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Abstract
In order to make spatial inferences about the brain across a group of patients, it is usually
necessary to employ some means of bringing each brain image into register with either a group
mean image or a standard template. In the presence of focal brain lesions, automated methods for
performing such so-called normalization are liable to distortion from the abnormal signal within
the lesion, especially when the non-linear warping necessary for maximum registration fidelity is
used. The most frequently used method for minimizing this distortion - cost function masking -
simply eliminates the lesioned area when deriving the normalization parameters. As lesion size
increases, however, the normalisation error may be expected to rise steeply since the volume of
brain from which the parameters are derived falls with it. Here we propose an alternative non-
linear registration method that exploits a natural redundancy in the brain—the enantiomorphic
relation between the two hemispheres—to correct the signal within the lesion using information
from the undamaged homologous region within the contralesional hemisphere. As lesion size
increases, the normalization error should theoretically asymptote to inter-hemispheric differences,
which are both quantifiable and much lower than the inter-subject difference. Using SPM’s non-
linear normalization routines, we evaluate this technique with images of normal brains to which
lesions selected from a large dataset have been artificially applied. Our results show the
enantiomorphic method to be vastly superior to cost function masking across subjects, lesion
characteristics, and brain voxels. We therefore propose that it should be the method of choice for
normalizing images of focally lesioned brains.
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Introduction
It is impossible to make valid comparisons between the brains of different subjects, for the
purposes of structural analysis or the spatial localization of functional data, without some
means of matching homologous areas between them. This process—termed spatial
normalization—is commonly performed by transforming each source brain image so that it
matches a standard brain template. The dominant method for estimating the necessary
transformation is by finding the deformation parameters that minimize the mismatch
between the source and the template image voxel intensities (e.g. (Collins et al., 1994;
Friston et al., 1995; Jenkinson and Smith, 2001; Woods et al., 1992)). In the most
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sophisticated of these algorithms, an initial relatively crude, linear (affine) transformation, is
followed by a finer, non-linear transformation that allows close matching of image detail. It
has been shown that the second, non-linear step, substantially improves the quality of
registration (Ashburner and Friston, 1999; Brett et al., 2001).

Although these algorithms have been shown to produce excellent results when applied to
normal brains, a problem arises if the source images contain areas of signal abnormality
such as are present in patients with focal brain damage. Since the algorithm seeks to
minimize the voxel intensity mismatch across the whole brain, rather than select landmarks,
a localized area of abnormal signal in the source image will distort the transformation.
Affine-only transformations are less susceptible to such effects, as an attempt to minimize
the differences between the lesion and the template will result in substantial mismatching
elsewhere in the brain.

There are five general ways to minimize the impact of this problem. The first is to use a
purely affine registration and accept a poorer image match. The second is to use a manual
method, where the transformation is calculated on the basis of homologous landmarks
identified by hand: this is laborious, time-consuming, and operator dependent(Damasio and
Damasio, 1989; Frank et al., 1997; Mazzocchi and Vignolo, 1978). The third is to apply a
homologous “lesion” to the template image; this, however, requires that the experimenter
knows where the lesion is on the template, which is often the reason for the normalization in
the first place. The fourth involves normalizing a fusion image composed of the mean of the
source scan and its mirror image, thereby potentially extending the effect of the abnormality
to the contralateral hemisphere(Weiller et al., 1995). The fifth, and most widely-used,
method simply ignores the area of the lesion and its immediate vicinity when calculating the
parameters and applies the resultant affine and non-linear transformations in the standard
fashion: a technique known as normalization with cost function masking(Brett et al., 2001).
Current implementations of this method do not automatically determine the location of the
lesion—which would be difficult to achieve given the heterogeneity of lesion signal
intensities relative to the rest of the brain—and require the user to supply an additional,
binary mask image corresponding to the location of the lesion.

The last approach has been shown to be superior both to purely affine and unmasked non-
linear registration(Brett et al., 2001). However, it is open to an obvious criticism. As lesion
size increases, the volume of brain used to estimate the registration parameters decreases. To
the extent to which the area of the brain masked impacts on the registration process, it is
therefore reasonable to expect a monotonic relation between lesion size and quality of
registration that will generally asymptote to the inter-subject difference or worse, i.e. no
registration at all.

If lesion size varied uniformly across the brain such an effect would merely add noise.
However, if it does not—as is the case for vascular lesions(Husain and Nachev, 2007)—
there is a risk that the registration of different parts of the brain will vary in quality
depending on their correlation with lesion size, thereby introducing a spatial confound. The
issue is potentially more critical than simply the general quality of the data: in these
circumstances the normalization process may bias any spatial inferences drawn from it.

