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Summary
We consider the application of Markov chain Monte Carlo (MCMC) estimation methods to random-
effects models and in particular the family of discrete time survival models. Survival models can be
used in many situations in the medical and social sciences and we illustrate their use through two
examples that differ in terms of both substantive area and data structure. A multilevel discrete time
survival analysis involves expanding the data set so that the model can be cast as a standard multilevel
binary response model. For such models it has been shown that MCMC methods have advantages
in terms of reducing estimate bias. However, the data expansion results in very large data sets for
which MCMC estimation is often slow and can produce chains that exhibit poor mixing. Any way
of improving the mixing will result in both speeding up the methods and more confidence in the
estimates that are produced. The MCMC methodological literature is full of alternative algorithms
designed to improve mixing of chains and we describe three reparameterization techniques that are
easy to implement in available software. We consider two examples of multilevel survival analysis:
incidence of mastitis in dairy cattle and contraceptive use dynamics in Indonesia. For each application
we show where the reparameterization techniques can be used and assess their performance.

Keywords
Discrete time survival models; Event history models; Hierarchical centring; Markov chain Monte
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1. Introduction
Survival analysis (which is also known as event history analysis) is widely used in the medical
and social sciences to study the duration until the occurrence of events such as death, recovery
from illness, unemployment, birth and divorce. The simplest form of survival model accounts
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for individuals who have not yet experienced the event by the end of the study period (right
censoring) and time varying covariates, but survival data often have more complex features
that researchers will wish to account for and to explore in their analyses. Events may occur
several times to an individual over the study period, leading to repeated events, there may be
multiple states between which individuals move (e.g. between employment and
unemployment), an individual may be exposed to competing risks (e.g. different reasons for
leaving a job) and there may be multiple correlated processes (e.g. the presence of children,
outcomes of a birth history, may affect employment transitions and vice versa). Additional
complexity will arise if durations are clustered in higher level units. Repeated events can be
viewed as having a two-level hierarchical structure with episodes of exposure to the risk of an
event nested within individuals, and individuals may themselves be nested within geographical
areas or institutions. Random-effects or multilevel models are powerful tools for handling such
features of survival data and have been proposed for the analysis of clustered durations (Clayton
and Cuzick, 1985; Guo and Rodriguez, 1992; Sastry, 1997), competing risks and multiple states
(Steele et al., 1996, 2004) and the simultaneous analysis of correlated event processes (Lillard,
1993).

Although continuous time models, such as the Cox proportional hazards model (e.g. Hosmer
and Lemeshow (1999), chapter 3), remain the most widely applied, discrete time approaches
are increasingly used, especially in the social sciences. There are two main reasons for the
popularity of discrete time methods. First, survival data are commonly collected retrospectively
in cross-sectional surveys or prospectively in irregularly spaced waves of panel studies.
Although the underlying event process is usually in continuous time, both forms of data
collection lead to grouped or interval-censored event times that are most naturally analysed by
using a model that recognizes the discrete nature of the data. Second, after some restructuring
of the data, discrete time survival models are fitted by using standard methods for discrete
response data, such as logistic regression. Consequently existing estimation procedures,
implemented in mainstream and specialist statistical software packages, can be used to fit
multilevel discrete time models for repeated events, multiple states, competing risks and
correlated events. Applied researchers can now choose from a range of classical and Bayesian
methods of estimation, including quasi-likelihood methods (e.g. Goldstein (1991)), adaptive
quadrature (e.g. Skrondal and Rabe-Hesketh (2004)), h-likelihood (Lee and Nelder, 1996),
simulated maximum likelihood (Ng et al., 2006) and Markov chain Monte Carlo (MCMC)
methods. In particular, the modular nature of MCMC algorithms make them an attractive
choice for estimating models that account simultaneously for the types of complexity that were
mentioned above. They have also been shown (Browne and Draper, 2006) to give less biased
estimates than quasi-likelihood methods for random-effects logistic regression models.

Discrete time models are fitted to an expanded data file in which each duration is converted to
a sequence of discrete responses, usually binary, indicating for each time interval whether an
event has occurred. A drawback of the discrete time approach is that the restructured data file
can be very large when the width of time intervals is short relative to the length of the
observation period. As a result, estimation of multilevel discrete time models can be highly
computationally intensive, especially when MCMC methods are used. MCMC methods
produce correlated chains of parameter estimates and the length of chains that is required for
accurate estimates is inversely related to this correlation. There are in fact many potential
MCMC algorithms and one focus of methodological research has been the development of
algorithms that reduce the correlation in the Markov chains for particular problems. Reducing
this correlation results in having to run the chains for fewer iterations but this must be balanced
by the (potential) increase in time per iteration due to the added complexity of the algorithm.

In this paper we investigate three methods to increase the computational efficiency of MCMC
estimation of multilevel discrete time survival models: hierarchical centring (Gelfand et al.,
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1995), orthogonal polynomials (e.g. Hills and Smith (1992)) and parameter expansion (Liu et
al., 1998). Although these approaches have all been described in the MCMC literature, they
appear less frequently in applied journals and have not to our knowledge been applied
specifically to multilevel survival models. Our aim is therefore to raise awareness among the
survival modelling community of the potential of these methods and, through applications in
veterinary medicine and demography, to illustrate their particular advantages (and
disadvantages) in the analysis of two large and complex discrete time data sets.

The two applications have been chosen to illustrate a range of common features of survival
data, and one aim of the paper is to investigate how the various approaches to improve MCMC
efficiency perform for different data structures. In the first application, we use a three-level
model to study between-year and between-farm variation in the incidence of mastitis in dairy
cattle. The second application is to a study of discontinuation of contraception among
Indonesian women. The data have a two-level structure with repeated episodes of contraceptive
use nested within women, but the hierarchy is sparse with a high proportion of women
contributing only one episode over the 6-year observation period. Although hierarchical
centring leads to impressive gains in efficiency in the mastitis analysis, it performs poorly in
the discontinuation of contraception example where the number of woman-specific random
effects is large and the between-woman variance is small. This leads us to consider alternative
strategies: orthogonal parameterizations and parameter expansion.

