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Abstract
Picking up an empty milk carton that we believe to be full is a familiar example of adaptive
control, because the adaptation process of estimating the carton's weight must proceed
simultaneously to the control process of moving the carton to a desired location. Here we show
that the motor system initially generates highly variable behavior in such unpredictable tasks but
eventually converges to stereotyped patterns of adaptive responses predicted by a simple
optimality principle. These results suggest that adaptation can become specifically tuned to
identify task-specific parameters in an optimal manner.
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Introduction
Flexible motor control is an essential feature of biological organisms that pursue their goals
in the face of uncertainty and incomplete knowledge about their environment. It is therefore
not surprising that the phenomenon of adaptive behavior pervades the entire animal
kingdom from simple habituation to complex reinforcement learning (Reznikova, 2007).
Conceptually, learning is naturally understood as an optimization process that leads to
efficient motor control. Thus, once learning has taken place and stable motor responses have
formed, complex motor behaviors can often be understood by simple optimality principles
that trade off attributes such as task success and energy expenditure (Todorov, 2004). In
particular, optimal feedback control models have been successful in explaining a wide
variety of motor behaviors on multiple levels of analysis (Todorov and Jordan, 2002; Scott,
2004; Diedrichsen, 2007; Guigon et al., 2007; Liu and Todorov, 2007). Optimal control
models typically start out with the dynamics of the environment (e.g. dynamics of the arm or
a tool) and a performance criterion in the form of a cost function (Stengel, 1994). The
optimal control is then defined as a feedback rule that maps the past observations to a future
action. This feedback rule minimizes the cost and is usually compared to the control actions
chosen by a human or animal controller in an experiment (Loeb et al., 1990; Todorov and
Jordan, 2002).
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Importantly, optimal feedback control requires knowledge of the environmental dynamics in
the form of an internal model. Consider, for example, that we wish to move a milk carton
with known weight to a new location. An internal model would predict the future state of the
controlled system xt+1 (e.g. future carton and hand position, velocity, etc.) from the current
state xt and the current action or control ut (e.g. a neural control command to the muscles).
Mathematically, the internal model can then be compactly represented as a mapping F with
xt+1 = F(xt, ut). Experimentally, such internal models have been shown to play a crucial role
in human motor control (Shadmehr and Mussa-Ivaldi, 1994; Wolpert et al., 1995; Wagner
and Smith, 2008). However, the question arises whether adaptive behavior in an
environment where the dynamics are not completely known can be understood by the same
principles. Mathematically, we can formalize an adaptive control problem as a mapping xt+1
= F(xt, ut, a) with unknown system parameters a that have to be estimated simultaneously
with the control process (Sastry and Bodson, 1989; Åström and Wittenmark, 1995). For
example, in the case of a milk carton with an unknown weight, the motor system must adapt
its estimate of the carton's weight (the parameter a in this case), while simultaneously
exerting the necessary control to bring the carton to a desired location. This raises a
fundamental question as to whether such estimation and control is a generic process
operating whenever the motor system faces unpredictable situations or whether the
adaptation process itself undergoes a learning phase so as to become tuned to specific
environments and tasks in an optimal manner. Here we design a visuomotor learning
experiment to test the hypothesis that with experience of an uncertain environment the motor
system learns to perform a task-specific, stereotypical adaptation and control within
individual movements in a task-optimal fashion. In the following we will refer to changes in
the control policy that occur within individual movements as ‘adaptation’ in order to
distinguish it from ‘learning’ processes that improve these adaptive responses across trials.

Materials and Methods
Data Acquisition

Nineteen healthy naive subjects participated in this study and gave informed consent after
approval of the experimental procedures by the Ethics Committee of the Albert-Ludwigs-
University, Freiburg. Subjects controlled a cursor (radius 1cm) on a 17″ TFT computer
screen with their arm suspended by means of a long pendulum (4m) that was attached to the
ceiling. Subjects grabbed on to a handle at the bottom of the pendulum and moved it in the
horizontal plane. Movements were recorded by an ultrasonic tracker system (CMS20, Zebris
Medical GmbH, Germany, 300Hz sampling, 0.085mm accuracy). The screen displayed eight
circular targets (radius 1.6cm) arranged concentrically around a starting position (center-
target distance 8cm). Subjects were asked to move the cursor swiftly into the designated
target and each trial lasted two seconds (therefore in early trials subjects often did not reach
the target within the time window).