We therefore propose a new automated method for normalizing lesioned brains that exploits
two fundamental characteristics of the brain imaging data: first, that the brain is symmetrical
or, to put it more precisely, the hemispheres are enantiomorphically related; and second, that
focal lesions generally do not cross the midline. Rather than masking out damaged areas our
method replaces them opto-isometrically (i.e. volume mirrored) with signal from the
homologous region of the undamaged contralateral hemisphere, and then proceeds to
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perform a standard SPM normalization. Thus the lesioned area is corrected on the basis of
the best available guide to its appearance before it was damaged: its contralateral
counterpart. Theoretically, as lesion size increases our method should asymptote to the error
resulting from inter-hemispheric differences, which can reasonably be expected to be
substantially lower than the inter-subject difference(Thompson et al., 1996; Watkins et al.,
2001). Furthermore, since maps of brain asymmetry exist(Toga, 2003), it is possible to
address the confounding effects of this error explicitly at the inference stage.

Here we extensively test this theoretical conjecture by comparing what might be called an
enantiomorphic method to normalization with and without cost function masking, using a
large dataset of normal brain images to which lesions have been artificially applied.

Methods
Algorithm

The steps are outlined in Figure 1. We assume as a starting point a structural image and a
binary lesion mask in the same stereotactic space. The lesion mask may be generated by
manually tracing the lesion on the structural image, or via some automated algorithm: the
precise means are immaterial to our method.

The first step is to align the structural image in the sagittal midline so that homologous
regions in the two hemispheres may be matched in the subsequent steps. This can be
achieved simply by deriving the parameters for a rigid body co-registration of the structural
image and its opto-isometric version using SPM2’s co-registration routine, and applying to
the structural and lesion images the appropriate rotations half-way. Next the midline-aligned
lesion mask is inverted opto-isometrically and used to extract the corresponding region
within the unaffected hemisphere of the structural scan. The signal within the lesioned area
of the midline-aligned structural image is then replaced with the extracted signal. This
leaves a midline-aligned structural image with the lesioned area opto-isometrically replaced
by signal from the contralateral hemisphere. The final step is to normalize this image using
SPM2’s non-linear normalization routine, or whatever normalization routine the user
prefers.

Note that the initial, rigid-body co-registration step will inevitably be susceptible to some
distortion by the lesion, however—as we have argued already—this distortion will be
minimal since a focal lesion-induced mismatch will be countered by large mismatches
elsewhere. More importantly, the quality of registration obtained in this step directly affects
only the accuracy of the enantiomorphic correction, not the final normalization itself. There
is therefore no need to quantify any error introduced by this step independently of the whole
process.

Evaluation
There is no truly objective way of determining how well a given brain has been normalized.
However, if we artificially apply a lesion to a normal brain image and compare the
transformation parameters derived from normalizing the lesioned and unlesioned versions of
the image, we can make an objective assessment of how well the normalization algorithm
copes with the impact of the lesion(Brett et al., 2001).

The normalization parameters can be explicitly compared by generating the deformation
field they describe. A deformation field is a volume image of the same dimensions as the
template that maps the estimated displacement necessary to bring each voxel into alignment
with its homologue in the source image. Similar deformation fields will naturally have
similar patterns of voxel displacement. The precise extent of similarity between two
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deformation fields can be quantified by computing the displacement of one field relative to
another, on a voxel by voxel basis. This is simply the square root of the summed squared
differences in each direction (x, y, & z), for each homologous pair of voxels in the two
deformation fields being compared. The result is a volume map of the displacement of one
deformation field relative to another: what might be called a displacement field.

In order to obtain a whole brain measure of similarity we then calculate the root mean
square (RMS) of the displacement field(Brett et al., 2001), averaging across all voxels that
fall within the brain as defined by the template brain image1. We can also use the
displacement fields to do voxel-wise comparisons across subjects so as to identify any
consistent spatial differences in the quality of registration.