The remainder of the paper is structured as follows. In Section 2 we describe the discrete time
approach to the analysis of clustered survival data. This is followed, in Sections 3 and 4, by
the two applications of multilevel discrete time survival analysis. Hierarchical centring,
orthogonal parameterizations and parameter expansion are described in the context of these
applications, and the performance of each method is assessed and compared for the examples.
We conclude in Section 5 with some general remarks and discussion.

2. Multilevel discrete time survival analysis
In both of the applications that we consider, the event of interest is repeatable: cows may suffer
from mastitis on more than one occasion and women can initiate and discontinue use of
contraceptives several times. In each case, the outcome is the duration until an event occurs,
measured from the time that a cow or woman becomes at risk of experiencing the event. After
an event occurs to an individual, a new episode begins if and when they subsequently become
exposed to the risk of another event, leading to multiple episodes within individuals. In the
mastitis application an episode is the duration until mastitis, whereas in the contraceptive use
example an episode is defined as a continuous period of using the same method of
contraception. We begin with a description of a two-level model for repeated events, although
the same model can be applied to any two-level nested structure. In Section 3, we show how
this model can be extended to accommodate a further hierarchical level. For further details of
discrete time survival analysis see Allison (1982) and Singer and Willett (2003). The extension
to random-effects models for the analysis of clustered data was discussed by Steele et al.
(1996, 2004) and Barber et al. (2000).

Suppose that event times (i.e. lengths of episodes) are realizations of a random variable T
measured in intervals of time indexed by t = 1, . . . , K where K is the maximum duration of
any episode. Denote by tij the number of intervals for which individual j is observed in episode
i. Before carrying out a discrete time analysis, each episode ij must be expanded to obtain tij
records. For each record, t = 1, . . . , tij, we define a binary variable ytij which equals 1 if episode
ij ends with an event during interval t and 0 otherwise. Thus all episodes will have ytij 0 for
intervals t = 1, . . . , tij - 1 and the response in the last observed interval tij will be 1 for episodes
that end in an event and 0 for censored episodes. To give an example of the required data
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structure for our analysis of use of contraceptives where the event of interest is discontinuation,
consider a woman who discontinues during the fourth month of use, then resumes use (after
some time) and is still using the same method 3 months later at interview. This individual will
have two episodes and, if monthly intervals are used, she will contribute seven records to the
expanded discrete time file with response vector (0,0,0,1,0,0,0) for time intervals
(1,2,3,4,1,2,3). (Note that the duration ‘clock’ restarts when she resumes use of contraception
and starts a new episode.)

In a discrete time analysis, interest centres on the probability of event occurrence—the discrete
time analogue of the continuous time hazard function. The discrete time hazard function is
defined as

which is the conditional probability of an event in interval t given that no event has occurred
in any previous interval of episode ij. In this paper we consider logit models for the dependence
of πtij on the duration of episode ij at the start of interval t and on covariates xtij, although
extensions to other link functions are possible. A two-level random-effects logit model can be
written:

(1)

where zt is a vector of functions of the duration of the episode at t with associated coefficient
vector α, xtij is a vector of covariates with coefficients β, and uj is an individual-specific random
effect representing unobserved time invariant individual characteristics that affect the
probability of an event throughout the observation period. Common choices for the baseline
logit hazard ztα include polynomials in t and step functions which result from treating t as a
categorical variable. The covariates xtij may be attributes of individuals, episodes or time
intervals (i.e. time varying).

Allison (1982) showed that the likelihood function for a single-level discrete time model
coincides with the binomial likelihood, and this equivalence generalizes to clustered data.
Therefore a discrete time model can be fitted by using standard methods for clustered binary
data, where the response variable for the analysis is the binary indicator of event occurrence
ytij in the expanded data set.

Model (1) is known as a proportional odds model because the effect of a time invariant covariate
xkij is assumed to be the same for each time interval t. The proportional odds assumption (which
is analogous to proportional hazards in a model for the log-hazard) implies that, conditional
on other covariates, the difference in the logit hazard of an event for two episodes with different
values of xkij does not depend on time. A non-proportional effect can be accommodated by
including interactions between xkij and elements of the duration vector zt. Other generalizations
include random-coefficient models which allow the between-individual variance to depend on
duration or covariates, and the addition of further levels (as in our application to mastitis in
cows). The model can also be extended to handle competing risks, for example to distinguish
between different reasons for discontinuation of contraception (Steele et al., 1996), by defining
ytij as a categorical variable indicating event occurrence and type of event and fitting a
multinomial logit model.
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Although discrete time methods have various attractions, a potential disadvantage is the size
of the expanded data set. Estimation of random-effects discrete time models can therefore be
extremely slow. One strategy to reduce the size of the discretized file, and thus estimation
times, is to aggregate intervals. Suppose, for example, that a woman discontinues contraception
in the 10th month, leading to the following sequence of binary responses for the 10 months of
exposure: (0,0,0,0,0,0,0,0,0,1). If we consider 6-monthly instead of monthly intervals, her 10
records will be collapsed to two—one for the first 6-month interval, and another for the second
—and her new response vector will be (0,1). To allow for the fact that she was exposed to the
risk of discontinuation for only 4 months of the second 6-month interval, we define an exposure
vector which is coded (6,4). The aggregated binary response can then be analysed by using
methods for binomial (grouped binary) data where exposure time within an interval is the
denominator (Steele et al., 2004). In aggregating intervals, however, we must assume that the
hazard function and values of time varying covariates are constant within grouped intervals.
In practice the second of these assumptions can have a sizable effect on the estimated effects
of time varying covariates because of a loss of information on the relative timing of a change
in the covariate value and an event.

In this paper, we consider an alternative approach which uses all available data. Using
hierarchical centring, time invariant predictors can be centred on the individual level random
effects which can both speed up the algorithm and in certain cases improve the mixing of the
chains. We also describe two other methods that have the potential to improve the efficiency
of the MCMC algorithm. The first is to orthogonalize the predictor variables, which in our
experience has almost universal benefit at virtually no computational cost. The second is
parameter expansion which in nested models appears to work best in exactly the cases that
hierarchical centring does not, namely models with small between-cluster variability. We shall
motivate orthogonalization in our first example and use both methods in our second example.