Experimental Procedure
Two groups of subjects underwent two experimental blocks (2000 trials each) in which
participants performed reaching movements in an uncertain environment. In both blocks the
majority of trials were standard trials. However, on 20% of randomly selected trials a
visuomotor perturbation was introduced. Each perturbation trial was always followed by at
least one standard trial so that random perturbation trials were interspersed individually
amongst the standard trials. In the first group (rotation group, 10 subjects) the perturbation
was always a random visuomotor rotation with a rotation angle drawn from a uniform
distribution over {±30°, ±50°, ±70°, ±90°}. Thus, the majority of trials had a normal hand-
cursor relation and in visuomotor rotation trials the rotation angle could not be predicted
prior to movement, requiring subjects to adapt online within a single trial in order to achieve
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the task. In the second group (target jump group, 9 subjects) the first block of 2000 trials
were target jump transformations where the target jumped unpredictably to a rotated
position (rotation angles drawn randomly again from a uniform distribution over {±30°,
±50°, ±70°, ±90°}). In target jump trials the jump occurred when then hand had moved 2cm
away from the origin. In the second block of 2000 trials the target jump group also
experienced random rotations just like the first group. Thus, all subjects performed 4,000
trials in total. We analyzed the first 2000 trials to assess how performance changed as
subjects learned to adapt to the task requirements. Performance was assessed as the
minimum distance to the target within the 2 second trial period, the magnitude of the second
velocity peak and movement variability. To calculate movement variability each two-
dimensional positional trajectory was temporally aligned to the speed threshold of 10cm/s
and then the variance of the x and y positions were calculated for each time point across the
trajectories and subjects (time 0s corresponds to 200ms before the speed threshold). The
total variance was taken as the sum of the variance in x position and y position and the
square-root of the variance (standard deviation) was plotted. The last 2000 trials of the first
group were used for fitting subjects' stationary patterns of adaptation to an optimal adaptive
control model.

Adaptive Optimal Control Model
To model adaptation and control we used a linear model of the hand/cursor system and a
quadratic cost function to quantify performance (Kording and Wolpert, 2004). Full details of
the simulations are provided in the Supplementary Methods. As we include the effects of
signal-dependent noise on the motor commands (Harris and Wolpert, 1998) the resulting
optimal control model belongs to a class of modified linear quadratic-Gaussian systems
(Todorov and Jordan, 2002). The equations we used are:

The state xt represents the state of the hand/cursor system (a point mass model) and the
observation yt represents the delayed sensory feedback to the controller. The state update
equation depends on the current state (first term), the current motor command (second term)
and signal dependent noise (details in Supplementary Methods). The observation equation
relates the sensory feedback to the current state xt and the additive observation noise. The
important novelty here is that the forward model of the system dynamics F depends in a
nonlinear way on the rotation parameter φ between the hand and cursor position. This
parameter is unknown to subjects before each trial and must be estimated online during each
movement.

The hand was modeled as a planar point-mass (m = 1kg) with position and velocity vectors

given by  and vt respectively. The cursor position is given by a rotation of the hand

position , where Dφ is the rotation matrix for a rotation of angle φ. The two-
dimensional control signal ut is transformed sequentially through two muscle-like low-pass
filters both with time-constants of 40 ms to produce a force vector ft on the hand (with gt
representing the output of the first filter)—see (Todorov, 2005) and Supplementary Material
for details. Thus, the 10-dimensional state vector can be expressed as where pTARGET

corresponds to the target position in cursor space. Sensory feedback yt is given as a noisy
observation of the cursor position, hand velocity and force vector with a feedback delay of
150ms. In our results section we also compute the angular momentum as the cross product

 multiplied by the point-mass m = 1kg.
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The cost function J can be expressed as follows

