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Abstract
Increases in the availability of reliable health data are widely recognised as essential for efforts to
strengthen health-care systems in resource-poor settings worldwide. Effective health-system
planning requires comprehensive and up-to-date information on a range of health metrics and this
requirement is generally addressed by a Health Management Information System (HMIS) that
coordinates the routine collection of data at individual health facilities and their compilation into
national databases. In many resource-poor settings, these systems are inadequate and national
databases often contain only a small proportion of the expected records. In this paper we take an
important health metric in Kenya (the proportion of outpatient treatments for malaria, MP) from
the national HMIS database and predict the values of MP at facilities where monthly records are
missing. The available MP data were densely distributed across a spatiotemporal domain and
displayed second-order heterogeneity. We used three different kriging methodologies to make
cross-validation predictions of MP in order to test the effect on prediction accuracy of (a) the
extension of a spatial-only to a space-time prediction approach, and (b) the replacement of a
globally-stationary with a locally-varying random function model. Space-time kriging was found
to produce predictions with 98.4% less mean bias and 14.8% smaller mean imprecision than
conventional spatial-only kriging. A modification of space-time kriging that allowed space-time
variograms to be recalculated for every prediction location within a spatially-local neighbourhood
resulted in a larger decrease in mean imprecision over ordinary kriging (18.3%) although mean
bias was reduced less (87.5%).

Keywords
space-time geostatistics; local kriging; malaria; public health; Kenya

*Author for correspondence, P.W.Gething, School of Geography, University of Southampton, Southampton SO17 1BJ, UK, Email:
pgething@soton.ac.uk, Tel: 01202 302932, Fax: 02380 593295.

Europe PMC Funders Group
Author Manuscript
Comput Geosci. Author manuscript; available in PMC 2009 May 06.

Published in final edited form as:
Comput Geosci. 2007 October ; 33(10): 1337–1350. doi:10.1016/j.cageo.2007.05.006.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



1. Introduction
Geostatistical prediction techniques were originally developed for, and remain principally
targeted at, spatial-only settings (Chilès and Delfiner, 1999; Goovaerts, 1997; Matheron,
1971). When sampled and unsampled locations are distributed through time as well as space,
however, the replacement of spatial-only with space-time geostatistical approaches can offer
several benefits including more data to support parameter estimation and prediction and, if
present, the exploitation of temporal as well as spatial autocorrelation in observed values.
This has led to the development and application of space-time geostatistical models in a
range of fields including agricultural (Stein, 1998), atmospheric (De Iaco et al., 2002; Nunes
and Soares, 2005) and soil science (Douaik et al., 2005; Snepvangers et al., 2003). Both
spatial-only and space-time geostatistical prediction techniques generally rely on the fitting
of a random function (RF) model parameterised with a stationary mean and variogram.
Where a property of interest displays heterogeneous first and second-order characteristics,
however, alternative non-stationary models may be more appropriate and yield more
accurate predictions (Haas, 1995).

In this paper, we take as an example a real-life prediction problem based on a public-health
space-time data set from Kenya and develop and implement three different geostatistical
prediction methodologies that incorporate a stationary spatial approach, a stationary space-
time approach, and a locally-varying space-time approach in order to compare the accuracy
of the resulting predictions.

1.1. Case study: The Kenyan health management information system
Increases in the quantity, quality, and availability of health data are recognised as
fundamental goals in efforts to strengthen health care systems in resource-poor nations
worldwide (AbouZahr and Boerma, 2005; Murray et al., 2004; Stansfield, 2005; WHO/
AFRO, 1999). Effective planning and delivery of health system resources requires accurate
and timely information on the number of patients visiting health facilities and the types of
illness for which they are being diagnosed and treated. Such information requirements are
addressed in most countries by some form of national health management information
system (HMIS) that coordinates the routine acquisition of treatment records from health
facilities and the transfer, compilation and analysis of these data through district, regional
and national levels.

Comprehensive HMIS databases rely on prompt monthly reporting from all health facilities.
In many resource-poor settings, however, large proportions of health facilities never report
or report infrequently leading to spatially and temporally incomplete national data (Al
Laham et al., 2001; Health Metrics Network, 2005; Rudan et al., 2005; WHO/SEARO,
2002). The widespread inadequacy of national HMIS datasets presents a substantial obstacle
to evidence-based public health decision making. This problem has led recently to efforts to
model health facility utilisation (Gething et al., 2004; Noor et al., 2006) and the
development of geostatistical models that aim to predict (i.e. interpolate) the values of
missing data within HMIS databases to enable national and sub-national quantification of
important public health metrics (Gething et al., 2006).

