Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Feb;82(2):762–771. doi: 10.1016/S0006-3495(02)75438-6

Spatial structure of zervamicin IIB bound to DPC micelles: implications for voltage-gating.

Z O Shenkarev 1, T A Balashova 1, R G Efremov 1, Z A Yakimenko 1, T V Ovchinnikova 1, J Raap 1, A S Arseniev 1
PMCID: PMC1301885  PMID: 11806918

Abstract

Zervamicin IIB is a 16-amino acid peptaibol that forms voltage-dependent ion channels with multilevel conductance states in planar lipid bilayers and vesicular systems. The spatial structure of zervamicin IIB bound to dodecylphosphocholine micelles was studied by nuclear magnetic resonance spectroscopy. The set of 20 structures obtained has a bent helical conformation with a mean backbone root mean square deviation value of approximately 0.2 A and resembles the structure in isotropic solvents (Balashova et al., 2000. NMR structure of the channel-former zervamicin IIB in isotropic solvents. FEBS Lett 466:333-336). The N-terminus represents an alpha-helix, whereas the C-terminal part has a mixed 3(10)/alpha(R) hydrogen-bond pattern. In the anisotropic micelle environment, the bending angle on Hyp10 (23 degrees) is smaller than that (47 degrees) in isotropic solvents. In the NOESY (Nuclear Overhauser Effect Spectroscopy) spectra, the characteristic attenuation of the peptide signals by 5- and 16-doxylstearate relaxation probes indicates a peripheral mode of the peptaibol binding to the micelle with the N-terminus immersed slightly deeper into micelle interior. Analysis of the surface hydrophobicity reveals that the zervamicin IIB helix is amphiphilic and well suited to formation of a tetrameric transmembrane bundle, according to the barrel-stave mechanism. The results are discussed in a context of voltage-driven peptaibol insertion into membrane.

Full Text

The Full Text of this article is available as a PDF (174.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anders R., Ohlenschläger O., Soskic V., Wenschuh H., Heise B., Brown L. R. The NMR solution structure of the ion channel peptaibol chrysospermin C bound to dodecylphosphocholine micelles. Eur J Biochem. 2000 Mar;267(6):1784–1794. doi: 10.1046/j.1432-1327.2000.01177.x. [DOI] [PubMed] [Google Scholar]
  2. Anders R., Wenschuh H., Soskic V., Fischer-Frühholz S., Ohlenschläger O., Dornberger K., Brown L. R. A solution NMR study of the selectively 13C, 15N-labeled peptaibol chrysospermin C in methanol. J Pept Res. 1998 Jul;52(1):34–44. doi: 10.1111/j.1399-3011.1998.tb00650.x. [DOI] [PubMed] [Google Scholar]
  3. Argoudelis A. D., Dietz A., Johnson L. E. Zervamicins I and II, polypeptide antibiotics produced by emericellopsis salmosynnemata. J Antibiot (Tokyo) 1974 May;27(5):321–328. doi: 10.7164/antibiotics.27.321. [DOI] [PubMed] [Google Scholar]
  4. Arseniev A. S., Barsukov I. L., Bystrov V. F., Lomize A. L., Ovchinnikov YuA 1H-NMR study of gramicidin A transmembrane ion channel. Head-to-head right-handed, single-stranded helices. FEBS Lett. 1985 Jul 8;186(2):168–174. doi: 10.1016/0014-5793(85)80702-x. [DOI] [PubMed] [Google Scholar]
  5. Baker E. N., Hubbard R. E. Hydrogen bonding in globular proteins. Prog Biophys Mol Biol. 1984;44(2):97–179. doi: 10.1016/0079-6107(84)90007-5. [DOI] [PubMed] [Google Scholar]
  6. Balaram P., Krishna K., Sukumar M., Mellor I. R., Sansom M. S. The properties of ion channels formed by zervamicins. Eur Biophys J. 1992;21(2):117–128. doi: 10.1007/BF00185426. [DOI] [PubMed] [Google Scholar]