The matrix Q is designed to punish positional error between cursor and target and high
velocities and is parameterized accordingly with two scalar parameters wp and wv. The
matrix R punishes excessive control signals and was taken as the identity matrix scaled by a
parameter r. Since the absolute value of the cost J does not matter for determining the
optimal control, i.e. only the ratio between Q and R is important, we set wp = 1. We chose a
cost function without a fixed movement time (i.e. an infinite horizon cost function) so the
amount of time required for adaptation to reach the target might vary. Such a cost function
allows computing the state-dependent optimal policy at each point in time considering the
most recent estimate of φ. Since the trial duration was relatively long (2s) this cost function
allowed reasonable fits to the data.

The optimal policy of the above control problem is the feedback rule that minimizes the cost
function J. Since the parameter φ is unknown, this adaptive optimal control problem can
only be solved approximately by decomposing it into an estimation problem and a control
problem (certainty-equivalence principle). The estimation problem consists of
simultaneously estimating the unobserved state xt and the unknown parameter φ from the
observations yt. This can be achieved by introducing an augmented state x̃t = [xt; φt] and
using a nonlinear filtering method (e.g. Unscented Kalman filter) for the estimation

 in this augmented state space—see Supplementary material for details. In order to
allow the controller to adapt its estimate of φ we model the parameter as a random walk with
covariance Ωv which determines the rate of adaptation within a trial. The optimal control
command at every time point can then be computed as a feedback control law ut = −L[φ̂t]x̂t,
where L[φ̂t] is the optimal feedback gain for a given parameter estimate φ̂t. To allow for the
uncertainty of the parameter estimate to affect the control process (non certainty –
equivalence effects) we introduce two additional cautiousness parameters λp and λv. Based
on the models uncertainty in the rotation parameter φ, these reduce the gains of the position
and velocity components of the feedback thereby slowing down the controller in the face of
high uncertainty (equivalent to making the energy component of the cost more important).
Importantly, the cautiousness parameters do not introduce a new optimality criterion; rather
it provides a heuristic to find an approximation to the optimal solution and is often used in
adaptive control theory when faced with an analytically intractable optimal control problem
(see Supplementary Material). Accordingly, the costs achieved by a cautious adaptive
controller can be lower than by a non-cautious adaptive controller—see Supplementary
Material for details.

Parameter Fit
Some of the parameters of the model were taken from the literature as indicated above.
There were six free scalar parameters that were fit to the data and these are (i) the cost
parameters wv and r, (ii) the cautiousness parameters λp and λv, (iii) the adaptation rate Ωv
and (iv) the signal-dependent noise level. We adjusted these parameters to fit the mean
trajectory of the 90°-rotation trials (by collapsing the + and −90° trials into one angle).
These parameter settings were then used to extrapolate behavior to both the standard trials
and all other rotation trials. The reason we chose 90° is that the perturbation has the
strongest effect here and therefore the fit would have the best signal-to-noise ratio to allow
us to get the most precise estimates of the parameters. Thus, the issue of over-fitting is
avoided as the model predictions are evaluated for non-fitted conditions. The fit was to the
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2nd 2000 trials when subjects of the rotation group exhibited stationary responses to the
visuomotor rotations. Details of the parameter fits can be found in the Supplementary
Material.

Results
To test the hypothesis that the motor system can learn to adapt optimally to specific classes
of environments we exposed a first group of participants to a reaching task in which on 20%
of the trials a random visuomotor rotation was introduced. Since these random rotations
could not be predicted (and were zero-mean across all rotations), participants had to adapt to
the perturbations online during the movement. This online adaptation is different from
online error correction (Diedrichsen et al., 2005), since the rules of the control process—i.e.
the ‘control policy’ that maps sensory inputs to motor outputs—has to be modified.
Importantly, the modification of the control law is a learning process, whereas online error
correction, e.g. to compensate for a target jump, can take place under the same policy
without learning a new controller. To enforce online adaptation the vast majority of trials
had a standard hand/cursor relationship and only occasional trials were perturbed. Thus,
movements typically started out in a straight line to the cursor target because subjects
assumed by default a standard mapping between hand and cursor — see Figure 1A.
However, after a time delay of 100-200ms into the movement subjects noticed the mismatch
between hand and cursor position in random rotation trials and started to modify their
movements. This adaptive part of the movement can be seen from the change of direction in
the trajectory and the appearance of a second peak in the speed profile (Fig. 1B).