In this paper, we take the example of the HMIS for Kenya and consider data on malaria
proportion (MP), that is, the proportion of the total number of monthly treatment events at
each government outpatient facility that result from a diagnosis of malaria. This variable
may be of interest for decision makers for priority setting and resource distribution (MoH
Kenya, 2001; MoH Kenya, 2005). Furthermore, predictions of MP may be incorporated into
other models to predict the count of malaria cases at facilities (Gething et al., 2006).
Sampled and unsampled points in the Kenyan HMIS are distributed at a large number of
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locations in space (health facilities across the country) and at multiple time periods
(months). The spatial structure of MP is determined, in part, by the underlying presence of
malaria in the population which is known to exhibit spatial heterogeneity at a range of scales
across Kenya (Craig et al., 1999; Omumbo et al., 2005) driven by climatic, topographic and
demographic factors.

The objective of this paper is to carry out a series of different geostatistical prediction
exercises that predict missing values of MP within the Kenyan HMIS to examine the effect
on prediction accuracy of (a) the extension of a spatial-only to a space-time prediction
approach, and (b) the replacement of a stationary space-time RF model which requires a
single global space-time variogram with a locally-varying space-time RF model which
allows the space-time variogram to vary across the study domain.

2. Theory
2.1. Spatial-only and space-time kriging

Consider a set of spatial data, z(uα), of an attribute z at n locations uα, α = 1,2,..., n, where u
is a vector of spatial coordinates, {u = (x,y)}. A standard geostatistical problem is to predict
values of z at a set of q unsampled locations, u0, z*(u0), 0 = 1,2,..., q, where the asterisk
denotes a prediction. The traditional cornerstone of geostatistics has been the exploitation of
spatial correlation between dispersed values z(uα) to make these predictions at unobserved
points using techniques such as kriging (Matheron, 1971). Along with the data, z(uα),
kriging predictors require estimates of the covariance between values of z separated by
different spatial lags, h, vectors of distance and direction. These estimates are typically
provided by estimating the covariance directly or, more commonly, the semivariance, γ,
between data pairs at a series of regular lags, taking the average at each lag, and fitting a
continuous model to these averages. The variogram model, γ(h), can then provide
semivariance values at any given lag for input into the kriging process.

More recently, this traditional paradigm has been modified to incorporate data distributed
through time as well as space (Kyriakidis and Journel, 1999). In this space-time approach,
each datum is referenced by its temporal location, tα, in addition to its spatial location uα,
{z(uα, tα); α = 1,...,n}. The space-time variogram is estimated as half the mean squared
difference between data separated by a given spatial and temporal lag (hs, ht):

(1)

The most commonly used kriging predictor is ordinary kriging (OK). In a space-time
framework, this system (space-time ordinary kriging, STOK) predicts z*(u, t) as a linear
combination of n(u, t) data local in space and time to the prediction location:

(2)

The utility of kriging approaches lie in their ability to determine the weight, λα(u, t),
assigned to each neighbouring datum such as to minimise the prediction variance:

(3)
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whilst maintaining unbiasedness of the predictor z*(u, t). In determining optimum weights,
kriging takes into account both the covariances between each datum and the point to be
estimated, and the covariances between the data themselves.

2.2. Space-time variogram models
A critical stage in the process described above is the choice of model for the variogram or
covariance function and the estimation of model parameters. As in the spatial-only case, the
principal concerns when modelling space-time autocorrelation structures are to ensure that
the model chosen is valid (i.e. that conditionally negative semi-definiteness or positive-
definiteness is ensured for variogram or covariance function models, respectively) and that
the model is sufficiently flexible to allow fitting to the data though careful estimation of
model parameters. Whilst a well established set of models exists for spatial-only variograms
(Deutsch and Journel, 1998), a more diverse range of models have been proposed for the
modelling of space-time autocorrelation structures (De Cesare et al., 2001; Kyriakidis and
Journel, 1999). These include the product model (Rodriguez-Iturbe and Mejia, 1974), the
metric model (Dimitrakopoulos and Luo, 1994), the integrated product model (Cressie and
Huang, 1999), and the product-sum model (De Cesare et al., 2001, 2002). This last class of
model was adopted for this study because (a) it offers a large class of flexible models that
impose less constraints of symmetry between the spatial and temporal correlation
components than other classes, (b) it does not require an arbitrary space-time metric to be
imposed, and (c) the model can be fitted to data using relatively straightforward techniques
similar to those established for spatial-only variograms.