The experiment therefore consisted of the following steps (Figure 2). We first took two sets
of brain images of different subjects (n1=50, n2=42) free of any focal lesions and used a
large independent dataset of brain lesions (n=305) to generate artificially lesioned versions
of each image (i.e. a total of 50×305 = 15250 lesioned volumes for the first set, 12810 for
the second set). This was done so that we could make comparisons between the lesioned and
unlesioned versions of the same image, thereby isolating the specific effect of each lesion on
the normalization process. Second, we normalized both versions of each image using
SPM2’s standard normalization routine with and without cost function masking, and with
the enantiomorphic method. Third, each set of normalization parameters was used to
generate a corresponding deformation field. Fourth, the deformation fields from the lesioned
versions of each image were subtracted from the deformation field derived from the
unlesioned version of the same image—as described above—to generate a set of
displacement fields, for each subject, lesion, and method. Finally, we performed a series of
whole brain and voxel-wise comparisons between these displacement fields so as to
determine how well each method minimized the effect of the lesion, and how this was
influenced by the parameters of the lesion.

Data
The spatial characteristics of the 305 lesions used to generated the artificially lesioned
images were obtained from a large set of normalized brain images with real focal vascular
lesions unselected except for the requirement that lesion volume should exceed the fairly
low threshold of 5 cm3. They therefore vary widely in size and tend to affect certain areas
more commonly than others. Nonetheless, the brain coverage (shown in Figure 3) is
comprehensive, and vastly greater than in any previous study.

In generating the artificially lesioned images, we used the spatial parameters for each lesion
to set the voxels within it either to zero or—in a separate experiment for the T2 dataset—to
the mean of the normal signal intensity within the area of the lesion. Although the two
methods we are comparing here are largely insensitive to the lesion intensity within the bulk
of the lesion, cost function masking may be affected by propagation of the lesion beyond the
boundaries of the mask resulting from the smoothing step that precedes most normalization
algorithms. Mean-filled lesions—being unrealistically “benign”—allow us to exclude this
possibility as a reason for the difference between the two methods. Note that the comparison
with mean-filled lesions is informative only in relation to this specific question. One cannot,
for example, reliably use it to determine whether it is the removal of abnormal signal
intensity or the restoration of the normal pattern of signal in the lesioned area that is
decisive. This is so because filling an area with the mean of the signal normally found within

1Note that since the displacement values are positive real numbers the mean, rather than the root mean square would suffice.
However, we stick with RMS for the purposes of direct comparison with the only other paper to address this issue, Brett et al, 2001.
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it will variably affect—in a way that is hard to quantify—its pattern similarity to normal
brain depending on the location and extent of the lesion.

A criticism that can be raised against using artificially lesioned brain images is that they
might differ globally from images of real lesioned brains, i.e. that apparently normal areas in
real lesioned brains might be subtly abnormal in a way that might significantly affect the
fidelity of normalization in a method-dependent way. For example, it might be argued that
since patients with stroke often have evidence of previous vascular damage, and such
damage generally respects the midline, the brains of stroke patients may be inherently less
symmetrical than those of people without cerebrovascular disease. Thus the error associated
with a method that is sensitive to the symmetry between brains may be underestimated if the
artificially lesioned brain images are based on the brains of entirely normal people.

To minimize this effect, the normal brain images used in the first set were derived from a
clinical population: 50 individuals referred to a stroke clinic but not found to have had a
stroke. Although free of obvious focal lesions, they showed somewhat greater atrophy than
normal brains, and may be expected to have exhibited inter-hemispheric asymmetry similar
to that found in a stroke population. These considerations clearly do not apply to focal
lesions that do not generally occur in the setting of chronic disease, such as brain tumours.
The data derived from these brains is therefore likely to be weighted slightly against our
method. The images were clinical grade T2-weighted MRI scans of resolution 1mm × 1mm
× 6.5 mm. Since the comparison is between different normalisations of different versions of
the same structural image, it ought not to matter that we use T2 images rather than the more
conventional T1. The same applies for the rather anisotropic acquisition sequence typical of
clinical images. However, it may be argued that these characteristics will reduce the
requirement for non-linear transformations and therefore fail to capture the effect on the
component of the registration that is of greatest interest here. We therefore carried out a
separate analysis with a second set of isotropic, high-resolution (1mm3), T1-weighted
images derived from 42 normal subjects.

Procedure
The experimental procedure is outlined in Figure 2. For each dataset, we first aligned the
structural images to the vertical midline by applying half the appropriate rotations estimated
from a rigid body co-registration of the image to its opto-isometrically flipped version. So as
to match the normalized lesions to each subject’s normal image we first normalized each
normal image to the standard SPM2 T2 template. For each subject and each lesion we then
set the voxels in the normal image corresponding to any part of the lesion to an intensity of
zero or (for the T2 dataset) to the mean of the normal signal within the confines of the
lesion. The normal volumes and the resulting artificially lesioned volumes were then
transformed back into their native space by applying the inverse of the computed transform.