To assess our hypothesis of task-optimal adaptation we first investigated whether subjects
showed any kind of improvement in adapting to the unpredictable perturbations during the
movements. Indeed, we found that the adaptation patterns in random rotation trials were
very different in early trials compared to the same rotations performed later in the
experiment (Fig. 1D-F). In the beginning, large movement errors occurred more frequently,
i.e. subjects often did not manage to reach the target precisely within the prescribed 2s time
window (Fig. 1D). The difference in the minimum distance to the target within this
allowable time window between the first and last batch of 200 trials was significant (p<0.01,
Wilcoxon ranksum test). In early trials the second peak of the speed profile was barely
visible as movements were relatively unstructured and cautious, but in later trials a clear
second speed peak emerged (Fig. 1B). Early trials also showed high variability in the second
part of the movement, whereas in later trials adaptive movements were less variable and
therefore more reproducible between subjects (Fig. 1F) – the variability in the last 500ms of
the movement in the first batch was significantly larger than in the last batch (p<0.01, F-
test). The color code in Figure 1A-C indicates that the second part of the movement
converged to a stereotyped adaptive response. To test for the possibility that subjects simply
became non-specifically better at feedback control, a second group of participants performed
a target jump task for the first 2000 trials. In direct correspondence to the random rotation
task 20% of the trials were random target jump trials. Since a target jump does not require
learning a new policy but simply an update of the target position in the current control law,
we would expect to see no major learning processes in this task. This is indeed what we
found. In Fig. 2 we show the same features that we evaluated in the random rotation trials to
assess over-trial evolution of sensorimotor response patterns (Fig. 2A-E).

To test whether the change in behavior over trials might represent an improvement—in the
sense of minimizing a cost function—we computed the costs of the experimentally observed
trajectories for 90° rotations. We used the inverse system equations to reverse-engineer the
state space vector xt and the control command ut from the experimental trajectories. We then
used a quadratic cost function that successfully captured standard movements and computed
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the costs of all the trajectories of the experiment. We found that the cost of the trajectories
with regard to the quadratic cost function decreased over trials (Fig. 3A). This shows that the
observed change in adaptation can be understood as a cost-optimization process. In contrast
to the first group, the second group showed no trend that would indicate learning – there is
no significant difference between the minimum distance to the target between the first and
the last batch (p>0.01, Wilcoxon ranksum test). The reverse-engineered cost function for the
90° target jumps was flat over trial batches (Fig. 3B).

After the first block of target jump trials, the second group experienced a second block of
random rotation trials identical to the second block the first group experienced. If the first
group learned a feedback control policy specifically for rotations in the first block of trials
then both groups should perform very differently in the second block of trials where both
groups experienced random rotation trials. Again this hypothesis was confirmed by our
results. The first group that was acquainted with rotations showed a stationary response to
unexpected rotations (Fig. 4A-C). Performance error, speed profiles and standard deviation
showed no changes over trials (Fig. 5A-C). Thus, there was no significant difference
between the minimum distance to the target between the first and the last trial batches
(p>0.01, Wilcoxon ranksum test). In contrast the second group initially performed not better
than naïve subjects; i.e. their performance was the same as the performance of the rotation
group in the beginning of the first block (Fig. 4D-E). Then, over the first few trial batches
this group substantially improved (Fig. 5D-E) and the difference in minimum target distance
between the first batch and the last are highly significant (p<0.01, Wilcoxon ranksum test).
Therefore, the experience of unpredictable target jumps did not allow for learning an
adaptive control policy that is optimized for unpredictable visuomotor rotations.