The product-sum space-time variogram model, γst (hs,ht), is defined in terms of the separate
spatial variogram, γs, and temporal variogram, γt, as:

(4)

where Cs and Ct are the spatial and temporal covariance, respectively, and Cs(0) and Ct(0)
represent the sills (defined as the limit value of each variogram, γ(∞)) of the spatial and
temporal variograms, respectively. The parameters k1, k2, and k3 are defined as:

(5)

(6)

(7)

where Cst(0,0) is the ‘sill’ of the space-time variogram γst. Several constraints are placed on
these parameter values to ensure validity of the space-time variogram (see De Cesare et al.,
2001). A key advantage of this model is that γst (hs,ht) is defined entirely in terms of the
spatial variogram γs(hs), the temporal variogram γt(ht), and the space-time sill, Cst(0,0), and
all three can be estimated from the sample space-time variogram surface which is estimated
from the data using Eq. 1.

3. Data
Data were obtained from the Department of Health Management Information Systems
(HMIS) of the Kenyan Ministry of Health. Data consisted of monthly records from 1765
outpatient departments of government health facilities (Figure 1) over an 84 month period
(January 1996 - December 2002). Each record included the total number of treatment events
made at each facility each month (termed total cases, TC) and the number of treatment
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events resulting from a diagnosis of malaria (termed malaria cases, MC). The variable of
interest was the malaria proportion, MP, defined simply as MP=MC/TC. The records were
not structured by age, sex or distinguished as initial or follow-up visits, and diagnoses were
generally not slide-confirmed. MC therefore represented the count of presumed malaria
cases seen as outpatients each month. Data were matched to a georeferenced database
indicating the longitude and latitude of each facility. Details of how this spatial database was
constructed are provided elsewhere (Noor et al., 2004) and were updated in 2005 (Noor,
2005). A complete set of 84 monthly records from each of the 1765 facilities would consist
of data for 148 260 facility-months. The dataset contained data for 63 542 facility-months
(43%), meaning 84 718 (57%) were unsampled.

4. Methodology
When a disease count is converted to a proportion (e.g. prevalence rate) based on a
background denominator value (e.g. the population in a spatial unit), the uncertainty of that
proportion can be highly sensitive to the magnitude of the denominator. The effect of TC on
MP variance was checked visually (not shown) and found to be minimal, with variance
approximately constant for all values of TC. This can be explained by the consistently large
TC values (less than 0.2% of TC values were <30 cases) and the fact that malaria is the most
common diagnosis meaning that MC values were generally a substantial proportion of TC. It
was decided, therefore, that no aggregation of the monthly MP values was necessary prior to
their use in the subsequent prediction exercises.

Three alternative methodologies were used to obtain predictions of MP at individual facility-
months in three separate cross-validation procedures. These were OK, STOK, and local
space-time ordinary kriging (LSTOK). Cross-validation proceeds by the removal of a single
datum, z(uα,tα). A kriging prediction, z*(uα,tα) is then made at this point and the error
between datum and prediction is noted. The datum is then replaced, another removed, and
the process begins again, eventually repeating for all data to provide a complete set of
predicted values for comparison with the data set.

4.1. Spatial-only prediction of MP
The full set of n = 63 542 MP data {z(uα,tα);α = 1,...,n} was divided by month into {j =
1,...,m} spatial-only sets {zj(uβ);β = 1,..., p(j)} where m = 84 months, and the size of each
set, p(j), varied between months. For each spatial-only set, OK was carried out in the

following steps to obtain a set of p(j) cross-validation predictions . (1)
An omnidirectional sample spatial variogram was estimated from the data using the
established method-of-moments approach (Deutsch and Journel, 1998, p.53). (2) A suitable
model was fitted by eye to the omnidirectional variogram from a set of five models which
were the spherical, exponential, Gaussian, power, and hole effect models (as defined in
Deutsch and Journel, 1998, p.25). Due to the large number of variograms involved, a
parsimonious model structure was adopted for each consisting of a single structured model
component. The spherical model was selected as offering the best fit to the estimated
semivariance values. More importance was attached to ensuring a good fit near the ordinate
as values of the variogram at smaller lag separations have more influence in the subsequent
kriging. In addition to a spherical component, each model included a nugget component (an
intercept on the ordinate of the y-axis). The nugget component is used to model the
discontinuity caused when semivariance at the very shortest lags does not reach zero. This
effect can be caused by various factors including sampling error and variability in the
attribute of interest that is either very short-scale or is not spatially (or, equivalently,
temporally) autocorrelated. (3) OK was implemented with the variogram model parameters
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from (2) to obtain cross-validation predictions  using the GSLIB kt3d routine
(Deutsch and Journel, 1998). The search neighbourhood for each prediction consisted of the
50 data closest (using Euclidean distance) to the prediction point.

