Published in final edited form as: *Biol Psychiatry*. 2008 September 1; 64(5): 438–442. doi:10.1016/j.biopsych.2008.03.028.

Association of a Nonsynonymous Variant of *DAOA* with Visuospatial Ability in a Bipolar Family Sample

Pia Soronen, Kaisa Silander, Mervi Antila, Outi M. Palo, Annamari Tuulio-Henriksson, Tuula Kieseppä, Pekka Ellonen, Juho Wedenoja, Joni A. Turunen, Olli P.H. Pietiläinen, William Hennah, Jouko Lönnqvist, Leena Peltonen, Timo Partonen, and Tiina Paunio Departments of Molecular Medicine (PS, KS, OMP, PE, JW, JAT, OPHP, WH, LP, TPau) and Department of Mental Health and Alcohol Research (MA, AT-H, TK, JL, TPar), National Public Health Institute; Departments of Psychology (AT-H) and Medical Genetics (JW, JAT, LP), University of Helsinki; and Department of Psychiatry (JL, TPau), Helsinki University Central Hospital, Helsinki, Finland; The Broad Institute (LP), Massachusetts Institute of Technology (MIT),Boston, Massachusetta; and Wellcome Trust Sanger Institute (LP), Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom.

Abstract

Background: Bipolar disorder and schizophrenia are hypothesized to share some genetic background.

Methods: In a two-phase study, we evaluated the effect of five promising candidate genes for psychotic disorders, *DAOA*, *COMT*, *DTNBP1*, *NRG1*, and *AKT1*, on bipolar spectrum disorder, psychotic disorder, and related cognitive endophenotypes in a Finnish family-based sample ascertained for bipolar disorder.

Results: In initial screening of 362 individuals from 63 families, we found only marginal evidence for association with the diagnosis-based dichotomous classification. Those associations did not strengthen when we genotyped the complete sample of 723 individuals from 180 families. We observed a significant association of *DAOA* variants rs3916966 and rs2391191 with visuospatial ability (Quantitative Transmission Disequilibrium Test [QTDT]; $p = 4 \times 10^{-6}$ and 5×10^{-6} , respectively) (n = 159) with the two variants in almost complete linkage disequilibrium. The *COMT* variant rs165599 also associated with visuospatial ability, and in our dataset, we saw an additive effect of *DAOA* and *COMT* variants on this neuropsychological trait.

Conclusions: The ancestral allele (Arg) of the nonsynonymous common *DAOA* variant rs2391191 (Arg30Lys) was found to predispose to impaired performance. The *DAOA* gene may play a role in predisposing individuals to a mixed phenotype of psychosis and mania and to impairments in related neuropsychological traits.

Keywords

AKT1; bipolar disorder; COMT; DAOA; DTNBP1; G72; neuropsychological trait; NRG1

^{© 2008} Published by Society of Biological Psychiatry

Address reprint requests to Tiina Paunio, M.D., Ph.D., National Public Health Institute, Department of Molecular Medicine, Biomedicum, PO Box 104, 00251 Helsinki, Finland; E-mail: Tiina.Paunio@ktl.fi..

All authors reported no biomedical financial interests or potential conflicts of interest.

Supplementary material cited in this article is available online.

Bipolar disorder (BPD) is a severe mental disorder characterized by alternating episodes of depression and mania (bipolar type I [BPD-I]) or hypomania (bipolar type II [BPD-II]). Certain cognitive impairments such as poor executive functioning and verbal memory have been related to disease susceptibility (1). Despite being considered distinct clinical disorders, BPD and schizophrenia share many clinical features and treatment approaches. Sixty percent of BPD-I patients have psychotic symptoms during their lifetime (2). Bipolar disorder and schizophrenia co-segregate in many pedigrees (3), which suggest a shared genetic etiology of these two disorders at least to some extent.