  7. Balashova T. A., Shenkarev Z. O., Tagaev A. A., Ovchinnikova T. V., Raap J., Arseniev A. S. NMR structure of the channel-former zervamicin IIB in isotropic solvents. FEBS Lett. 2000 Jan 28;466(2-3):333–336. doi: 10.1016/s0014-5793(99)01707-x. [DOI] [PubMed] [Google Scholar]
  8. Barranger-Mathys M., Cafiso D. S. Membrane structure of voltage-gated channel forming peptides by site-directed spin-labeling. Biochemistry. 1996 Jan 16;35(2):498–505. doi: 10.1021/bi951985d. [DOI] [PubMed] [Google Scholar]
  9. Baumann G., Mueller P. A molecular model of membrane excitability. J Supramol Struct. 1974;2(5-6):538–557. doi: 10.1002/jss.400020504. [DOI] [PubMed] [Google Scholar]
  10. Bechinger B. The structure, dynamics and orientation of antimicrobial peptides in membranes by multidimensional solid-state NMR spectroscopy. Biochim Biophys Acta. 1999 Dec 15;1462(1-2):157–183. doi: 10.1016/s0005-2736(99)00205-9. [DOI] [PubMed] [Google Scholar]
  11. Ben-Tal N., Ben-Shaul A., Nicholls A., Honig B. Free-energy determinants of alpha-helix insertion into lipid bilayers. Biophys J. 1996 Apr;70(4):1803–1812. doi: 10.1016/S0006-3495(96)79744-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Brown L. R., Bösch C., Wüthrich K. Location and orientation relative to the micelle surface for glucagon in mixed micelles with dodecylphosphocholine: EPR and NMR studies. Biochim Biophys Acta. 1981 Apr 6;642(2):296–312. doi: 10.1016/0005-2736(81)90447-8. [DOI] [PubMed] [Google Scholar]
  13. Béven L., Helluin O., Molle G., Duclohier H., Wróblewski H. Correlation between anti-bacterial activity and pore sizes of two classes of voltage-dependent channel-forming peptides. Biochim Biophys Acta. 1999 Sep 21;1421(1):53–63. doi: 10.1016/s0005-2736(99)00111-x. [DOI] [PubMed] [Google Scholar]
  14. Chipot C., Pohorille A. Folding and translocation of the undecamer of poly-L-leucine across the water-hexane interface. A molecular dynamics study. J Am Chem Soc. 1998 Nov 25;120(46):11912–11924. doi: 10.1021/ja980010o. [DOI] [PubMed] [Google Scholar]
  15. Condamine E., Rebuffat S., Prigent Y., Ségalas I., Bodo B., Davoust D. Three-dimensional structure of the ion-channel forming peptide trichorzianin TA VII bound to sodium dodecyl sulfate micelles. Biopolymers. 1998 Aug;46(2):75–88. doi: 10.1002/(SICI)1097-0282(199808)46:2<75::AID-BIP3>3.0.CO;2-U. [DOI] [PubMed] [Google Scholar]
  16. Dauber-Osguthorpe P., Roberts V. A., Osguthorpe D. J., Wolff J., Genest M., Hagler A. T. Structure and energetics of ligand binding to proteins: Escherichia coli dihydrofolate reductase-trimethoprim, a drug-receptor system. Proteins. 1988;4(1):31–47. doi: 10.1002/prot.340040106. [DOI] [PubMed] [Google Scholar]
  17. Dementieva D. V., Bocharov E. V., Arseniev A. S. Two forms of cytotoxin II (cardiotoxin) from Naja naja oxiana in aqueous solution: spatial structures with tightly bound water molecules. Eur J Biochem. 1999 Jul;263(1):152–162. doi: 10.1046/j.1432-1327.1999.00478.x. [DOI] [PubMed] [Google Scholar]
  18. Doyle D. A., Morais Cabral J., Pfuetzner R. A., Kuo A., Gulbis J. M., Cohen S. L., Chait B. T., MacKinnon R. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science. 1998 Apr 3;280(5360):69–77. doi: 10.1126/science.280.5360.69. [DOI] [PubMed] [Google Scholar]