A single space-time set of n cross-validation predictions, ,
(subscripted OK to denote prediction using spatial-only OK) was then created by joining

each of the m spatial-only sets of cross-validation predictions, .

4.2. Space-time prediction of MP
STOK was carried out using the full space-time set of n = 63 542 MP data {z(uα,tα);α =

1,...,n} to obtain a set of n cross-validation predictions  to compare
to the n data in the following steps. (1) A sample space-time variogram surface γˆs,t(hs, ht)
was calculated from the data (Eq. 1) using a modified space-time GSLIB gamv routine (De
Cesare et al., 2002). (2) Spatial and temporal variograms were estimated from the space-
time variogram surface as γˆs,t(hs,0) and γˆs,t(0, ht) by setting ht = 0 and hs = 0, respectively
(see De Cesare et al., 2001, p12). (3) Variogram models were fitted by eye to the separate
spatial and temporal sample variograms. As for the spatial-only variograms described above,
greater emphasis was placed on ensuring a good fit at smaller lags. Since manual model
fitting was required for only one spatial and one temporal variogram, a more complex model
structure could be adopted, allowing the use of multiple structured components from the list
described above such as to provide a closer fit. The spatial variogram was fitted with a
nested model consisting of a nugget, an exponential, and a spherical component and the
temporal variogram was fitted with a nested model consisting of a nugget, an exponential
and a hole-effect component. (4) The space-time sill, Cst(0,0), was estimated directly from
the space-time variogram surface. (5) The space-time sill and parameters from the spatial
and temporal variogram models were used to define a product-sum space-time variogram
model (Eq. 4). (6) This variogram model was then used as input in a STOK procedure to

obtain cross-validation predictions  using a modified space-time GSLIB kt3d
routine (De Cesare et al., 2002). As in the spatial-only case, the search neighbourhood for
each prediction consisted of the 50 data closest to the prediction point. The identification of
these 50 data required the definition of a space-time distance metric by converting absolute
measures of spatial and temporal separation (i.e. kilometres and months, respectively) into
relative measures based on their proportion of the maximum spatial and temporal search
radii, which were set to 450 km and 84 months respectively.

4.3. Local space-time prediction of MP
The use of STOK, as with OK, implies the adoption of a RF model with stationary mean and
variogram. Where first-order heterogeneities exist, the effect on prediction accuracy is often
attenuated in practice because each prediction is derived from n(u, t) observations within a
limited local space-time neighbourhood W(u, t) centred on the prediction location (u, t)
rather than from all n observations throughout the global study domain. As such, the
required domain of stationarity for each prediction is reduced to the neighbourhood W(u, t).
In the standard form, however, STOK has no such mechanism to attenuate the effects of
covariance heterogeneities since it is reliant on the global sample space-time variogram,
γˆs,t(hs, ht), which is estimated from all n data (Eq. 1) under the assumption of stationarity.
An alternative approach is to adopt a RF model that is quasi-stationary, that is, stationarity is
considered to exist only within local neighbourhoods (Haas, 1990; Journel and Huijbregts,
1978). This approach was implemented here in a space-time context (denoted local space-
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time ordinary kriging, LSTOK) to obtain a set of n local cross-validation predictions

 to compare to the n data in the following steps.

1. The space-time set of n = 63 542 MP data {z(uα,tα);α = 1,...,n} were distributed at
l spatial locations {uβ;β = 1,...,l} where l = 1765, the number of health facilities in
the dataset. For each of the l spatial locations uβ where one or more of the n cross-
validated predictions, z*(uα, tα), was required, a space-time ‘cylinder’ (Haas,
1995) was defined in which to estimate a spatially-local space-time sample
variogram, γˆs,t((uβ,uβ + hs), ht). Each cylinder consisted of a subset of n(uβ) data,
{zβ(uc,tc);c = 1,...,n(uβ)}. Each subset was identified as all data located within the
nearest lc = 100 locations in space to the prediction location uβ, and at any month.
The ‘radius’ of each cylinder was therefore equal to the distance from the
prediction location uβ to its 100th nearest observation in space, and its ‘height’ was
m = 84 months. This approach meant local neighbourhoods were restricted
spatially but not temporally. A balance had to be struck between neighbourhood
size (with smaller neighbourhoods considered more appropriate to model as being
stationary) and the resulting sample size within each neighbourhood, n(uβ), with
which to estimate each local sample variogram (with smaller subsets resulting in
larger uncertainty in the sample variogram). Exploratory analysis of time-series of
MP at different spatial locations (not shown) did not suggest the presence of
second-order heterogeneity through time. As such, it was decided to include all
data through time within each cylinder in order to maximise the sample size n(uβ)
for a given spatially-limited neighbourhood.