In our previous study, we found evidence for contribution of distinct variants of the disrupted-in-schizophrenia 1 (*DISC1*) gene to features of bipolar spectrum and psychotic disorders in Finnish families ascertained for BPD (4). We screened the same set of BPD families for several promising candidate genes for psychotic disorders: d-amino acid oxidase activator (*DAOA* or *G72*) (5), catechol-O-methyl transferase (*COMT*) (6), dystrobrevin binding protein 1 (dysbindin or *DTNBP1*) (7), neuregulin 1 (*NRG1*)(8), and v-akt murine thymoma viral oncogene homolog 1 (*AKT1*) (9). Except for *AKT1*, these genes have been reported to associate with various neuropsychological traits within affected individuals or healthy control subjects (Supplement 1). We evaluated the effects of variations in these genes both on clinical diagnosis of bipolar spectrum disorder or psychotic disorder, as well as on cognitive functions considered as endophenotypes (or intermediate traits) for these disorders (10).

Methods and Materials

Study Sample

The study sample includes 723 individuals from 180 families (4) (Table 1); neuropsychological test data were available altogether for 159 individuals from 65 of the families (11) (Table 1). Ascertainment strategy and sample collection are described in Supplement 2. The study was approved by the Ministry of Social Affairs and Health and the Ethical Committee of the National Public Health Institute.

Single Nucleotide Polymorphism Selection and Genotyping

We selected single nucleotide polymorphisms (SNPs) from published findings (5-9) and from the public SNP database, dbSNP (http://www.ncbi.nlm.nih.gov). Genotyping was done with homogeneous mass extension using the MassARRAY System (Sequenom, San Diego, California) in multiplexes of two to six SNPs. The *COMT* variants were genotyped by microarray-based allele-specific primer extension method (12). Genotyping was performed in two phases. Phase I was an initial screening involving 362 individuals from 63 families. In phase II, we examined an additional 361 individuals from 117 families.

Statistical Analysis

Association analyses using dichotomized diagnostic classes (bipolar spectrum disorder and psychotic disorder) were performed by haplotype relative risk (HRR) test of the ANALYZE package (13) for two-point analyses and by FBAT (14) for haplotype analyses. Unaffected family members and individuals with other mental disorders were coded as unknown. Analyses were done using two different sample sets, the first including all individuals genotyped and the second including only familial cases, defined as cases from families with two or more affected members. We used the Quantitative Transmission Disequilibrium Test (QTDT) software package (15) with the polygenic variance component option and performed association analyses of quantitative traits with the total association model assuming no population stratification. Age, gender, and presence of psychosis (16) were used as covariates. Statistical comparisons of the results in different genotyped groups and

Biol Psychiatry. Author manuscript; available in PMC 2009 May 22.

diagnostic categories were analyzed by SPSS 14.0 (SPSS Inc., Chicago, Illinois) using oneway analysis of variance (ANOVA). Interaction analysis was done by logistic regression backward stepwise model.

Results

We initially screened 51 SNPs of the selected genes (Supplement 3) in 362 individuals from 63 families (Table 1). The most significant association of dichotomized phenotype was obtained for *COMT* variant rs165599 with bipolar spectrum disorder (HRR; p = .003) (Supplement 3). Adjacent 2-SNP haplotype analysis showed no evidence for association with either bipolar spectrum or psychotic disorder (Supplement 4). Several *DAOA* variants were associated with neuropsychological traits (Supplement 5). The strongest associations were seen between *DAOA* variants rs3916966 and rs2391191 (Arg30Lys) and visuospatial ability assessed with the Block Design test (p = .0006 and p = .0008, respectively).

We focused our analysis on *DAOA* and *COMT* and genotyped all 723 individuals from 180 families using six *DAOA* variants (rs3916966, rs2391191, rs2153674, rs701567, rs778326, and rs954580) and two *COMT* variants (rs165599 and rs4680, also known as valine [Val]158 methionine [Met]).

In the complete sample, the *COMT* variant rs4680 was the only variant that associated with bipolar spectrum disorder in the complete sample (Table 2). In the familial sample, both rs4680 and rs165599 showed suggestive evidence of association with bipolar spectrum disorder. D-amino acid oxidase activator (*DAOA*) variants rs701567 and rs778326 were suggestively associated with psychotic disorder in the familial sample. For both genes, analysis of 2-SNP haplotypes yielded no further evidence of association (data not shown).