Finally, we investigated whether the stationary adaptation patterns observed in later trials of
the first group could be explained by an adaptive optimal feedback controller that takes the
task-specific parameters of a visuomotor rotation explicitly into account. Importantly, a non-
adaptive controller that ignores the rotation becomes quickly unstable (Fig. S4). The
adaptive optimal controller has to estimate simultaneously the arm and cursor states as well
as the hidden ‘visuomotor rotation’-parameter online (see Methods). This results in the
online estimation of the forward model for the visuomotor transformation. The estimated
forward model, in turn, together with the estimated cursor and hand state can be used to
compute the optimal control command at every point in time. At the beginning of each trial
the forward model estimate of the adaptive controller is initialized to match a standard hand-
cursor mapping without a visuomotor rotation (representing the prior, the average of all
rotations). Due to feedback delays, any mismatch between actual and expected cursor
position can only be detected by the adaptive controller some time into the movement. The
observed mismatch can then be used both for the adaptation of the state and parameter
estimates and for improved control (supplementary figure S3). To test this model
quantitatively, we adjusted the parameters of the model to fit the mean trajectory and
variance of the 90°-rotation trials and used this parameter set to predict behavior on both the
standard and other rotation trials. In the absence of the ‘cautiousness’ parameters which
slow down control in the presence of uncertainty about the rotation parameter, the
predictions gave hand speeds that were higher than those in our experimental data
(Supplementary Figure S5). In the presence of the ‘cautiousness’ parameters not only was
the cost of the controller lower, but we also found that the adaptive optimal control model
predicted the main characteristics of the paths, speed and angular momentum as well as the
trial-to-trial variability of movements with high reliability (Fig. 6)—the predictions yielded
r2 > 0.83 for all kinematic variables. Both model and experimental trajectories first move
straight towards the target and then show adaptive movement corrections after the feedback
delay time elapsed. Both model and experiment show a characteristic second peak in the
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velocity profile, and the model predicts this peak correctly for all rotation angles. Also the
trial-by-trial variability is correctly predicted for the different rotations.

Discussion
Our results provide evidence that the motor system converges to task-specific stereotypical
adaptive responses in unpredictable motor tasks that require simultaneous adaptation and
control. Moreover, we show that such adaptive responses can be explained by adaptive
optimal feedback control strategies. Thus, our results provide evidence that the motor
system is not only capable of learning non-adaptive optimal control policies (Todorov and
Jordan, 2002; Diedrichsen, 2007) but also of learning optimal simultaneous adaptation and
control. This shows that the learning process of finding an optimal adaptive strategy can be
understood as an optimization process with regard to similar cost criteria as proposed in
non-adaptive control tasks (Kording and Wolpert, 2004).

Previous studies have shown that optimal feedback control successfully predicts behavior of
subjects that have uncertainty about their environment (e.g. a force-field) that changes
randomly from trial-to-trial (Izawa et al., 2008). However, in these experiments subjects did
not have the opportunity to adapt efficiently to the perturbation within single-trials. Rather
the perturbation was modeled as noise or uncertainty with regard to the internal model. In
our experiments subjects also have uncertainty over the internal model, but they have
enough time to resolve this uncertainty within the trial and adapt their control policy
accordingly. Another recent study (Chen-Harris et al., 2008) has shown that optimal
feedback control can be successfully combined with models of motor learning (Donchin et
al., 2003; Smith et al., 2006) to understand learning of internal models over the course of
many trials. Here we show that learning and control can be understood by optimal control
principles within individual trials.