  19. Dubovskii P. V., Dementieva D. V., Bocharov E. V., Utkin Y. N., Arseniev A. S. Membrane binding motif of the P-type cardiotoxin. J Mol Biol. 2001 Jan 5;305(1):137–149. doi: 10.1006/jmbi.2000.4283. [DOI] [PubMed] [Google Scholar]
  20. Duclohier H., Kociolek K., Stasiak M., Leplawy M. T., Marshall G. R. C-terminally shortened alamethicin on templates: influence of the linkers on conductances. Biochim Biophys Acta. 1999 Aug 20;1420(1-2):14–22. doi: 10.1016/s0005-2736(99)00047-4. [DOI] [PubMed] [Google Scholar]
  21. Duclohier H., Molle G., Dugast J. Y., Spach G. Prolines are not essential residues in the "barrel-stave" model for ion channels induced by alamethicin analogues. Biophys J. 1992 Sep;63(3):868–873. doi: 10.1016/S0006-3495(92)81637-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Efremov R. G., Nolde D. E., Vergoten G., Arseniev A. S. A solvent model for simulations of peptides in bilayers. I. Membrane-promoting alpha-helix formation. Biophys J. 1999 May;76(5):2448–2459. doi: 10.1016/S0006-3495(99)77400-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Epand R. M., Vogel H. J. Diversity of antimicrobial peptides and their mechanisms of action. Biochim Biophys Acta. 1999 Dec 15;1462(1-2):11–28. doi: 10.1016/s0005-2736(99)00198-4. [DOI] [PubMed] [Google Scholar]
  24. Esposito G., Carver J. A., Boyd J., Campbell I. D. High-resolution 1H NMR study of the solution structure of alamethicin. Biochemistry. 1987 Feb 24;26(4):1043–1050. doi: 10.1021/bi00378a010. [DOI] [PubMed] [Google Scholar]
  25. Fox R. O., Jr, Richards F. M. A voltage-gated ion channel model inferred from the crystal structure of alamethicin at 1.5-A resolution. Nature. 1982 Nov 25;300(5890):325–330. doi: 10.1038/300325a0. [DOI] [PubMed] [Google Scholar]
  26. Franklin J. C., Ellena J. F., Jayasinghe S., Kelsh L. P., Cafiso D. S. Structure of micelle-associated alamethicin from 1H NMR. Evidence for conformational heterogeneity in a voltage-gated peptide. Biochemistry. 1994 Apr 5;33(13):4036–4045. doi: 10.1021/bi00179a032. [DOI] [PubMed] [Google Scholar]
  27. Gabay J. E. Ubiquitous natural antibiotics. Science. 1994 Apr 15;264(5157):373–374. doi: 10.1126/science.8153623. [DOI] [PubMed] [Google Scholar]
  28. Gibbs N., Sessions R. B., Williams P. B., Dempsey C. E. Helix bending in alamethicin: molecular dynamics simulations and amide hydrogen exchange in methanol. Biophys J. 1997 Jun;72(6):2490–2495. doi: 10.1016/S0006-3495(97)78893-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Güntert P., Mumenthaler C., Wüthrich K. Torsion angle dynamics for NMR structure calculation with the new program DYANA. J Mol Biol. 1997 Oct 17;273(1):283–298. doi: 10.1006/jmbi.1997.1284. [DOI] [PubMed] [Google Scholar]
  30. Harroun T. A., Heller W. T., Weiss T. M., Yang L., Huang H. W. Experimental evidence for hydrophobic matching and membrane-mediated interactions in lipid bilayers containing gramicidin. Biophys J. 1999 Feb;76(2):937–945. doi: 10.1016/S0006-3495(99)77257-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. He K., Ludtke S. J., Worcester D. L., Huang H. W. Neutron scattering in the plane of membranes: structure of alamethicin pores. Biophys J. 1996 Jun;70(6):2659–2666. doi: 10.1016/S0006-3495(96)79835-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Henry G. D., Sykes B. D. Methods to study membrane protein structure in solution. Methods Enzymol. 1994;239:515–535. doi: 10.1016/s0076-6879(94)39020-7. [DOI] [PubMed] [Google Scholar]