Analysis of the full study sample strengthened the previously observed association between *DAOA* variants rs3916966 and rs2391191 (Arg30Lys) and visuospatial ability (Table 3). These two variants are in almost perfect linkage disequilibrium ($r^2 = .98$). Visuospatial performance differed significantly between the Arg and Lys genotype groups of rs2391191, with the worst performance observed in individual homozygotes for the ancestral G (Arg) allele (Table 4, Figure 1). All study subjects performing above the average, i.e., achieving over 40 points in the Block Design test (n = 27), were either homozygous or heterozygous for the A (Lys) allele.

Catechol-O-methyl transferase (*COMT*) variant rs165599 associated with visuospatial ability. Individuals homozygous for the G allele had the best test performance among the rs165599 genotype groups. This difference was statistically significant in the full sample and in the psychotic subgroup but not in the nonpsychotic subgroup (Table 4).

As shown in Table 4, individuals homozygous for both the ancestral allele G (Arg) of *DAOA* variant rs2391191 and the T allele of *COMT* variant rs165599 performed worse in the Block Design test (mean test score = 15.6) than did subjects homozygous only for the *DAOA* rs2391191 G allele (mean test score = 24.8) or the *COMT* rs165599 T allele (mean test score = 28.6). However, backward stepwise logistic regression showed no evidence for significant interaction between the two variants (p = .5 for rs2391191*rs165599). Decreased test performance in the doubly homozygous subjects suggests a minor additive effect of *DAOA* and *COMT* variants on visuospatial ability, without evidence for epistasis.

Discussion

D-amino acid oxidase activator (*DAOA*) is a primate-specific gene encoding mitochondrial protein that promotes mitochondrial fragmentation and dendritic branching (17). D-amino

Biol Psychiatry. Author manuscript; available in PMC 2009 May 22.

acid oxidase activator (*DAOA*) may be involved in glutamate signaling (5), which has been shown to have multiple effects on learning and memory (18). Like some other genes encoding mitochondrial proteins in primates, the *DAOA* gene has evolved rapidly; the open reading frame of the human gene is twice as long as that of the chimpanzee homolog (5).

The strongest finding of our study was the association of a nonsynonymous *DAOA* variant, rs2391191 (Arg30Lys), with visuospatial ability, which remains significant after a conservative Bonferroni correction for multiple testing (corrected p = .005). In a recent study (19), the Arg allele associated with impairment in immediate and delayed verbal memory. In the present study, this allele showed only a trend for association with verbal memory (p < 0.1), but it predisposed to impairment with many other cognitive traits, most significantly with visuospatial ability. Thus, our data further strengthen the possibility that the Arg30Lys variation might affect cognitive functioning. Interestingly, the Lys allele that associated here with enhanced performance in the tests of general intellectual functioning is found only in humans, suggesting that *DAOA* might have played a part in the evolution of *Homo sapiens* when greater cognitive functions developed as the brain increased in size.

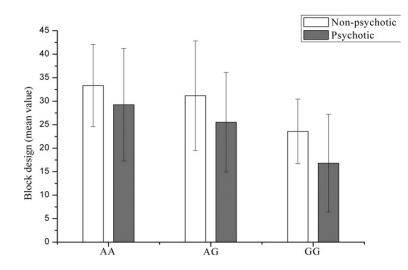
Catechol-O-methyl transferase (*COMT*) variant rs4680 (Val158Met) associated here nominally with familial bipolar spectrum disorder, but the risk allele (Met) was different from that reported by Shifman *et al.* (6). Variant rs165599 was also associated with visuospatial ability, with the best test performance seen in individuals homozygous for the C allele. An earlier study showed association of the *COMT* variant rs165599 with verbal memory in Caucasians (20), but better performance was associated with the T allele. The incoherence in findings on the effect of *COMT* on neuropsychological performance likely results from a relatively weak effect and the genetic heterogeneity behind these traits.