2. Spatially-local space-time sample variograms were calculated for each spatial
location uβ using the same procedure as for section 4.2(1) but applied only to the
subset within each spatially-local cylinder, {zβ(uc,tc);c = 1,...,n(uβ)}. After
assessing the stability of semivariance estimates at the larger lags, it was decided to
model spatial lags up to a maximum of 80% of the diameter of each cylinder and
temporal lags up to a maximum of 20 months.

3. A fitted product-sum space-time variogram model was required for each of the
1765 local variograms. This large number prohibited use of the manual procedure
detailed in section 4.2(3-5) and an automated procedure was developed to replicate
these steps. Although estimated and modelled variograms could not be inspected at
all 1765 locations, it was necessary to sample the results of the automatic procedure
and to make modelling decisions. As such, a set of 50 prediction locations was
selected at random and manually checked at each stage. The automatic procedure
operated as follows for each local variogram.

i. Spatial and temporal variograms were estimated from the sample space-
time variogram surface as γˆs,t(hs,0) and γˆs,t(0, ht) by setting ht = 0 and
hs = 0, respectively.

ii. Separate 1-d models were fitted to the spatial and temporal variograms
using a weighted-least-squares (WLS) procedure (for brevity, the
following description focuses on the spatial variogram, although the
equivalent procedure was applied to the temporal variogram). In order to
minimise the computational requirements of parameter estimation, and
following examination of the 50 monitored local sample variograms, a
parsimonious 1-d model consisting of a nugget component and a single
spherical component was selected for fitting to all spatial variograms. As
such the required parameter set, θ, to be estimated for each 1-d model
consisted of three parameters, (θ = {c0,asph, csph,}), where a0 is the range
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parameter of the spherical component and c0 and csph are the sill
parameters of the nugget and spherical components, respectively (Deutsch
and Journel, 1998). θ was estimated using a nested grid-search algorithm
written in ANSI C. The three-parameter 1-d variogram model described
above was fitted manually to the spatial variogram estimated from the
global space-time sample variogram as described earlier 4.2(1-2) and the
resulting parameter set was used as starting values to initialise the
algorithm.

The nested grid-search approach consisted of calculating an objective
function, F(θ), described below, at a set of evenly-spaced locations in the
3-d parameter space around the starting values. In the first iteration, j = 50
values of each parameter were evaluated, meaning objective functions
were calculated for j3 = 1.25×105 different parameter sets. The range of
parameter values to test in the first iteration was determined heuristically
to include a broad swathe of parameter space around the starting values.
The range of parameter values was constrained such that impossible
values (i.e. c0 < 0, asph < 0, csph < 0) were not permitted. The parameter
set that minimised F(θ) was identified and became the starting set for the
next iteration. Each subsequent iteration evaluated j3 evenly-spaced
parameters over a progressively smaller region of the parameter space,
each time identifying the parameter set that minimised F(θ). The extent to
which each iteration converged on progressively smaller regions, and the
total number of iterations carried out were again determined heuristically,
by examining the fit of the resulting models for the 50 monitored
variograms.

The objective function, F(θ) (Pardo-Iguzquiza, 1999), evaluated for each
parameter set was calculated as a weighted sum of squared differences
between the spatial variogram, γˆ(i), at each i=1,2,...,n lags and the value
of the variogram model under this parameter set, γ(i;θ):

(8)

The weighting scheme used to determine w(i) was defined as:

(9)

where m(i) is the number of data pairs used to estimate γˆ(i). In this
scheme, each variogram estimate γˆ(i) is weighted in approximately
inverse proportion to its estimation variance (Cressie, 1985).

iii. Having estimated the parameter sets for the spatial and temporal
variograms, θs and θt the remaining parameter required for the definition
of each space-time variogram model was the space-time sill, Cst(0,0). A
starting value for Cst(0,0) was estimated from a manual fit of the global
space-time variogram where all the other parameters were provided by θs
and θt and held constant. The WLS procedure described above was then
implemented in the 1-d parameter space to estimate the value of Cst(0,0).

4. LSTOK was then implemented to obtain n cross-validation predictions

. The kriging algorithm was identical to that used for the
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global STOK described in section 4.2 except that, for each prediction, the relevant
spatially-local space-time variogram model replaced the global model.