In the next step, each volume was normalized with SPM2’s routines in three separate ways:
using the standard routine, with cost function masking, and with enantiomorphic correction.
When cost-function masking was used, the area masked was approximately 10% larger than
the lesion. When enantiomorphic correction was used, the area corrected corresponded
closely to the area of the lesion, with the edges blended in with the aid of a 1mm FWHM
smoothed version of the mask. The normalization parameters were the SPM2 defaults.

Following normalization, the resultant transformation parameters were used to generate the
corresponding deformation fields. For each method and each lesioned volume, the reference
deformation field derived from normalizing the unlesioned version of each volume was used
to calculate a displacement field as previously described. All subsequent analyses are based
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on these fields, which excluded voxels that fell outside the brain as determined by a binary
mask derived from SPM2’s standard brainmask image thresholded at 0.5.

Since the displacement data were approximately log normal, the descriptive statistics were
performed by log transforming the data first and anti-logging the results. The subsequent
statistical tests compared the enantiomorphic method to cost function masking only. Whole
volume statistical comparisons were performed on the raw data using one-tailed, two-
sample, Kolmogorov-Smirnov tests. Voxel-wise comparisons were performed by log
transforming the data and entering each volume in a one-way ANCOVA with normalization
type as a factor and lesion size as a covariate.

So as to aid the visualization of possible interactions between normalization error and lesion
spatial characteristics, we used a non-linear dimensionality reduction technique, Isomap, to
embed the lesion data—parameterised as a series of binary volumes with dimensions equal
to the number of voxels—into a two dimensional space that preserves the high-dimensional
relations between the data(Tenenbaum et al., 2000). By superimposing the statistical data on
the Isomap embedding, any systematic relation between a given lesion feature and
normalization error may thus be more readily visualised.

The enantiomorphic correction and whole brain statistics were performed by a custom
MATLAB script. Isomap embedding was performed using the author’s own Matlab code
(http://isomap.stanford.edu/). All other procedures were implemented in SPM2 (http://
www.fil.ion.ucl.ac.uk/spm/) run under MATLAB 7.2 64 bit for Linux with a multithreaded,
Opteron-tuned, custom BLAS by Kazushige Goto (http://www.tacc.utexas.edu/~kgoto/) on a
four-core 2.6GHz AMD Opteron custom-built machine.

Results
The measure of interest is what we have called a displacement field: the difference between
the deformation field derived from normalising—using the method being tested—the
lesioned version of the image, and the reference deformation field derived from normalising
the unlesioned version of the same image. We first evaluated the impact of the normalization
method used for each subject, as indexed by whole brain RMS displacement across all
lesions. For the T2 dataset with zero-filled lesions, the enantiomorphic method was superior
to cost function masking across all subjects, on average by over a factor of four. The mean
values and standard errors for each subject—owing to approximate log-normality computed
by log transforming the data, obtaining the statistics, and anti-logging the results—are
plotted in Figure 4A. The mean displacement across all subjects was 0.40 mm per voxel
(SEM=0.0088) for the standard method, 0.20 mm (SEM=0.0054) for cost-function masking,
and 0.045 mm (SEM=0.0018) for the enantiomorphic method. A one-tailed, two-sample
Kolmogorov-Smirnov test on the untransformed data, comparing cost function masking to
the enantiomorphic method, showed that the latter was superior for every subject, with
asymptotic p values < 10-23. These statistics are plotted on the right hand axis in Figure 4A.
For the T1 dataset with zero-filled lesions (Figure 5A), the values were 1.161 mm
(SEM=0.0147) for the standard method, 0.2328 mm (SEM=0.003) for cost function
masking, and 0.0606 mm (SEM=0.002) for the enantiomorphic method. The p values for all
subjects were less than 10-24. For the T2 dataset with mean-filled lesions (Figure 6A), the
values were 0.056 mm (0.002) for the standard method, 0.165 mm (SEM=0.006) for cost-
function masking, and 0.045 (SEM=0.002) for the enantiomorphic method. The p values for
all subjects were less than 10-11. Note that the very low error values for the standard
normalization demonstrate that the mean-filled lesions were indeed unrealistically benign,
and that the difference between cost-function masking and the enantiomorphic methods
cannot be explained by the signal intensity of the artificial lesions.
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Next, we explored the effect of the characteristics of the lesion by computing analogously
the mean RMS displacement for every lesion type, averaging across individual subjects.
Again, the enantiomorphic method was superior to cost-function masking across all 305
lesions studied, for all datasets. The results of a plot of mean RMS displacement against
lesion size are shown in Figures 4B-6B. As might be expected, there is a rise in RMS
displacement with increasing lesion size for all three methods. However, the mean RMS for
the enantiomorphic method is smaller for every lesion compared with cost function masking,
and this is reflected in appropriate one-tailed, two-sample K-S tests, whose p values (all
except one below 0.05 significance threshold) are plotted on the right hand side axis.