We found a minor additive effect of *DAOA* and *COMT* on visuospatial ability, a finding consistent with the hypothesis that interaction of glutamatergic (*DAOA*) and dopaminergic (*COMT*) neurotransmission is fundamental for many cognitive functions, particularly working memory (18). We recognize that all neuropsychological traits assessed in the present study may be state-dependent; however, many of the observed deviations are also found in euthymic BPD patients (1). Furthermore, our finding of association of *DAOA* with visuo-spatial ability did not result from an underlying effect of *DAOA* genotype to other illness-related parameters, such as medication or age of onset (data not shown). While there are no data for visuospatial ability being a good endophenotype for BPD, there is at least one study that showed impaired general intellectual function in relatives of psychotic patients (21). Other *DAOA* variants also associated weakly with psychotic disorder. The *DAOA* gene may play a role in predisposing individuals to a mixed phenotype of psychosis and mania and to impairments in related neuropsychological traits. However, further research is necessary to define the effect of *DAOA* on the complex processes of brain functions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments


This study was funded by The Academy of Finland for TPau (Nr 203425).

We thank all the individuals who participated in this study. Liisa Arala, Minna Suvela, and Sisko Lietola are acknowledged for excellent technical assistance.

References

- Robinson LJ, Thompson JM, Gallagher P, Goswami U, Young AH, Ferrier IN, et al. A metaanalysis of cognitive deficits in euthymic patients with bipolar disorder. J Affect Disord. 2006; 93:105–115. [PubMed: 16677713]
- Goodwin, FK.; Jamison, KR. Bipolar Disorders and Recurrent Depression. 2nd ed.. New York: Oxford University Press; 2007. Manic-Depressive Illness.
- Valles V, Van Os J, Guillamat R, Gutierrez B, Campillo M, Gento P, et al. Increased morbid risk for schizophrenia in families of in-patients with bipolar illness. Schizophr Res. 2000; 42:83–90. [PubMed: 10742646]
- Palo OM, Antila M, Silander K, Hennah W, Kilpinen H, Soronen P, et al. Association of distinct allelic haplotypes of DISC1 with psychotic and bipolar spectrum disorders and with underlying cognitive impairments. Hum Mol Genet. 2007; 16:2517–2528. [PubMed: 17673452]
- Chumakov I, Blumenfeld M, Guerassimenko O, Cavarec L, Palicio M, Abderrahim H, et al. Genetic and physiological data implicating the new human gene G72 and the gene for D-amino acid oxidase in schizophrenia. Proc Natl Acad Sci U S A. 2002; 99:13675–13680. [PubMed: 12364586]
- Shifman S, Bronstein M, Sternfeld M, Pisante-Shalom A, Lev-Lehman E, Weizman A, et al. A highly significant association between a COMT haplotype and schizophrenia. Am J Hum Genet. 2002; 71:1296–1302. [PubMed: 12402217]
- Straub RE, Jiang Y, MacLean CJ, Ma Y, Webb BT, Myakishev MV, et al. Genetic variation in the 6p22.3 gene DTNBP1, the human ortholog of the mouse dysbindin gene, is associated with schizophrenia. Am J Hum Genet. 2002; 71:337–348. [PubMed: 12098102]
- Stefansson H, Sigurdsson E, Steinthorsdottir V, Bjornsdottir S, Sigmundsson T, Ghosh S, et al. Neuregulin 1 and susceptibility to schizophrenia. Am J Hum Genet. 2002; 71:877–892. [PubMed: 12145742]
- Emamian ES, Hall D, Birnbaum MJ, Karayiorgou M, Gogos JA. Convergent evidence for impaired AKT1-GSK3beta signaling in schizophrenia. Nat Genet. 2004; 36:131–137. [PubMed: 14745448]
- Gottesman II, Gould TD. The endophenotype concept in psychiatry: Etymology and strategic intentions. Am J Psychiatry. 2003; 160:636–645. [PubMed: 12668349]
- Antila M, Tuulio-Henriksson A, Kieseppa T, Soronen P, Palo OM, Paunio T, et al. Heritability of cognitive functions in families with bipolar disorder. Am J Med Genet B Neuropsychiatr Genet. 2007; 144:802–808. [PubMed: 17907246]
- Silander K, Komulainen K, Ellonen P, Jussila M, Alanne M, Levander M, et al. Evaluating whole genome amplification via multiply-primed rolling circle amplification for SNP genotyping of samples with low DNA yield. Twin Res Hum Genet. 2005; 8:368–375. [PubMed: 16176722]
- Terwilliger JD, Ott J. A haplotype-based 'haplotype relative risk' approach to detecting allelic associations. Hum Hered. 1992; 42:337–346. [PubMed: 1493912]
- Horvath S, Xu X, Lake SL, Silverman EK, Weiss ST, Laird NM. Family-based tests for associating haplotypes with general phenotype data: Application to asthma genetics. Genet Epidemiol. 2004; 26:61–69. [PubMed: 14691957]
- 15. Abecasis GR, Cardon LR, Cookson WO. A general test of association for quantitative traits in nuclear families. Am J Hum Genet. 2000; 66:279–292. [PubMed: 10631157]
- Keshavan MS, Rabinowitz J, DeSmedt G, Harvey PD, Schooler N. Correlates of insight in first episode psychosis. Schizophr Res. 2004; 70:187–194. [PubMed: 15329295]
- Kvajo M, Dhilla A, Swor DE, Karayiorgou M, Gogos JA. Evidence implicating the candidate schizophrenia/bipolar disorder susceptibility gene G72 in mitochondrial function. [published online ahead of print August 7, 2007]. Mol Psychiatry. 2007
- Castner SA, Williams GV. Tuning the engine of cognition: A focus on NMDA/D1 receptor interactions in prefrontal cortex. Brain Cogn. 2007; 63:94–122. [PubMed: 17204357]
- Donohoe G, Morris DW, Robertson IH, McGhee KA, Murphy K, Kenny N, et al. DAOA ARG30LYS and verbal memory function in schizophrenia. Mol Psychiatry. 2007; 12:795–796. [PubMed: 17767147]