3. Application 1: incidence of mastitis in dairy cattle
Mastitis is an inflammation of the mammary gland of dairy cows, which is usually caused by
a bacterial infection. Clinical cases of mastitis in early lactation often result from infections
that arise during the previous non-lactating (dry) period and thus methods of farm management
during the dry period are of interest in prevention of mastitis. Green et al. (2007) considered
the use of multilevel survival models to investigate how cow, farm and management factors
during the dry period influence the incidence of clinical mastitis after calving.

The data were collected over a 2-year period from 52 commercial dairy farms throughout
England and Wales. For the analysis they distinguished cows that were housed during the dry
period from those that were at pasture because many predictor variables were different for the
two scenarios. Here we consider only housed cows, which results in a total of 8710 cow dry
periods after which cases of mastitis were recorded from 103 farm-years in the 52 farms. (One
farm had no housed cows in one year.) The data were expanded so that a discrete time survival
model could be fitted with each interval being a week of lactation. This resulted in a total of
256382 records.

In Green et al. (2007) many predictor variables were considered. Each predictor was considered
individually to establish whether there was any association with the response while accounting
for the underlying nested structure. Predictors with a strong association were then considered
together and a variable was retained in the model if its associated odds ratio had a 95% credible
interval that did not include 1.0. After this process each discarded variable was reintroduced
into the model to ensure that no effect was overlooked. Variation of the effect of predictors
over farms and farm-years was assessed and this led to the inclusion of an additional random
effect for parity 1 cows (cows that have given birth only once) at the farm level to explain
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additional variability in this subgroup when compared with the remainder of the animals. This
makes biological sense as these cows only join the main herd after first calving and so less is
known about their previous management. The alternative hierarchy of periods nested within
cows nested within farms was also considered but this was discounted because of the worse
model fit (according to the deviance information criterion diagnostic (Spiegelhalter et al.,
2002)) and the maximum of two periods per cow making identification of cow effects difficult.
We consider the final model that was presented in Green et al. (2007) which has the form

The hierarchical structure is as follows: weeks indexed by t nested within cow dry period i,
nested within farm years j, nested within farms k. Here cow dry period plays the role of episode
in Section 2 as it is assumed that a cow can have only one occurrence of mastitis per dry period.
The binary response ytijk takes value 1 if a case of clinical mastitis is observed in week t of cow
dry period i and 0 otherwise. zt consists of a constant plus polynomials in (centred) log-time
to order 3 (to capture the effect of duration), xtijk consists of 15 predictors that will be detailed
later with associated effects β. ujk are the farm-year random effects, and v0k are the farm random
effects with different farm effects v1k for the parity 1 cattle. The variance matrix of these sets
of random effects has an inverse Wishart prior where Sp is an estimate of the farm level variance
matrix obtained by using quasi-likelihood methods. The choice of a ‘default’ prior for a
variance matrix is a rather open question (see Browne and Draper (2000), which contains our
chosen prior as a possible choice) and we recommend testing the sensitivity of estimates to
different prior specifications.

The predictors in the final model are as follows: parity of the cow (four dummy variables,
parity1-parity4, to represent 1-4 previous births versus a base category of greater than 4); two
dummy variables to indicate whether one or more somatic cell count readings were high before
drying off the cows (scchigh) and whether at least two readings were available (scc>2); an
indicator about whether farms ensure that cows remain standing for 30 min after administration
of dry cow treatments (dostand); two dummy variables to indicate whether cubicle bedding is
disinfected in the early dry period (edpdisinfect) and whether this is not applicable because of
the system that was used (edpdisinfectna); two dummy variables to indicate whether transition
cow cubicles are bedded at least once daily (transcow) and whether there are transition cow
cubicles (transcowna); a dummy variable about whether the cubicle bedding is disinfected in
the transition dry period (transdis); finally, three dummy variables to indicate whether the
transition cubicle feed and loaf area is scraped daily (scrape1), more often than daily (scrape2)
or does not exist (nofeedandloaf).

3.1. Hierarchical centring
Hierarchical centring (Gelfand et al., 1995) is a type of reparameterization algorithm. The aim
of such algorithms is to replace the original parameters in a model with new parameters that
are less correlated with each other in the joint posterior distribution. An MCMC algorithm is
then created for the new parameterization and Markov chains for the new parameters are
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produced. For the algorithm to work it must then be possible to transform these parameter
chains to obtain chains for the original parameters.

Hierarchical centring uses the fact that multilevel models contain a linear predictor consisting
of variables with associated fixed effects and zero-mean random effects. If a predictor is
constant within clusters that are associated with the random effects then a simple
reparameterization involves centring the random effects around it, i.e. replacing, in the linear
predictor, the cluster level predictors and fixed effects and the zero-mean random effects with
a new set of random effects; the mean of these new random effects is a function of the original
cluster level predictors and fixed effects.

In our example we have a three-level model so there is potential for centring at either higher
level (farm-year and farm). However, as the majority of predictors are defined at the farm-year
level (management practice can change between years) it makes most sense to centre at this
level. Of the predictors that were considered, all are defined at the farm-year level apart from
the duration parameters, the parity indicators (parity1-parity4) and the somatic cell count
predictors (scchigh and scc>2). The centred model is

where β(2) and β(1) are disjoint subsets of β representing the effects that can and cannot be
centred, and α(1) contains all the duration effects apart from the constant, α0. For ease of
comparison in the tables that follow we use the same ordering of the α- and β-vectors
throughout.

To link between the two parameterizations in the centred model we have defined

 and so, whereas the non-centred algorithm will update ujk, the centred
algorithm updates . This model was fitted both in its non-centred and its centred forms by
using MCMC estimation in the MLwiN software package (Rasbash et al., 2000; Browne,
2003) and for the interested reader the algorithm for MCMC updating of a simpler
hierarchically centred two-level model is given in Appendix A. Hierarchical centring also
speeds up the algorithm because the time invariant predictors will be linked to the response
indirectly via episode level effects. The update steps for these predictors hence only depend
on these effects rather than the full response vector as is shown in Appendix A.