Although the enantiomorphic method was shown to be superior for every lesion tested it is
possible that there is a subset of lesion features for which its superiority is more or less
pronounced. Brain lesions obviously differ not only in size but in many other dimensions,
which makes it difficult to visualise a comparison across all features. We have therefore
used the Isomap algorithm to reduce the dimensionality of the entire set of brain masks used
to two dimensions(Tenenbaum et al., 2000). This algorithm transforms the data into an
artificial low dimensional space while seeking to preserve the intrinsic high dimensional
relations between the data. Each lesion is thus placed in an artifical low-dimensional “lesion
feature” space, with similar lesions being close together and dissimilar ones far apart. This
mapping—with the T2, zero-filled, K-S test asymptotic p value for each lesion labelled in
colour—is plotted in Figure 7. Other than for a propensity for larger lesions to show greater
benefit, no decisive clustering is apparent, suggesting that there is no consistent set of lesion
features for which the enantiomorphic method is strikingly more or less successful, at least
on the basis of an Isomap embedding of the lesion data. Note that we do not make any hard
inferences from this finding, as there was no lesion for which the enantiomorphic method is
not superior.

Finally, so as to assess spatial differences between the two methods on a voxel-by-voxel
basis, we computed a voxel wise t map of the differences in displacement between the two
test methods, using the T2 zero-filled dataset. This was done by log-transforming the
corresponding displacement fields for each subject and entering them into a SPM2 one-way
ANCOVA with lesion size as a covariate. All voxels were above threshold for every subject.
A mean map of the t contrast: “cost function masking > enantiomorphic” is shown in Figure
8. The areas of highest significance are close to the edges of the brain, presumably because
lesions not completely surrounded by normal tissue tend to be least well normalised by the
masking method. It is in the normalisation of cortical tissue—which is perhaps of greatest
interest to imagers—that the enantiomorphic method shows the greatest advantage. The
effect is somewhat attenuated in areas of the brain known to exhibit hemispheric asymmetry,
but is still significantly in favour of our method.

Discussion
The enantiomorphic method is very simple. Conceptually, it relies solely on the self-evident
proposition that information from the contralateral hemisphere is generally better than no
information at all. Technically, it requires only a mask image identifying the lesion site, and
is computationally trivial. Although we have used it in combination with SPM’s
normalization routine, it is potentially applicable to other algorithms. It is readily applicable
to any lesion that does not affect both hemispheres in exactly the same place.

We have presented evidence—based on a comparison of a very large number of brain
images and the widest range of lesions hitherto studied in this regard—that the
enantiomorphic method is superior to what is generally considered the current gold standard.
This advantage is substantial, and extends across subjects, lesion parameters, and voxels.
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We have seen that the benefit is largely indifferent to the imaging modality used—at least
when clinical T2 and high resolution T1 scans are compared—and cannot be explained
merely by a difference in the extent to which abnormal signal is eliminated from the
lesioned brains. Although our study is the most comprehensive of its kind and the results are
unequivocal, we must make note of some potential criticisms and limitations.

First, although we have sampled a very wide range of lesion sizes we did not include lesions
smaller than 5 cm3. This was because we did not expect that very small lesions would make
a substantial difference to the quality of normalisation, and such lesions would in any case
be unlikely to be the subject of patient studies, which typically use patients with relatively
large lesions. In any case, inspection of Figure 4B suggests that the disparity between the
two methods does not decrease with decreasing lesion size, so there is no reason to expect it
to change suddenly below the threshold we have arbitrarily chosen. Nonetheless this
possibility cannot be absolutely excluded.

Second, the pattern of sizes and spatial localizations of the lesions included in the analysis is
derived from vascular lesions. Lesions with other spatial characteristics, such as brain
tumours, may conceivably yield different results. However, the wide extent of brain
coverage, and the level of statistical significance for every different lesion (given the
relatively small number of subjects) would seem to make this unlikely.

Third, vascular lesions generally do not cross the midline: clearly lesions that affect the
same parts of the hemisphere bilaterally would not be suitable for the enantiomorphic
method. Since in such situations the lesions are not likely to be completely symmetrical, the
best strategy would be to make an enantiomorphic correction for the parts that do not
overlap, and use cost function masking for the remainder. An evaluation of such an
approach is given in the supplementary material.