Optimal within-trial adaptation of the control policy during a movement presupposes
knowledge of a rotation-specific internal model xt+1 = F(xt, ut, a), where a denotes the
system parameters the motor system is uncertain about (i.e. a rotation-specific parameter).
This raises the question of how the nervous system could learn that a is the relevant
parameter and that F depends on a in a specific way. In adaptive control theory this is known
as the structural learning problem (Sastry and Bodson, 1989; Åström and Wittenmark, 1995)
as opposed to the parametric learning problem of estimating a given knowledge of F(*, a). In
our experiments subjects in the rotation group have a chance to learn the structure of the
adaptive control problem (i.e. visuomotor rotations with a varying rotation angle) in the first
2000 trials of the experiment in which they experience random rotations. As previously
shown (Braun et al., 2009), such random exposure is apt to induce structural learning and
can lead to differential adaptive behavior. Here we explicitly investigate the evolution of
structural learning for the online adaptation to visuomotor rotations (Fig. 1) and, based on an
optimal adaptive feedback control scheme, show that this learning can be indeed understood
as an improvement (Fig. 3) leading to optimal adaptive control strategies. It should be noted,
however, that learning the rotation structure does not necessarily imply that the brain is
learning to adapt literally a single neural parameter, but that exploration for online
adaptation should be constrained by structural knowledge leading to more stereotype
adaptive behavior. In the latter 2000 trials, when subjects know how to adapt efficiently to
rotations, their behavior can be described by a parametric adaptive optimal feedback
controller that exploits knowledge of the specific rotation structure.

In the literature there has been an ongoing debate whether corrective movements and
multiple velocity peaks indicate discretely initiated sub-movements (Lee et al., 1997;
Fishbach et al., 2007) or whether multimodal velocity profiles are the natural outcome of a
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continuous control process interacting with the environment (Kawato, 1992; Bhushan and
Shadmehr, 1999). Our model predictions are consistent with the second view. Although
corrective movements in our experiments are certainly induced by unexpected perturbations,
the appearance of corrections and multimodal velocity profiles can be explained by a
continuous process of adaptive optimal control.