4.4. Comparison of prediction accuracies
The OK, STOK, and LSTOK prediction methodologies described above each resulted in a
set of n = 63 542 cross-validation predictions of MP  to compare to
the n MP data {z(uα,tα);α = 1,...,n}. In order to compare the performance of the different
methodologies, three summary statistics were calculated for each. These were the correlation
coefficient between the predicted and actual set, , the mean
prediction error (ME):

(10)

and the mean absolute prediction error (MAE) (Saito and Goovaerts, 2000):

(11)

The correlation coefficient provides a straightforward measure of linear association between
the data and prediction sets, the ME provides a measure of the bias of the predictor, and the
MAE provides a measure of the mean accuracy of individual predictions. 2-d histograms
were produced to display graphically the bivariate distribution of the data and corresponding
predicted values. These plots are more informative than scatter-plots when the number of
data-prediction pairs is large. Univariate histograms were also produced for each set of
prediction errors, .

The use of cross-validation as a method of accuracy assessment is limited by a number of
factors. Firstly, although each datum is removed temporarily to generate a cross-validation
prediction at that point, the variogram is not recalculated with the datum removed and,
hence, each cross-validation prediction is not strictly independent of the datum to which it is
compared. Where the number of data is large, however, the influence of an individual datum
on the sample variogram can be considered negligible. Secondly, the use of simple
arithmetic averages to generate estimates of ME and MAE may result in biased estimates
when the data are clustered in space and/or time. It is important to distinguish, however,
between spatial clustering of the set of facilities and clustering of the data themselves in
relation to this background pattern. When an arithmetic average of an attribute at the data
locations is used to estimate the mean of that attribute at the unsampled locations, the spatial
or spatiotemporal arrangement of the combined set of sampled and unsampled points has no
effect on the estimate. Rather, it is the arrangement of the data themselves within this
combined set that may introduce bias if they are highly clustered. Although the set of
facilities (Figure 1) are highly spatially clustered, reflecting approximately the spatial
distribution of the Kenyan population, the spatiotemporal pattern of data within the set of all
points did not display strong clustering either spatially or temporally. The use of cross-
validation statistics as comparators of the accuracy of different prediction methodologies
further mitigates the effect of the limitations described above, since such effects are
consistent between methodologies.
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5. Results
5.1. Variography

Figure 2 shows six examples of the spatial variograms that were estimated from spatial-only
data for each of the 84 months in the data set, and the corresponding manually-fitted
variogram models. Sample variogram structure was consistent across the different monthly
sample variograms, which supported the use of the same class of variogram model (with a
nugget and single spherical component) throughout. The estimated range, sill and nugget
parameter values, however, displayed considerable variation between months although no
clear patterns could be discerned. Figure 3 shows the global sample space-time variogram
surface and fitted 2-d product-sum model. Also shown are the separate spatial and temporal
sample variograms that were estimated using the sample surface, and the corresponding 1-d
models. The temporal variogram differed substantially in structure to the spatial variogram,
with both a smaller modelled sill value (the sill is the limit value of a transitive variogram,
γ(∞)) and a smaller nugget-to-sill ratio indicative of greater autocorrelation through time
than across space. The spatial variogram shows a small upturn in semivariance for the
smallest lags. This effect can be attributed to the nature of facility-pairs at these separations.
A disproportionate number of these pairs are cross-type: health facilities of the same type
are rarely built so close together and it is more commonly the case that large facilities such
as hospitals, for example, are surrounded closely by a number of smaller facilities such as
health centres or dispensaries. The different facility types are more likely to have different
MP values than their spatial separation would otherwise suggest, resulting in a relatively
larger semivariance at these short lags. Figure 4 shows examples for four different locations
of the automatic variography procedure implemented to estimate and model local sample
space-time variograms for each of the 1765 spatially-local neighbourhoods. These four
examples illustrate the spatial heterogeneity of the observed space-time autocorrelation
structure, with spatial and temporal variogram model parameters varying considerably
between the four locations.

5.2. Comparison of prediction accuracies
Cross-validation summary statistics for OK, STOK, and LSTOK are shown in Table 1. Both
space-time approaches, STOK and LSTOK, resulted in substantially larger values of the
correlation coefficient ρ than OK (13.1% and 14.8% larger ρ, respectively), indicating larger
linear correlation between data and prediction sets. ME was small (indicating small overall
bias) for all three approaches, although differences between sets were considerable. The
value for OK showed the largest bias and those for LSTOK and STOK were substantially
smaller (87.5% and 98.4% smaller ME, respectively). The largest MAE was produced by
OK predictions, indicating the largest average prediction inaccuracy, with STOK and
LSTOK producing more accurate predictions (14.8% and 18.3% smaller MAE,
respectively). The overall pattern was that the space-time techniques offered less biased and
more precise predictions than OK. Of the two space-time approaches, LSTOK provided
more precise predictions than STOK but was slightly more biased overall, although bias was
small in both cases.