To compare the MCMC efficiency both here and in later applications we consider the effective
sample size (ESS) diagnostic (Kass et al., 1998), which is derived from the auto-correlation
time κ with respect to the MCMC chain. This is defined as
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where ρ(j) is the auto-correlation at lag j. We approximate this quantity by

where j* corresponds to the first value j > 5 such that ρ(j) < 0.1. The ESS is then obtained by
multiplying the actual number of iterations by κ*.

Table 1 gives the parameter estimates for 50000 iterations following a burn-in of 500 iterations,
along with ESS values for each parameter.

In Table 1 the coefficients that are influenced by the centring have their ESS values italicized.
It is obvious from a close inspection that the centring has increased all of these ESSs—many
by a factor of over 100. In terms of computation time the non-centred model took over 19 h
for 50000 iterations whereas the centred model took 11½ h—not quite halving the time. Note
that 10 of the 19 fixed effects were affected by centring and each of the three sets of random
effects takes a similar amount of computation as one fixed effect and so the time for a centred
fixed effect is negligible compared with a non-centred fixed effect; this makes sense as in the
MCMC updates for the centred fixed effects we only evaluate the farm-year level likelihood
of 103 (normally distributed) farm-year level units whereas for the non-centred fixed effects
we evaluate the likelihood for the 256382 (Bernoulli-distributed) level 1 units.

In general the reduction in the computation time that can be achieved through centring will
clearly depend on both the number of fixed effects that can be centred and the ratio of level 1
to higher level units. This application does particularly well on both counts and so hierarchical
centring makes real gains here.

Looking more closely at the ESS values in Table 1 we see that, among parameters that are
unaffected by centring, those which are associated with duration have the lowest ESS. We shall
now consider a method for improving the ESS values for these three parameters in this example.
This will then motivate a more general use of orthogonalization of predictors that we use in
our second example.

3.2. Orthogonal polynomials
In the above model we have included three terms to account for different risks as duration
changes. These predictors, z1t = logtimet,  and , are highly correlated
with pairwise correlations of -0.61, 0.79 and -0.90. We can, without altering the rest of the
analysis, use a reparameterization that replaces this group of predictors with a less correlated
group of predictors. In fact it makes sense to make the predictors orthogonal to each other, i.e.

To do this we shall keep the first predictor  and then replace z2t by  and
 where the w-coefficients can be found uniquely so that the z*-predictors

are orthogonal (see the second application for further details). If all predictors are centred then
orthogonal predictors are also uncorrelated, but here, although logtime has been centred,
logtime2 and logtime3 are not centred. In this example the orthogonal predictors are logtime,
logtime2 + 0.94 logtime and logtime3 + 1.50 logtime2 -2.05 logtime.
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We can fit the full model as before but with the three z*-predictors replacing the z-predictors
for duration. This will result in fixed effects ,  and  for these predictors but no change
in the rest of the model. We can then transform back to the original parameters by creating
chains for α1, α2 and α3 as follows:  and .

Table 2 gives results from this method and, for comparison, the original parameterization. Here
we see that the reparameterization improves the ESS for the duration parameters and now all
parameters of the model have a more reasonable ESS.

4. Application 2: discontinuation of contraception in Indonesia
Steele et al. (2004) used multilevel multistate models to study transitions in and out of
contraceptive use in Indonesia. In this paper, we consider a simplification of their model which
considers only the transition from use to non-use: discontinuation of contraception. The data
come from the 1997 Indonesia Demographic and Health Survey (Central Bureau of Statistics
et al., 1998) which is a representative survey of all married women between the ages of 15 and
49 years. Contraceptive use histories were collected retrospectively for the 6-year period before
the survey and include information on the month and year of starting and stopping use, the
method used and the reason for discontinuation. The analysis is based on 17833 episodes of
contraceptive use for 12594 women, where an episode is defined as a continuous period of
using the same method of contraception. Restructuring the data to discrete time format with
monthly time intervals leads to 365205 records. To reduce the size of the data set, durations
were grouped into 6-month intervals and analysed by using methods for binomial (grouped
binary) data with denominator for grouped interval t equal to the number of months for which
a woman was at risk of discontinuation (i.e. using contraceptives) during t (see Section 2 for
an example). Aggregation of intervals leads to a data set with 68515 records.

If we let ytij equal 1 if episode i of woman j ends in discontinuation during interval t and 0
otherwise and ntij be the number of months for which woman j was at risk of discontinuation
during interval t of episode i, a multilevel model for the associated probability of
discontinuation πtij (the hazard of discontinuation) that accounts for correlation between the
durations of episodes that are contributed by the same woman can be written

where ztα is a function of the duration of use at t, xtij is a vector of covariates with corresponding
fixed effects β, and uj are woman-specific random effects. Steele et al. (2004) found that a
piecewise constant hazard was a good fit to the observed hazard, with five duration intervals
of 0-5, 6-11, 12-23, 24-35 and 36 months or longer. Thus the baseline logit hazard ztα is a step
function, where zt contains a constant and dummy variables for intervals 6-11, 12-23, 24-35
and 36 months or longer. The predictors xtij include the woman’s age at the start of the episode
(less than 25, 25-34 and 35-49 years), contraceptive method (classified as pill or injectable,
Norplant or intrauterine device, other modern and traditional), education (three groups), type
of region of residence (urban or rural) and socio-economic status (coded as low, medium or
high). These categorical predictors are represented by 10 dummy variables. Duration is time
varying whereas age and method are episode level variables. All other variables (including the
constant) are defined at the woman level and are therefore candidates for hierarchical centring,
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affecting six of the 15 coefficients in the model (the intercept, one for type of region, two for
socio-economic status and two for education). As with the mastitis example we consider both
a centred and a non-centred formulation of the model.