21. Zinkstok JR, de Wilde O, van Amelsvoort TA, Tanck MW, Baas F, Linszen DH. Association between the DTNBP1 gene and intelligence: A case-control study in young patients with schizophrenia and related disorders and unaffected siblings. Behav Brain Funct. 2007; 3:19. [PubMed: 17445278] Soronen et al.

Block Design test results for *DAOA* rs2391191 genotype groups. Average values of nonpsychotic individuals (white bars) and individuals with psychotic disorder (gray bars) are shown. Also, the standard deviation bar is shown. *DAOA*, d-amino acid oxidase activator.

Table 1

Soronen et al.

Number of Individuals in Phase I and Phase II of the Study and the Total Number of Familial Cases

 e^{c} Contains depression, alcohol-, related disorders and delusional, adjustment, dysthymic, and panic disorders.

Table 2

Association Between Single SNP and Disease Status in Phase I, Combined Phase I and Phase II, and Familial Cases Using HRR Analysis

Soronen et al.

	Bip	Bipolar Spectrum Disorder	sorder		Psychotic Disorder	er
	Phase I (62 Families)	Phase I + II (154 Families)	Familial Cases ^a (99 Families)	Phase I (57 Families)	Phase I + II (144 Families)	Familial Cases ^a (102 Families)
DAOA						
rs3916966	.696	.966	.906	.843	.839	.616
rs2391191	.889	.913	.735	.87	.891	.349
rs2153674	.072	.353	.095	.066	.700	.233
rs701567	.670	.593	.407	.278	.133	.031
rs778326	.025	.111	.024	.010	.186	.018
rs954580	.040	.107	.052	.049	.565	.252
COMT						
rs4680	.085	.046	.020	.340	.072	.149
rs165599	.003	.829	.035	.015	.396	.103

 a Familial cases include only families that contain at least two affected individuals.