As already described, online adaptation should not to be confused with online error
correction (Diedrichsen et al., 2005). Online correction is, for example, required in the case
of an unpredicted target jump. Under this condition the same controller can be used, i.e. the
mapping from sensory input to motor output is unaltered. However, unexpectedly changing
the hand-cursor relation (e.g. by a visuomotor rotation) requires the computation of adaptive
control policies. This becomes intuitively apparent in the degenerate case of 180° rotations,
as any correction of a naïve controller leads to the opposite of its intended effect. However,
it should be noted that the distinction between adaptation and error correction can be blurry
in many cases. Strictly speaking, an adaptive control problem is a nonlinear control problem
with a hyper-state containing state variables and (unknown) parameters. This means in
principle no extra theory of adaptive control is required. In practice, however, there is a
well-established theory of adaptive control (Sastry and Bodson, 1989; Åström and
Wittenmark, 1995) that is built on the (somewhat artificial) distinction between state
variables and (unknown) parameters. The two quantities are typically distinct in their
properties. In general, the state, for example the position and velocity of the hand, changes
rapidly and continuously within a movement. In contrast, other key quantities change
discretely, like the identity of a manipulated object, or on a slower time-scale, like the mass
of the limb. We refer to such discrete or slowly changing quantities as the ‘parameters’ of
the movement. Therefore, state variables change on a much faster time scale than system
parameters and the latter need to be estimated to allow for control of the state variables. This
is exactly the case in our experiments where the parameters (rotation angle) change slowly
and discretely from trial-to-trial, but the state variables (hand position, velocity, etc.) change
continuously over time (within a trial). Thus, estimating uncertain parameters can subserve
continuous control in an adaptive fashion. In summary, our results suggest that the motor
system can learn optimal adaptive control strategies to cope with specific uncertain
environments.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Evolution of within-trial adaptive behavior for random rotation trials. (A) Mean hand
trajectories for ±90° rotation trials in the first 10 batches averaged over trials and subjects
(each batch consisted of 200 trials, approximately 5% of which were ±90° rotation trials).
The −90° rotation trials have been mirrored about the y axis to allow averaging. Dark blue
colors indicate early batches, green colors intermediate batches, red colors indicate later
batches. (B) The minimum distance to the target averaged for the same trials as A (error bars
indicate standard deviation over all trajectories and all subjects). This shows that subjects'
performance improves over batches. (C) Mean speed profiles for ±90° rotations of the same
batches. In early batches, movements are comparatively slow and online adaptation is
reflected in a second peak of the speed profile which is initially noisy and unstructured. (D)
The magnitude of the second peak increases over batches (same format as B). (E) Standard
deviation profiles for ±90° rotation trajectories computed for each trial batch. (F) Standard
deviation of the last 500ms of movement. Over consecutive batches the variability is
reduced in the second part of the movement.
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Figure 2.
Evolution of motor responses to random target jumps. (A) Mean trajectories for ±90° target
jumps over batches of 200 trials, approximately 5% of which were ±90° target jump trials.
Dark blue colors indicate early batches, red colors indicate later batches. (B) The lower
panel shows that subjects' performance did not significantly improve over trials. Error bars
indicate standard deviation over all trials and subjects. (C) Mean speed profiles for ±90°
target jumps of the same trial batches. A second velocity peak is present right from the start.
(D) The lower panel shows the evolution of the magnitude of the second speed peak. (E)
Standard deviation for ±90° target jumps computed over the same trial batches. Over
consecutive batches the variance remains constant. (F) Standard deviation over the last
500ms of movement.
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Figure 3.
Left Panel: Rotation Group. Relative cost of subjects' movements in response to ±90°
visuomotor rotations. Over trial batches (200 trials) the cost of the adaptive strategy
decreases. Right Panel: Target Jump Group. Relative cost of subjects' movements in
response to ±90° target jumps. There is no improvement over trials. In both cases the costs
have been computed by calculating the control command and the state space vectors from
the experimental trajectories by assuming a quadratic cost function. The cost has been
normalized to the average cost of the last three trial batches.
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Figure 4.
Evolution of within-trial adaptation and control for ±90° random rotations in the second
block of 2000 trials. (A) Movement trajectories averaged over batches of 200 trials for the
group that had experienced unexpected rotation trials already in the previous 2000 trials.
Dark blue colors indicate early batches, red colors indicate later batches. This group shows
no improvement. (B) Speed profiles of the same trial batches. (C) Standard deviation in the
same trials. There is no trend over consecutive batches. (D) Average movement trajectories
averaged over batches of 200 trials for the group that had experienced unexpected target
jump trials in the previous 2000 trials. This group shows learning. (E) Speed profiles of the
target jump group. (F) Standard deviation in the same trials. The movement characteristics
change over consecutive batches.
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Figure 5.
Evolution of within-trial adaptive control for random rotations in the second block of 2000
trials. (A) Minimum distance to target in ±90° rotation trials averaged over batches of 200
trials for the group that had experienced unexpected rotation trials already in the previous
2000 trials. This group shows no improvement. Error bars show standard deviation over all
trials and subjects. (B) Mean magnitude of the second velocity peak over batches of 200
trials for the rotation group. (C) Standard deviation in the last 500ms of movement for ±90°
rotations computed over the same trial batches for the rotation group. There is no trend over
consecutive batches. (D) Minimum distance to target in ±90° rotation trials averaged over
batches of 200 trials for the group that had experienced unexpected target jump trials in the
previous 2000 trials. This group shows a clear improvement. (E) Mean magnitude of the
second velocity peak over batches of 200 trials for the target jump group. (F) Standard
deviation in the last 500ms of movement for ±90° rotations computed over the same trial
batches for the target jump group. The standard deviation clearly decreases over consecutive
batches.
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Figure 6.
Predictions of the adaptive optimal control model compared to movement data. Averaged
experimental hand trajectories (left column), speed profiles (second column), angular
momentum (third column) and trajectory variability (right column) for standard trials (black)
and rotation trials (±30° (blue), ±50° (red), ±70° (green), ±90° (magenta)). The second peak
in the speed profile and the magnitude of the angular momentum (assuming m=1kg) reflect
the corrective movement of the subjects. Higher rotation angles are associated with higher
variability in the movement trajectories in the second part of the movement. The variability
was computed over trials and subjects. The trajectories for all eight targets have been rotated
to the same standard target and averaged, since model predictions were isotropic. The model
consistently reproduces the characteristic features of the experimental curves.
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