Table 3 shows the results for the non-centred and hierarchically centred formulations, based
on 250000 iterations with every 10th iteration stored to reduce storage requirements.

In this example using hierarchical centring actually has a detrimental effect with far worse
ESS, not only for the predictors that are involved in the centring but also some of the other
predictors. This application differs from the mastitis example in that we have far more random
effects (women) than we had previously (farm-years) and these random effects have a very
small variance. It is striking that the worst ESS is for the woman-level variance parameter. It
is well known that hierarchical centring does not work well when the random-effect variance
is small and Gelfand et al. (1995) showed this empirically for normal responses. An intuitive
explanation for this is that with small (uncentred) random effects there will be strong
correlations between the predictors representing the mean of the (centred) random effects and
the centred random effects themselves and this will induce poor mixing of the chains.

Further examination of the data reveals a large number of right-censored observations, i.e.
women who used contraceptives throughout the 6-year observation period, and a small number
of women who start and stop using contraceptives very quickly on several occasions. This
might call into question the normal distribution assumption for the woman effects. Here we
shall first consider simply removing the random effects, as their variance is small, and examine
the effect that this has on the fixed effect coefficients. Second, we shall investigate how we
might improve mixing for the random-effect variance parameter under a normal distribution
assumption.

4.1. Orthogonal parameterization
We begin by removing the random effects from the model and fitting a simple logistic
regression model. If we remove the random effects it is impossible to use hierarchical centring
as we have no hierarchical structure. We shall instead consider an extension of the orthogonal
polynomial approach that was used in the analysis of the mastitis data set. In the mastitis model
the ESS values for the duration fixed effects were improved by a reparameterization using
orthogonal polynomials. Here we shall consider using the same approach on all the predictor
variables. Note that orthogonal parameterizations have been used previously in Hills and Smith
(1992) where the focus was on creating orthogonal parameters rather than orthogonal
predictors.

In Appendix B we give details of an algorithm that takes all the fixed effect predictors in our
model and transforms them into an orthogonal set of predictors, resulting in a reparameterized
model. In brief the algorithm takes the set of all predictors P (constructed so that we can write
ztα + xtijβ as ptijθ where θ = α, β)) and creates a new set of orthogonal predictors P*. As the
set of orthogonal predictors spans the same space as the original predictors we can easily then
recover the fixed effects from the original parameterization. There is not one unique set of
orthogonal predictors that can be generated in this way and in the algorithm the order that the
predictors appear in P governs which set of predictors is generated in P*.

Table 4 gives results and the ESS for the simple logistic regression model fitted by using both
the original predictors and an orthogonal set of predictors (with the estimates converted back
to coefficients of the original predictors).

We now see an improvement in ESS for nearly all the predictors, with an ESS of around
10000-12000 for each. In fact it seems that using orthogonal predictors makes mixing (and
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hence the ESS) roughly the same for each parameter. For this model we ordered the predictors
as follows:

duration6-11, duration12-23, duration24-35, duration≥36, age25-34, age35-49,
method2, method3, method4, constant, educ-primary, educ-secondary+, urban, ses-
med, ses-high.

This ordering was chosen so that the level 1 predictors were picked first. It would be interesting
in future research to investigate whether there is any way to choose a ‘best’ ordering for this
algorithm (if indeed the ordering matters for this model). Our algorithm is a straightforward
way of producing one set of orthogonal predictors, but there are many other ways of producing
such predictors and again it would be interesting to investigate whether we can find an
algorithm for finding the ‘best’ set of orthogonal predictors spanning the same space as the
original predictors. In both cases we mean ‘best’ in the sense of producing the least auto-
correlated chains.

Owing to the small between-woman variance, the removal of the random effects has had little
effect on the fixed effects in the model (see Tables 3 and 4). The only fixed effects that have
changed noticeably are those for the later duration categories although they are not statistically
significant in either model. A possible explanation for this difference between the results of
the random-effects and simple logistic models is unobserved heterogeneity between women,
although we know from the random-effects analysis that the between-woman variance is small.
Over time, the risk population will increasingly consist of women with a low risk of
discontinuation, and it is these women who contribute to the estimation of the coefficients of
the baseline hazard at longer durations. Failure to adjust for unobserved heterogeneity will lead
to over-statement of negative duration effects and understatement of positive duration effects
(Vaupel et al., 1979).

If we return to the original model with woman level random effects we can explore whether
we can improve MCMC efficiency by using orthogonal predictors. Because of its earlier poor
performance in this application, we do not use hierarchical centring, and to create the
orthogonal predictors we again use the ordering (as for the single-level model) which includes
the level 1 predictors first followed by the woman level predictors. Thus by using the algorithm
in Appendix B all the orthogonal predictors that are produced will now be at level 1. In Table
5 we give results of fitting this model in MLwiN.

Once again we find that the use of orthogonal predictors has resulted in similar sized ESS for
all fixed effects. This model is more complex than the simple logistic regression model without
random effects and so the choice of ordering in our algorithm will be more important. This is
because when choosing orthogonal predictors we would ideally like these also to be close to
orthogonal to the woman identifiers in the model (0-1 vectors defining which observations
belong to particular women). For example if one of the orthogonalized predictors was highly
correlated with a woman identifier then in the likelihood the fixed effect and woman residual
associated respectively with the pair would play similar roles. They would hence be highly
correlated and this would mean that single-site updating of the parameters will result in poorly
mixing chains. As observed previously in Table 3 the worst mixing parameter for this model
is . In the next section we discuss a method that might improve mixing for this variance
parameter.

4.2. Parameter expansion
Parameter expansion was originally developed by Liu et al. (1998) to speed up the EM
algorithm. This method was then considered in relation to MCMC sampling and the Gibbs
sampler by Liu and Wu (1999) and has since been considered for random-effects models by
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Van Dyk and Meng (2001), Browne (2004) and Gelman et al. (2008). The basic idea of the
technique is to embed the desired model of interest in a larger model by adding additional
redundant parameters to the model. These parameters make the larger model unidentified but
the embedded model is still identified and its parameters can be extracted. In the case of
random-effects models parameter expansion is effective when the variance of the random
effects has large mass near zero. In these problems there is strong correlation between the
random-effects chains and the chain for their variance, and parameter expansion introduces an
additional parameter that effectively updates both the random effects and their variance
together.