			DAOA			CO	COMT
Neuropsychological Trait	rs3916966	rs2391191	rs2153674	rs701567	rs954580	rs4680	rs165599
General Intellectual Functioning (WAIS-R)							
General ability (Vocabulary)	.0015	.0002	.0086	.0083	.0051	.1381	.1801
Abstraction (Similarities)	.0010	.0003	.0063	.0173	.1428	1911.	.2103
Psychomotor speed (Digit Symbol)	.0013	.0034	.0953	.0125	.2591	.0986	.0051
Visuospatial ability (Block Design)	4.00E-06 ^a	5.00E-06 ^a	.0638	.0108	.0392	.0191	.0007
Attention, Working Memory (WMS-R)							
Auditory attention (Digit Span forward)	.0091	.0088	1660.	.1948	.0724	.2769	.5932
Verbal working memory (Digit Span backward)	.0298	.0213	.1089	.4111	.6239	.4017	.8425
Visual attention (Visual Span forward)	.1899	.1374	.6787	.2073	.2443	.8875	.9947
Visual working memory (Visual Span backward)	.7120	.5995	.9652	.7439	.5356	.7039	.4952
Verbal and Visual Memory (WMS-R)							
Immediate verbal memory (Logical Memory I)	.1176	.0602	.4636	.7139	.7698	.9536	.8925
Delayed verbal memory (Logical Memory II)	.1076	.0638	.8161	.5091	.4862	.5853	.4035
Immediate visual memory (Visual Reproduction I)) .0047	.0047	.2174	.2841	.1352	.0628	.1468
Delayed visual memory (Visual Reproduction II)	.0005	.0010	.2658	.1316	.2061	.1200	.2613
Verbal Learning and Memory (CVLT)							
Free short delay recall	.0032	.0024	.0537	.1016	.1397	.0891	.4644
Free long delay recall	.0443	.0206	.2987	.5264	.7442	.0054	.0570
Recognition memory	.0173	0079.	.1617	.4569	.5709	.1076	.4686
Retention	.9571	.4473	.4304	.8079	.2869	.0391	.0016
Executive Functions							
Stroop Interference score	.0162	.0060	.3567	.0047	.3510	.3090	.7938
Semantic fluency (COWAT)	.0195	.0239	.8410	.0168	.3594	.5887	.4003
Phonemic fluency (COWAT)	.4183	.4524	.0369	.4284	.4841	.6706	.5438

Association Between Neuropsychological Traits and Candidate Gene Variants Genotyped in the Combined Sample Using QTDT Analysis

Biol Psychiatry. Author manuscript; available in PMC 2009 May 22.

Soronen et al.

Europe PMC Funders Author Manuscripts

Table 4

The Effect of DAOA Variant rs2391191 and COMT Variant rs 165599 on Visuospatial Ability (Block Design), Showing Mean Values of Block Design Test in Cross Table of DAOA rs2391191 and COMT rs 165599 Genotypes in All Individuals and in Psychotic and Nonpsychotic Groups

							DAOA	DAOA Variant rs2391191	391191						
COMT			IIV					Psychotic				Z	Nonpsychotic		
Variant rsl65599	AA	AG	66	Mean (n) p value AA	<i>p</i> value	AA	AG	99	AG GG Mean (n) p value AA	<i>p</i> value	AA	AG	66	AG GG Mean (n) p value	<i>p</i> value
	30.6 (7)	38.1 (8)	28.2 (5)	30.6 (7) 38.1 (8) 28.2 (5) 34.1 (22) .009 35.7 (3) 40.5 (4) 22.0(1) 33.2 (9) .013 39.3 (4) 35.8 (4) 29.8 (4) 34.8(139)	600.	35.7 (3)	40.5 (4)	22.0(1)	33.2 (9)	.013	39.3 (4)	35.8 (4)	29.8 (4)	34.8(139)	.252
CT	32.2(16)	26.8 (28)	32.2(16) 26.8 (28) 23.3(12)	28.0(61)		34.8 (5)	22.7(12)	22.7(12) 23.3 (4)	25.9 (22)		30.8(11)	30.0(16) 23.4 (8)	23.4 (8)	29.2 (39)	
	29.5 (20)	28.1 (37)	29.5 (20) 28.1 (37) 15.6(16) 25.7 (73)	25.7 (73)		23.1 (8)	23.9(16)	23.9(16) 14.0(11) 20.9 (36)	20.9 (36)		33.7(12)	31.2(21)	19.0(5)	30.4 (37)	
an (<i>n</i>)	31.8(43)	Mean (n) 31.8(43) 28.7 (73) 20.3 (33)	20.3 (33)			29.3(16)	29.3(16) 25.7 (33) 16.0(15)	16.0(15)			33.3 (27)	33.3 (27) 31.2(40) 23.9(18)	23.9(18)		
o value		2.3E-05					.003					.008			

liely. ANUVA, notype gro 5 ş Ine numbers of individuals that belong to a specific genotype group are in parentheses. The mean set analysis of variance; COMT, catechol-O-methyl transferase; DAOA, d-amino acid oxidase activator.