Fourth, as a consequence of the inhomogeneity in the distribution of vascular lesions certain
areas such as the cerebellum and the brainstem were less well sampled than other areas.
However, there is no a priori reason why they should behave differently from the rest of the
brain; furthermore there was no lesion for which the enantiomorphic method did not produce
better results.

Fifth, it may be that for a set of lesions heavily involving areas of most marked brain
asymmetry, such as the planum temporale, the results may differ. However, the lesions used
in this study covered these areas, and there was no lesion for which the enantiomorphic
method was not superior. Indeed, the voxel-wise comparison showed that even in these areas
the enantiomorphic method produces less error than cost function masking. Nonetheless it is
impossible to exclude the possibility that there exists a lesion for which cost function
masking is better: all we can say is that we could not find one in a lesion dataset vastly
larger than anything previously studied in this regard.

Sixth, it may be argued that it is not the absolute size of the error, but the consistency of the
spatial bias it introduces across the brain that matters most. Thus although the overall error
might be lower for the enantiomorphic method, if the error consistently covaries with
damage to specific areas of the brain—such as those that are associated with the greatest
hemispheric asymmetry—the impact on the subsequent statistics will be more significant
than for a greater degree of error that is not spatially correlated. However, as has already
been pointed out, an analogous objection can be raised against the cost function masking
method because different regions of the brain have different correlations with lesion size, at
least for vascular lesions(Husain and Nachev, 2007). This is an unavoidable consequence of
the structure of the vascular tree, and the consequent pattern of damage in stroke. A spatial
bias is therefore likely to exist in any case, so what is more important is that it should be
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minimised - as our method clearly does better. Furthermore, any bias introduced by inter-
hemispheric differences can be addressed at the inference stage with the aid of an
asymmetry map (see supplementary material). The bias resulting from location-size
correlations is currently unquantified, and ought to be the subject of urgent study.

Finally, it should be noted that—in common with every other normalization method
currently in use—out method requires special care in the presence of brain swelling. The
best strategy in these circumstances depends on the nature of the swelling. Where the
swelling is local to the extent of not distorting the enantiomorphically-correspondent area in
the contralateral hemisphere, the lesion mask used to perform the enantiomorphic correction
should cover the entirety of the swollen area. Thus both the lesion and the swelling are
enantiomorphically corrected. Where the swelling is so gross that enantiomorphically-
correspondent area is displaced relative to its homologue our method may be no better than
simply filling in the lesion with the mean of the signal within the enantiomorphically
correspondent area. Inspection of Figure 6 suggests that this may be better than cost-
function masking. However, we would suggest that in the presence of remote swelling it is
impossible to attribute any behavioural effect to a focal structural feature in the brain—
whether a lesion or something else—so the situation where our method would not be
applicable is unlikely to be of great concern to most of those likely to make use of it.

Conclusion
We have devised a simple method to aid the normalization of focally lesioned brains, and
we have used a lesion dataset of unprecedented size to demonstrate its superiority across
subjects, lesions parameters, and voxels. The data suggest that the enantiomorphic method
ought to be the preferred way of normalizing focally lesioned brains where the area of the
contralesional hemisphere corresponding the lesion is intact. Where it is so only partially,
we would suggest it should be combined with cost function masking. Our method also
permits the normalisation of focally lesioned brains using the combined normalization and
segmentation procedure implemented in SPM5, the latest version of SPM.

A MATLAB script for performing the enantiomorphic method is available from the authors.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.

Acknowledgments
We are very grateful to Matthew Brett for providing us with the image data used in his 2001 study. This work is
funded by the Wellcome Trust.

References
Ashburner J, Friston KJ. Nonlinear spatial normalization using basis functions. Hum Brain Mapp.

1999; 7:254–266. [PubMed: 10408769]

Brett M, Leff AP, Rorden C, Ashburner J. Spatial normalization of brain images with focal lesions
using cost function masking. Neuroimage. 2001; 14:486–500. [PubMed: 11467921]

Collins DL, Neelin P, Peters TM, Evans AC. Automatic 3D intersubject registration of MR volumetric
data in standardized Talairach space. J Comput Assist Tomogr. 1994; 18:192–205. [PubMed:
8126267]

Damasio, AR.; Damasio, H. Lesion Analysis in Neuropsychology. Oxford University Press; New
York: 1989.