A model with orthogonalization (as described in Appendix B) and parameter expansion is then

and we can return to our original parameters by taking uj = γvj, θ (α, β) = WTθ* and
 where W is defined in the algorithm in Appendix B.

For this section we switch software to WinBUGS (Spiegelhalter et al., 2003) as parameter
expansion is not currently implemented in MLwiN. In WinBUGS we select the implementation
of the multivariate Metropolis-Hastings approach of Gamerman (1997) which is
computationally slow but gives better mixing chains. As this method itself effects mixing we
also fit in WinBUGS the parameterization without parameter expansion for comparison both
with the MLwiN results in Section 4.1 and the parameter-expanded model. The MCMC
estimates for both models are based on 25000 iterations following a burn-in of 500. The results
are shown in Table 6 with the results without parameter extension in the left-hand columns
and with parameter expansion in the right-hand columns.

Comparing the results for MLwiN and WinBUGS by using the formulation without parameter
expansion (Table 5 and Table 6, left-hand column) we see similar estimates and similar ESS
values. As some chains have small negative auto-correlation, we even have some ESSs that
are bigger than 25000. We ran MLwiN for 10 times as many iterations but because of the better
mixing from the Gamerman method the ESS is approximately the same. However, MLwiN
took 23½ h whereas WinBUGS took 31½ h and so the choice between methods is not clear
cut. As we might expect, the worst mixing parameter is still  and switching software package
has not fixed this.

If we next compare the effect of the parameter expansion by comparing the two sets of results
in Table 6 we finally see an improvement for . This is illustrated further by the MCMC chains
for  that can be seen in Fig. 1. The estimate of the variance has increased owing to the change
of prior that occurs when parameter expansion is used. The ESSs for the fixed effects are all
worse than those in the left-hand columns before parameter expansion and this makes sense
as the random effects are larger and so correlations between these and the fixed effects will
have more effect on the mixing of the chains. Parameter expansion is computationally more
expensive, taking around 34 h for the 25000 iterations.
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5. Discussion
In this paper we have examined fitting multilevel discrete time survival models to two large
data sets from veterinary epidemiology and demography. We have seen promising
improvements in both the speed and the efficiency of MCMC algorithms when an alternative
hierarchically centred parameterization is used in the mastitis example. However, as is well
known, hierarchical centring performs worse in cases when the cluster level variance is small,
as is the case in the contraceptive use example. We find that transforming the fixed predictors
to be orthogonal has a beneficial effect and the technique of parameter expansion also helps
in this example.

The main differences between the two data sets are the numbers of level 2 units and the size
of the level 2 variance. In the mastitis example we have only 103 farm-years for 256582
observations with significant variation at both the farm-year and the farm levels. For the
contraceptive use data set we have 12594 women with 68515 6-monthly observations, but
around two-thirds of the women (8701) never discontinued use during the study period. This
means that we have very little information on individual women and hence problems in
estimating the between-woman variance, which is estimated as very small. In this case there
appears to be little gained from fitting random woman effects and a simple logistic regression
model gives similar fixed effect estimates.

In the mastitis example we could in theory have fitted individual cow random effects (crossed
with the farm-year effects as some cows appear in both years of the study) although this was
ruled out on grounds of model fit in Green et al. (2007). We would have experienced similar
problems with estimating the between-cow variance, and so this situation is not restricted to
our contraceptive use example.

What we should emphasize here is that, for all fitted models, the methods that we have used
have produced similar estimates. Our aim has been to obtain accurate estimates in fewer
iterations, rather than to correct biased estimates. The technique of hierarchical centring, in our
experience, works well in all cases apart from when we have very small higher level variance,
supporting the empirical results in Gelfand et al. (1995) for normal response models, and has
additional improvements in speed of execution.

Much research has followed on from Gelfand et al. (1995). For example Papaspiliopoulos et
al. (2003, 2007) discussed partially non-centred parameterizations that can (for Gaussian
response models) be shown to improve on both the centred and the non-centred
parameterizations that we consider. They also suggested a way of constructing such a
parameterization in the non-Gaussian context which would be worth considering in further
work.

The method of transforming predictor variables so that they are orthogonal seems also to be a
good reparameterization technique, at least in the examples that were considered here. More
research is required on choosing ‘best’ sets of orthogonal predictors, although choices that are
also close to orthogonal to the dummy variables representing the level 2 unit identifiers would
seem preferable. It would also be feasible to combine the approach with hierarchical centring
by producing two sets of orthogonal predictors from both the level 1 and the level 2 predictors.

In this paper we have focused on the application of reparameterization methods to the
estimation of multilevel discrete time survival models, but the three methods that were
considered should have similar effects on all forms of generalized linear mixed model. The
random effects need not simply be nested, as Browne (2004) demonstrated the use of both
hierarchical centring and parameter expansion in crossed random-effects models.
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Although parameter expansion has clear benefits for models with small random-effects
variance, it is debatable whether in such cases random effects are necessary. The concept of
embedding an identified model within an unidentified model will probably seem a little difficult
to some readers. However, an interesting alternative in the parameter expansion framework is
to constrain the variance  to be 1; the identifiability issue then disappears and γ now plays
the role of the standard deviation of the random effects. This formulation results in a uniform
prior for the standard deviation of the random effects which has recently become popular and
has the same mixing benefits as parameter expansion.
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Appendix

Appendix A

Markov chain Monte Carlo algorithm for a general two-level discrete time
survival variance components logistic regression model

Let us assume that like the Indonesia example in Section 4 we have an initial two-level data
set (events nested within women) and that we expand the data to give a three-level structure
of time intervals nested within events nested within clusters (women). Then let us assume that
the only random effects are at the cluster level and are simply changes in intercept and hence
we have a variance components model. As no random terms are associated with events in reality
we still have a two-level model (time intervals within clusters), and we shall assume that we
fit a random-effects logistic regression model with p2 predictors at the cluster level (including
the intercept) and p1 predictors at either the event level or time varying within events (including
duration parameters) which for simplicity we shall group together. We can write such a model
as

Here  contains the p1 predictors for occasion t in event i in cluster j and  contains the
p2 cluster level predictors for cluster j.

