frequency data demonstrating theta
activity at hippocampal (Top) and amygdala (Bottom) electrodes during the CS+ and CS−.
These plots are scaled relative to the maximum theta peak in the CS+ hippocampal image.
They are displayed with corresponding behavioural modes represented as colour-bars; where
‘f’ demarks freezing periods (the behavioural correlate of fear recall), ‘e’ exploration, ‘r’
risk assessment and ‘s’ stereotypical behaviour. During the CS+ condition theta activity can
be observed in both electrodes, in contrast, during the CS− condition, theta activity is
evident in hippocampal data but much less in the amygdala.
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Fig. 6.
Average cross-spectral densities across all CS+ and CS− trials. Top left: hippocampal
autospectrum, Top right: hippocampal-amygdala cross spectrum, Bottom right: amygdala
autospectrum. These spectral data features were evaluated from three second epochs after
the first freezing behaviour during CS+ and the time/order matched CS− trials. Peaks at
theta frequency are evident in both CS+ and CS− conditions with reduced theta activity in
the amygdala during CS−.
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Fig. 7.
Results of the Bayesian model comparison. Log Bayes factors are plotted relative to the
worst model in each comparison. (a) Optimal connection type is found in Model 1, where
the connections are of the ‘forward’ type. (b) Model evidence supports Model 1, where
exogenous inputs enter both the hippocampus and amygdala. (c) Model evidences suggest
reciprocal connections between the hippocampus and amygdala.
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Fig. 8.
Model fits for all empirical data. Top left: hippocampal autospectrum, Top right:
hippocampal-amygdala cross spectrum, Bottom right: amygdala autospectrum. The
measured spectra are shown with a dashed line and the conditional model predictions with a
full line.
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Fig. 9.
Trial-specific effects encoding differences between the CS+, relative to CS− trials. Top left:
Hippocampal EPSP displays <1% change on CS+ trials. Top right: Amygdala to
hippocampus forward connection strength decreases by 72% on CS+ trials. Bottom left:
Hippocampus to amygdale forward connection strength increases by 26% on CS+ trials.
Bottom left: Amygdala EPSP increases by 8% in CS+ relative to CS− trials.
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Table 1

Parameter Priors for model parameters including the observation model, neuronal sources, and experimental
effects. In practice, the non-negative parameters of this model are given log-normal priors, by assuming a

Gaussian density on a scale parameter, , where i = πi exp(Θi), and πi is the prior expectation

and  is its log-normal dispersion.

Parameter

i = πi exp(Θi)
Interpretation

Prior

Mean:
πi

Variance:
Θi = N(0, σi)

Observation Model

α u Exogenous White Input παu = 0 σαu = 1/16

α s Channel Specific White Noise παs = 0 σαs = 1/16

α c
White Noise common to all
channels

παc = 0 σαc = 1/16

β u Exogenous Pink Input πβu = 0 σβu = 1/16

β s Channel Specific Pink Noise πβs = 0 σβs = 1/16

β c
Pink Noise common to all
channels

πβc = 0 σβc = 1/16

θ 1…s Lead-field gain πθi = 1 σθi = exp(8)

λ Noise hyperparameter πλ = 0 σλ = 1

Neuronal Sources

κ e/i
Excitatory/Inhibitory Rate
Constants

πκe = 4ms−1 σKe = 1/8

πκi = 16ms−1 σKi = 1/8

He/i Excitatory/Inhibitory πHe = 8mV σHe = 1/16

Maximum post-synaptic
potentials

πHi = 32mV σHi = 1/16

γ 1,2,3,4,5 Intrinsic Connections πγ1 = 128 σγ1 = 0

πγ2 = 128 σγ2 = 0

πγ3 = 64 σγ3 = 0

πγ4 = 64 σγ4 = 0

πγ5 = 4 σγ5 = 0

AF Forward Extrinsic
Connections

πAF = 32 σAF = 1/2

AB backward Extrinsic
Connections

πAB = 16 σAB = 1/2

AL Lateral Extrinsic Connections πAL = 4 σAL = 1/2

C Exogenous Input πC = 1 σC = 1/32
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Parameter

i = πi exp(Θi)
Interpretation

Prior

Mean:
πi

Variance:
Θi = N(0, σi)

Design
βki

Trial Specific Changes πβki = 1 σβk,i = 1/2
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Table 2a

Inference on model space: Results of the Bayesian inversion on data simulated using three different network
architectures (column-wise). Log-Bayes factors are presented relative to the worst model for each network.
Best performing models are in bold. For all three simulations, the corresponding model-architecture was found
to have the highest Log-Bayes factor.

Simulated Network
Connections A2,1

F A1,2
F A2,1

F
 and A1,2

F

Modelled
Connections

A2,1
F

416.6 0 0

A1,2
F

0 399.2000 0.5000

A2,1
F

 and A1,2
F

398.4 381.6000 561.2000
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Table 2b

Inference on model space: Posterior probabilities of each model are computed by assuming flat or uniform
priors on models; normalising these values gives the conditional probability of the models presented here as
percentages.

Simulated

Connections A2,1
F A1,2

F A2,1
F

 and A1,2
F

Modelled
Connections

%

A2,1
F 100 0 0

A1,2
F 0 100 0

A2,1
F

 and A1,2
F 0 0 100
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