Nachev et al. Page 9

Neuroimage. Author manuscript; available in PMC 2009 March 19.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Frank RJ, Damasio H, Grabowski TJ. Brainvox: an interactive, multimodal visualization and analysis
system for neuroanatomical imaging. Neuroimage. 1997; 5:13–30. [PubMed: 9038281]

Friston KJ, Ashburner J, Frith CD, Poline JB, Heather JD, Frackowiak RSJ. Spatial registration and
normalization of images. Human Brain Mapping. 1995; 3:165–189.

Husain M, Nachev P. Space and the parietal cortex. Trends Cogn Sci. 2007; 11:30–36. [PubMed:
17134935]

Jenkinson M, Smith S. A global optimisation method for robust affine registration of brain images.
Med Image Anal. 2001; 5:143–156. [PubMed: 11516708]

Mazzocchi F, Vignolo LA. Computer assisted tomography in neuropsychological research: a simple
procedure for lesion mapping. Cortex. 1978; 14:136–144. [PubMed: 16295120]

Tenenbaum JB, de Silva V, Langford JC. A global geometric framework for nonlinear dimensionality
reduction. Science. 2000; 290:2319–2323. [PubMed: 11125149]

Thompson PM, Schwartz C, Lin RT, Khan AA, Toga AW. Three-Dimensional Statistical Analysis of
Sulcal Variability in the Human Brain. Journal of Neuroscience. 1996; 16:4261–4274. [PubMed:
8753887]

Toga AET. Mapping brain asymmetry. Nature reviews. Neuroscience. 2003; 4:37. [PubMed:
12511860]

Watkins KE, Paus T, Lerch JP, Zijdenbos A, Collins DL, Neelin P, Taylor J, Worsley KJ, Evans AC.
Structural asymmetries in the human brain: a voxel-based statistical analysis of 142 MRI scans.
Cereb Cortex. 2001; 11:868–877. [PubMed: 11532891]

Weiller C, Isensee C, Rijntjes M, Huber W, Muller S, Bier D, Dutschka K, Woods RP, Noth J, Diener
HC. Recovery from Wernicke’s aphasia: a positron emission tomographic study. Ann Neurol.
1995; 37:723–732. [PubMed: 7778845]

Woods RP, Cherry SR, Mazziotta JC. Rapid automated algorithm for aligning and reslicing PET
images. J Comput Assist Tomogr. 1992; 16:620–633. [PubMed: 1629424]