Then to convert to a hierarchical centred formulation we have
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where .

An MCMC sampling algorithm using this formulation but described in terms of the original
parameters is as follows.

Step 1
update β(1) by using a univariate random-walk Metropolis step at iteration s + 1 as follows.

For k = 1, . . . , p1 and with  signifying the β(1)-vector without component k,

where  is the proposal variance for  which can be fixed or
adapted by using an algorithm that was described in Browne and Draper (2000) and

Step 2
update the random effects uj by using a univariate random-walk Metropolis step at iteration
s + 1 as follows. For j = 1, . . . , J and with u(-j) signifying the u-vector without component j,

where  is the proposal variance for uj and

Step 3

update the random-effects variance  at iteration s + 1 by drawing from the gamma full
conditional distribution for ,
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Step 4
update β(2) as a vector using Gibbs sampling at iteration s + 1 from its full conditional
distribution, which is multivariate normal with dimension p2,

where

and

and let

to ensure that  remains fixed. Here β(2)(s) is the value of β(2) before the step and  is the
value of uj before updating β.(2) (but after updating uj in step 2).

Appendix B

Algorithm for generating orthogonal predictors
For simplicity of exposition in the algorithm that follows we shall combine the duration effects
and the other predictors into one matrix that we shall call P so that we can write ztα + xtijβ as
ptijθ where θ = (α, β).

The algorithm that we use to produce orthogonal predictors follows on from the method for
orthogonal polynomials and is as follows.

Step 1
number the predictors in some ordering 1, . . . , N.
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Step 2
take each predictor in turn and replace it with a predictor that is orthogonal to all the
(orthogonal) predictors already considered as described below.

For predictor pk (the kth column of P) create  so that

. This results in solving k - 1 equations in k - 1 unknown w-coefficients.

By performing this step for all predictors in turn we shall end up with

 coefficients. Once we have performed step 2 for all predictors we
have a lower diagonal matrix W = (wi,j) such that P* = WP and so we can run the model using
the P*-predictors.

This will result in chains for parameters θ* = (α*, β*) which can be transformed into chains
for the original parameters α and β by premultiplying θ* by WT. Each unique ordering of the
predictors will give a unique set of orthogonal predictors. The algorithm will generally work
provided that the predictors are not collinear.

From a Bayesian modelling point of view it is worth pointing out here that we would normally
need to calculate the Jacobian of the transformation from α and β to α* and β* to ensure that
we maintain the same prior distributions after reparameterization. In our example, however,
we use improper uniform priors and so this is not a problem.
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Fig. 1.
MCMC chains for the between-woman variance (a) before and (b) after parameter expansion

Browne et al. Page 19

J R Stat Soc Ser A Stat Soc. Author manuscript; available in PMC 2009 July 30.

U
KPM

C
 Funders G

roup Author M
anuscript

U
KPM

C
 Funders G

roup Author M
anuscript



U
KPM

C
 Funders G

roup Author M
anuscript

U
KPM

C
 Funders G

roup Author M
anuscript

Browne et al. Page 20

Table 1
MLwiN results for the mastitis incidence survival model run for 50000 iterations†

Parameter Results for the non-centred model Results for the hierarchically centred model

Estimate‡ ESS Estimate‡ ESS

α0—intercept -2.650 (0.424) 32 -2.743 (0.400) 2695

α1—logt -0.631 (0.033) 875 -0.632 (0.034) 926

α2—logt2 -0.462 (0.040) 98 -0.468 (0.043) 75

α3—logt3 -0.178 (0.013) 99 -0.181 (0.014) 75

β1—parity 1 -0.839 (0.124) 1095 -0.839 (0.126) 1058

β2—parity 2 -0.407 (0.055) 3747 -0.405 (0.054) 2087

β3—parity 3 -0.319 (0.055) 4759 -0.318 (0.055) 3275

β4—parity 4 -0.196 (0.056) 5165 -0.195 (0.056) 4271

β5—scchigh 0.329 (0.044) 2765 0.332 (0.044) 1438

β6—scc>2 0.030 (0.097) 1386 0.033 (0.097) 1248

β7—dostand -0.356 (0.103) 291 -0.342 (0.102) 3187

β8—edpdisinfect -0.279 (0.136) 703 -0.274 (0.145) 3554

β9—edpdisinfectna 0.163 (0.291) 43 0.155 (0.288) 5359

β10—transcow -1.067 (0.326) 44 -1.022 (0.308) 3448

β11—transcowna -1.382 (0.372) 34 -1.291 (0.362) 2674

β12—transdis -0.650 (0.248) 118 -0.613 (0.249) 2268

β13—scrape1 -0.843 (0.292) 57 -0.793 (0.288) 2524

β14—scrape2 -0.885 (0.399) 288 -0.839 (0.393) 1945

β15—nofeedandloaf -0.083 (0.296) 50 -0.101 (0.294) 5183

σν00
2 0.039 (0.019) 630 0.041 (0.020) 764

σν01
2 0.025 (0.024) 1555 0.026 (0.024) 1566

σν11
2 0.158 (0.065) 2439 0.154 (0.064) 2275

σu
2 0.066 (0.022) 796 0.065 (0.022) 1052

†
ESS values in italics are fixed effects directly affected by centring.

‡
Standard deviations are given in parentheses.
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Table 2
MLwiN results for the duration parameters in the mastitis incidence survival model after reparameterization and
hierarchical centring†

Parameter Results for standard polynomials Results for orthogonal polynomials

Estimate‡ ESS Estimate‡ ESS

α0—intercept -2.743 (0.400) 2695 -2.711 (0.401) 3337

α1—logt -0.632 (0.034) 926 -0.633 (0.033) 1997

α2—logt2 -0.468 (0.043) 75 -0.469 (0.039) 779

α3—logt3 -0.181 (0.014) 75 -0.181 (0.013) 1038

†
The models were run for 50000 iterations.