Figure 5 (a) shows, for each prediction methodology, a 2-d cross-validation histogram
illustrating the bivariate distribution of data and prediction sets. The patterns displayed
support the summary statistic findings presented in Table 1 and discussed above. A 2-d
cross-validation histogram for an accurate prediction exercise would show a high frequency
of corresponding data and prediction values along a central region (indicating small
imprecision), centred along the 1:1 line (indicating small bias). The 2-d histograms for OK,
STOK, and LSTOK display progressively tighter central regions, with a greater frequency of
values indicated by the whiter shading. Differences in bias are less noticeable, although the
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progressively smaller bias for OK, STOK, and LSTOK for small data values (e.g. <0.1) is
clear if the bottom-left corner of each plot is compared. Univariate histograms showing the
distribution of error values for each prediction are shown in Figure 5 (b). Errors are
approximately Gaussian in each case and the progressively smaller error variances for OK,
STOK, and LSTOK again correspond to respectively more precise predictions.

6. Discussion
6.1. Comparison of spatial-only and global space-time prediction

When predicting a space-time data set, a potential advantage of the spatial-only approach
(e.g. OK) over the global space-time approach (e.g. STOK) is that the spatial variogram is
able to vary through time since each month is modelled separately. In contrast, the global
space-time variogram averages these individual spatial variograms and month-to-month
variability is not represented in the model. This potential advantage of the spatial-only
approach is offset by the need to partition the full space-time data set into monthly slices,
which may each have insufficient data to obtain a stable estimate of the spatial variogram. A
more serious limitation of the spatial-only approach is that any temporal structure present in
the data is ignored. The results presented in the previous section showed that the STOK
yielded more accurate predictions than OK. The global sample space-time variogram
(Figure 3) displayed substantial temporal autocorrelation and it is intuitive that prediction
accuracy should be enhanced by exploiting this temporal structure, allowing predictions to
be influenced by observations proximate in time as well as space. A further advantage of
STOK over OK in the current context is that the former is significantly less labour-intensive,
requiring the estimation and modelling of a single space-time variogram rather than 84
separate spatial variograms. The optimal choice between the two approaches will differ
between settings contingent on a range of factors including the space-time distribution of the
data and prediction points, and the relative magnitudes of spatial and temporal
autocorrelation.

6.2. Comparison of global and local space-time prediction
The results described in the previous section showed that more precise predictions were
obtained in the space-time prediction exercise when a single global space-time variogram
(STOK) was replaced by local space-time variograms that were estimated and modelled for
each prediction location using a spatially-local subset of data (LSTOK). As with the
preceding comparison between OK and STOK, the relative costs and benefits of LSTOK
over STOK in the current case may differ in another setting. Where predictions are to be
made over a large region displaying second-order heterogeneity, and where data exist at a
sufficient density to support stable estimation of variograms within local neighbourhoods,
the use of LSTOK offers the potential to provide greater prediction accuracy than STOK, as
the current case illustrates. Furthermore, the adoption of an RF model with stationarity of
order-two or intrinsic stationarity (Journel and Huijbregts, 1978, p.32) is likely to be more
appropriate when these characteristics are considered to exist only within each local
neighbourhood rather than throughout the study region.

The principal drawbacks of LSTOK are the difficulties involved in its implementation.
Firstly, the calculation of a single sample space-time variogram is computationally
expensive (if a spatial variogram is to be estimated at n(hs) lags, and a temporal variogram
at n(ht) lags, then the equivalent space-time sample variogram requires estimates at n(hs)×
n(ht) lags). Secondly, where local variograms must be estimated at a large number of
locations, automatic variogram model fitting becomes necessary. Although procedures such
as WLS allow the implementation of objective criteria for parameterisation, manual fitting is
still widely favoured by practitioners of geostatistics as it allows the incorporation of prior
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knowledge of the phenomena of interest in the variogram model. Algorithms to implement
automatic fitting are, again, computationally expensive and can be unreliable, often meaning
variogram models must be parametrically simple, with less structural components, than the
equivalent manually-fitted models. The net effect of using many simple local variogram
models compared to a single complex model will clearly depend on several factors including
the nature of the global and local spatiotemporal autocorrelation structures being considered
and the number of data available with which to estimate local variograms. In the current
case, the use of LSTOK over 1765 spatially-local neighbourhoods has been shown to offer a
modest increase in prediction accuracy over STOK, although at a substantial additional cost
in terms of dynamic memory requirements and CPU time.