Nachev et al. Page 10

Neuroimage. Author manuscript; available in PMC 2009 March 19.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 1. The enantiomorphic normalization algorithm
A structural image and a matching lesion mask are aligned in the sagittal midline using rigid
body coregistration to the opto-isometrically flipped version of the structural image. The
mask is then flipped opto-isometrically and used to extract the signal within the precise
region in the unaffected hemisphere that corresponds to the lesion on the other side. This is
then used to replace the signal corresponding to the lesion. The resultant corrected image is
then normalized using SPM2’s standard spatial normalization routine.
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Figure 2. Evaluation procedure
A set of 305 lesions was applied to each of a set of normal brain images, and the resultant
artificially lesioned volumes together with the normal images were normalized in three
ways: with and without cost function masking, and with the enantiomorphic method. The
normalization parameters in each case were used to generate a set of deformation fields,
from which displacement fields relative to the normalization of the normal brain images
were computed. The displacement fields thus provided an index of the normalization error
introduced by the lesion for each method, lesion and subject, thereby allowing us to
determine which method minimized the error to the greatest extent. See main text for details.
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Figure 3. Lesion coverage
The overlay shows every voxel that is affected in at least one lesion (in blue). Note that the
distribution of voxel involvement across the whole series is not even (data not shown). The
underlay is the Montreal Neurological Institute 152 normal subject T2 average template
(rendered in inverted grayscale) supplied with SPM (http://www.fil.ion.ucl.ac.uk/spm/). The
figure was generated using MRIcro (http://www.sph.sc.edu/comd/rorden/mricro.html).
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Figure 4A. RMS displacement by subject (T2 dataset with zero-filled lesions)
The left hand axis shows whole brain mean voxel RMS displacement (the difference
between the deformation fields describing the normalisation of lesioned and unlesioned
versions of the same image) with standard errors, plotted by individual subjects. The means
include all 305 lesions and were derived—owing to log-normality—by first log-
transforming the data, calculating the means and standard errors and anti-logging the results.
The right hand side shows the asymptotic p values from a one-tailed, two sample
Kolmogorov-Smirnov test carried out on the untransformed data from the masked and the
enantiomorphic methods. The vertical line at the top defines the 0.05 significance level. The
values in the far right column represent the group means and associated standard errors. The
corresponding p value was derived from an appropriate K-S test on the group means.
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Figure 4B. RMS displacement by lesion size (T2 dataset with zero-filled lesions)
The left hand axis shows whole brain mean voxel RMS displacement with standard errors,
plotted by lesions size. The means include all 50 subjects and were derived—owing to log-
normality—by first log-transforming the data, calculating the means and standard errors and
anti-logging the results. The right hand side shows the asymptotic p values from a one-
tailed, two sample Kolmogorov-Smirnov test carried out on the untransformed data from the
masked and the enantiomorphic methods. The vertical line at the top defines the 0.05
significance level.
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Figure 5A. RMS displacement by subject (T1 dataset with zero-filled lesions)
The left hand axis shows whole brain mean voxel RMS displacement with standard errors,
plotted by individual subjects. The means include all 305 lesions and were derived—owing
to log-normality—by first log-transforming the data, calculating the means and standard
errors and anti-logging the results. The right hand side shows the asymptotic p values from a
one-tailed, two sample Kolmogorov-Smirnov test carried out on the untransformed data
from the masked and the enantiomorphic methods. The vertical line at the top defines the
0.05 significance level. The values in the far right column represent the group means and
associated standard errors. The corresponding p value was derived from an appropriate K-S
test on the group means.
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Figure 5B. RMS displacement by lesion size (T1 dataset with zero-filled lesions)
The left hand axis shows whole brain mean voxel RMS displacement with standard errors,
plotted by lesions size. The means include all 42 subjects and were derived—owing to log-
normality—by first log-transforming the data, calculating the means and standard errors and
anti-logging the results. The right hand side shows the asymptotic p values from a one-
tailed, two sample Kolmogorov-Smirnov test carried out on the untransformed data from the
masked and the enantiomorphic methods. The vertical line at the top defines the 0.05
significance level.
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Figure 6A. RMS displacement by subject (T2 dataset with mean-filled lesions)
The left hand axis shows whole brain mean voxel RMS displacement with standard errors,
plotted by individual subjects. The means include all 305 lesions and were derived - owing
to log-normality - by first log-transforming the data, calculating the means and standard
errors and anti-logging the results. The right hand side shows the asymptotic p values from a
one-tailed, two sample Kolmogorov-Smirnov test carried out on the untransformed data
from the masked and the enantiomorphic methods. The vertical line at the top defines the
0.05 significance level. The values in the far right column represent the group means and
associated standard errors. The corresponding p value was derived from an appropriate K-S
test on the group means.
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Figure 6B. RMS displacement by lesion size (T2 dataset with mean-filled lesions)
The left hand axis shows whole brain mean voxel RMS displacement with standard errors,
plotted by lesions size. The means include all 50 subjects and were derived - owing to log-
normality - by first log-transforming the data, calculating the means and standard errors and
anti-logging the results. The right hand side shows the asymptotic p values from a one-
tailed, two sample Kolmogorov-Smirnov test carried out on the untransformed data from the
masked and the enantiomorphic methods. The vertical line at the top defines the 0.05
significance level.
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Figure 7. Two dimensional Isomap embedding of the lesion data (T2 dataset with zero-filled
lesions)
The algorithm attempts to preserve proximity in high dimensions in the 2 dimensional
embedding shown here. Similar lesions are therefore likely to cluster together. The colours
index the logarithm of the asymptotic p value from a one-tailed, two-sample K-S test of the
difference between the cost function masking and enantiomorphic methods. Each data point
represents an individual lesion. Successive plots zoom in on the central area to reveal it in
more detail. The absence of a clear overlap between spatial and p value clustering, except
for a tendency for the effects to be somewhat less significant for small lesion sizes, suggests
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there is no clear set of lesion features for which the enantiomorphic method is consistently
inferior.
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Figure 8. Mean SPM(t) map of the contrast between cost-function masking and the
enantiomorphic methods (T2 dataset with zero-filled lesions)
The displacement fields for each subject (305 scans per condition) were log-transformed and
entered into a one way ANCOVA with log lesion size as a covariate. Only fields derived
from cost-function masking and the enantiomorphic method were included in the analysis.
In all subjects all voxels within the brain survived a p<0.05 family-wise error corrected
threshold, showing that the enantiomorphic method is superior across all voxels. The figure
shows the mean t value across subjects. The figure was generated using the slice_overlay
tool for SPM2 written by Matthew Brett (http://imaging.mrc-cbu.cam.ac.uk/imaging/
DisplaySlices).
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