‡
Standard deviations are given in parentheses.
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Table 3
MLwiN results for the random-intercept model of discontinuation of contraception in Indonesia, 250 000 iterations

Parameter Results for the non-centred model Results for the hierarchically centred model

Estimate† ESS Estimate† ESS

α0—constant -4.053 (0.078) 1665 -4.045 (0.091) 28

α1—duration6-11 -0.067 (0.045) 13405 -0.069 (0.045) 91

α2—duration12-23 -0.117 (0.043) 11553 -0.121 (0.042) 81

α3—duration24-35 -0.022 (0.051) 11900 -0.030 (0.050) 126

α4—duration≥36 0.043 (0.057) 10463 0.031 (0.055) 161

β1—age25-34 -0.375 (0.033) 13855 -0.373 (0.033) 163

β2—age35-49 -0.676 (0.058) 15933 -0.673 (0.058) 11840

β3—method2 -1.164 (0.059) 19911 -1.159 (0.059) 20562

β4—method3 0.499 (0.110) 20517 0.496 (0.109) 18820

β5—method4 0.051 (0.062) 21118 0.051 (0.062) 19313

β6—educ-primary 0.028 (0.069) 2036 0.028 (0.071) 50

β7—educ-secondary+ 0.223 (0.072) 2093 0.222 (0.073) 44

β8—urban 0.114 (0.037) 16965 0.117 (0.035) 79

β9—ses-med -0.118 (0.046) 6488 -0.119 (0.052) 33

β10—ses-high -0.192 (0.052) 6876 -0.188 (0.053) 55

σu
2 0.041 (0.026) 14 0.022 (0.018) 14

†
Standard deviations are given in parentheses.
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Table 4
MLwiN results for the simple logistic regression model for the Indonesia data set run for 50000 iterations

Parameter Results for original predictors Results for orthogonal predictors

Estimate† ESS Estimate† ESS

α0—constant -4.025 (0.073) 403 -4.037 (0.077) 11578

α1—duration6-11 -0.073 (0.045) 4249 -0.071 (0.045) 12049

α2—duration12-23 -0.128 (0.043) 3617 -0.126 (0.042) 11878

α3—duration24-35 -0.040 (0.050) 4643 -0.038 (0.050) 11920

α4—duration≥36 0.017 (0.055) 5260 0.017 (0.055) 11864

β1—age25-34 -0.371 (0.033) 5114 -0.371 (0.033) 12908

β2—age35-49 -0.672 (0.057) 7787 -0.670 (0.058) 10188

β3—method2 -1.115 (0.058) 10291 -1.156 (0.059) 8518

β4—method3 0.495 (0.109) 11306 0.492 (0.109) 12010

β5—method4 0.052 (0.062) 9877 0.052 (0.062) 12023

β6—educ-primary 0.021 (0.065) 500 0.030 (0.069) 10945

β7—educ-secondary+ 0.215 (0.067) 514 0.225 (0.071) 11610

β8—urban 0.114 (0.036) 5646 0.113 (0.036) 10591

β9—ses-med -0.119 (0.045) 1466 -0.116 (0.046) 11214

β10—ses-high -0.193 (0.051) 1686 -0.191 (0.052) 10249

†
Standard deviations are given in parentheses.
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Table 5
Results from MLwiN for the random-effects logistic regression model using orthogonal predictors and 250000
iterations thinned by factor 10

Parameter Estimate† ESS

α0—constant -4.040 (0.078) 22714

α1—duration6-11 -0.071 (0.045) 23931

α2—duration12-23 -0.124 (0.043) 24136

α3—duration24-35 -0.035 (0.050) 23303

α4—duration≥36 0.022 (0.055) 22457

β1—age25-34 -0.371 (0.033) 23347

β2—age35-49 -0.671 (0.059) 22779

β3—method2 -1.156 (0.058) 22105

β4—method3 0.495 (0.108) 23533

β5—method4 0.052 (0.062) 24498

β6—educ-primary 0.029 (0.069) 23816

β7—educ-secondary+ 0.224 (0.072) 23428

β8—urban 0.114 (0.036) 22860

β9—ses-med -0.117 (0.046) 23697

β10—ses-high -0.191 (0.052) 23624

σu
2 0.008 (0.006) 20

†
Standard deviations are given in parentheses.
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Table 6
Results from WinBUGS for the random-effects logistic regression model using orthogonal predictors and parameter
expansion and 25000 iterations

Parameter Results for the orthogonal only model Results for the orthogonal and parameter expanded model

Estimate† ESS Estimate† ESS

α0—constant -4.037 (0.077) 24537 -4.064 (0.081) 14009

α1—duration6-11 -0.071 (0.045) 25936 -0.065 (0.045) 22017

α2—duration12-23 -0.126 (0.042) 25251 -0.112 (0.044) 15024

α3—duration24-35 -0.038 (0.050) 25083 -0.014 (0.054) 4859

α4—duration≥36 0.018 (0.054) 26332 0.055 (0.063) 1881

β1—age25-34 -0.371 (0.033) 26567 -0.376 (0.034) 22609

β2—age35-49 -0.671 (0.058) 22787 -0.677 (0.059) 20883

β3—method2 -1.156 (0.059) 18532 -1.169 (0.060) 14032

β4—method3 0.494 (0.109) 24267 0.501 (0.111) 23488

β5—method4 0.053 (0.062) 24546 0.050 (0.063) 23792

β6—educ-primary 0.030 (0.069) 24012 0.029 (0.069) 22546

β7—educ-secondary+ 0.224 (0.071) 25563 0.225 (0.072) 24422

β8—urban 0.113 (0.036) 25157 0.115 (0.037) 22995

β9—ses-med -0.116 (0.046) 25302 -0.118 (0.046) 23960

β10—ses-high -0.190 (0.052) 25139 -0.192 (0.052) 23383

σu
2 0.001 (0.001) 13 0.059 (0.048) 318

†
Standard deviations are given in parentheses.
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