6.3. Predicting malaria proportion
The MP variable, as defined in this study, is dependent on a plethora of (only partly known)
epidemiological and facility-specific factors, many of which are likely to vary erratically
through space and time. MP is therefore a variable with inherently large uncertainty, and this
is reflected in the variograms presented in this study (Figure 2-4) as large nugget values (the
intercept on the ordinate of the variogram model) relative to the structured component (the
distance on the ordinate from the intercept to sill). Despite this uncertainty, the presence of
spatial and temporal autocorrelation in the MP data justifies the use of geostatistical
prediction methods over non-spatial or non-temporal techniques. In a space-time setting
such as this, predictions may be required at different levels of spatiotemporal aggregation
ranging from, for example, mean national MP over a year down to MP at an individual
facility for a specific month. Whilst the space-time approaches presented above provided the
least biased predictions, all three methodologies resulted in predictions with a mean bias
likely to be negligible for health system planners when, for example, determining the mean
malaria proportion for a set of facilities in a given district or province. The importance of
prediction precision increases as the reporting unit becomes smaller. As such, where
predictions are required for individual facility-months, the LSTOK technique would
represent the optimal choice, providing predictions at a level of precision likely to facilitate
evidence-based decision making.

7. Conclusion
The objective of this paper was to implement three different geostatistical approaches that
predict missing values of MP within the Kenyan HMIS to examine their relative prediction
accuracies. The extension of the established spatial-only approach to a space-time approach
yielded substantially more accurate predictions. The further extension of this globally-
stationary space-time approach to a locally-stationary space-time approach whereby space-
time variograms were re-estimated for each prediction location within a spatially-local
neighbourhood yielded a further increase in prediction precision, although was marginally
more biased. The space-time approaches implemented here represent a tool that can provide
information on an important public-health metric at an accuracy that is likely to be useful to
decision makers.
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Figure 1.
Locations of 1765 outpatient health facilities in Kenya from which malaria proportion data
were used in this study. Data represented the monthly proportion of outpatient treatments at
each facility that were for malaria and spanned the period January 1996 - December 2002.
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Figure 2.
Sample spatial variograms (circles) and fitted variogram models (line) for malaria
proportion in six different months during 2000, 2001, and 2002. A total of 84 such
variograms were estimated and modelled, one for each month of the study period January
1996 - December 2002.
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Figure 3.
Space-time variography for malaria proportion. Plots shown are (a) the sample space-time
variogram surface, (b) the sample spatial variogram (circles) with fitted 1-d model (line), (c)
the sample temporal variogram (circles) with fitted 1-d model (line), and (d) the 2-d product-
sum space-time variogram model. Each vertical axis measures semivariance, γ, and
horizontal axes measure either spatial lag (hs) or temporal lag (ht).
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Figure 4.
Examples of local space-time variography for four different locations (rows). Variography
was carried out automatically in a local neighbourhood around each of the 1765 spatial
locations where predictions were made. Plots shown for each location are the sample space-
time variogram surface (column (a)), the fitted 2-d product-sum space-time variogram
model (column (b)), the sample spatial variogram (circles) with fitted 1-d model (line)
(column (c)), and the sample temporal variogram (circles) with fitted 1-d model (line)
(column (d)). Each vertical axis measures semivariance, γ, and horizontal axes measure
either spatial lag (hs) or temporal lag (ht).
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Figure 5.
2-d histograms (column (a)) showing bivariate distribution of predicted against actual values
for cross-validation predictions of malaria proportion (MP) using three different prediction
approaches; spatial-only ordinary kriging, space-time ordinary kriging, and local space-time
ordinary kriging. Whiter shading represents a higher frequency of values (note non-linear
scale). The 1:1 line is also provided (diagonal black line) for each plot. Univariate
histograms (column (b)) show the distribution of prediction error values for each prediction
methodology. Error mean (Mean) and variance (Var) are also given.
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Table 1

Comparison of summary statistics for cross-validation predictions of malaria proportion using three different
prediction approaches. The statistics shown are the correlation coefficient, ρ, the mean error (ME) and mean
absolute error (MAE)

Modelling Approach ρ ME MAE

Spatial-only ordinary kriging (OK) 0.6764 0.000384 0.0796

Space-time ordinary kriging (STOK) 0.7651 0.000006 0.0678

Local space-time ordinary kriging (LSTOK) 0.7768 0.000048 0.0650
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