  33. Jaravine V. A., Nolde D. E., Reibarkh M. J., Korolkova Y. V., Kozlov S. A., Pluzhnikov K. A., Grishin E. V., Arseniev A. S. Three-dimensional structure of toxin OSK1 from Orthochirus scrobiculosus scorpion venom. Biochemistry. 1997 Feb 11;36(6):1223–1232. doi: 10.1021/bi9614390. [DOI] [PubMed] [Google Scholar]
  34. Kaduk C., Dathe M., Bienert M. Functional modifications of alamethicin ion channels by substitution of glutamine 7, glycine 11 and proline 14. Biochim Biophys Acta. 1998 Aug 14;1373(1):137–146. doi: 10.1016/s0005-2736(98)00100-x. [DOI] [PubMed] [Google Scholar]
  35. Kaduk C., Duclohier H., Dathe M., Wenschuh H., Beyermann M., Molle G., Bienert M. Influence of proline position upon the ion channel activity of alamethicin. Biophys J. 1997 May;72(5):2151–2159. doi: 10.1016/S0006-3495(97)78858-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Karle I. L., Balaram P. Structural characteristics of alpha-helical peptide molecules containing Aib residues. Biochemistry. 1990 Jul 24;29(29):6747–6756. doi: 10.1021/bi00481a001. [DOI] [PubMed] [Google Scholar]
  37. Karle I. L., Flippen-Anderson J. L., Agarwalla S., Balaram P. Conformation of the flexible bent helix of Leu1-zervamicin in crystal C and a possible gating action for ion passage. Biopolymers. 1994 Jun;34(6):721–735. doi: 10.1002/bip.360340605. [DOI] [PubMed] [Google Scholar]
  38. Karle I. L., Flippen-Anderson J., Sukumar M., Balaram P. Conformation of a 16-residue zervamicin IIA analog peptide containing three different structural features: 3(10)-helix, alpha-helix, and beta-bend ribbon. Proc Natl Acad Sci U S A. 1987 Aug;84(15):5087–5091. doi: 10.1073/pnas.84.15.5087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Killian J. A. Hydrophobic mismatch between proteins and lipids in membranes. Biochim Biophys Acta. 1998 Nov 10;1376(3):401–415. doi: 10.1016/s0304-4157(98)00017-3. [DOI] [PubMed] [Google Scholar]
  40. Killian J. A., von Heijne G. How proteins adapt to a membrane-water interface. Trends Biochem Sci. 2000 Sep;25(9):429–434. doi: 10.1016/s0968-0004(00)01626-1. [DOI] [PubMed] [Google Scholar]
  41. Koradi R., Billeter M., Wüthrich K. MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph. 1996 Feb;14(1):51-5, 29-32. doi: 10.1016/0263-7855(96)00009-4. [DOI] [PubMed] [Google Scholar]
  42. Kropacheva T. N., Raap J. Voltage-dependent interaction of the peptaibol antibiotic zervamicin II with phospholipid vesicles. FEBS Lett. 1999 Nov 5;460(3):500–504. doi: 10.1016/s0014-5793(99)01401-5. [DOI] [PubMed] [Google Scholar]
  43. Lauterwein J., Bösch C., Brown L. R., Wüthrich K. Physicochemical studies of the protein-lipid interactions in melittin-containing micelles. Biochim Biophys Acta. 1979 Sep 21;556(2):244–264. doi: 10.1016/0005-2736(79)90046-4. [DOI] [PubMed] [Google Scholar]
  44. Marsh D. Peptide models for membrane channels. Biochem J. 1996 Apr 15;315(Pt 2):345–361. doi: 10.1042/bj3150345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Opella S. J., Kim Y., McDonnell P. Experimental nuclear magnetic resonance studies of membrane proteins. Methods Enzymol. 1994;239:536–560. doi: 10.1016/s0076-6879(94)39021-5. [DOI] [PubMed] [Google Scholar]
  46. Orekhov V. Y., Korzhnev D. M., Pervushin K. V., Hoffmann E., Arseniev A. S. Sampling of protein dynamics in nanosecond time scale by 15N NMR relaxation and self-diffusion measurements. J Biomol Struct Dyn. 1999 Aug;17(1):157–174. doi: 10.1080/07391102.1999.10508348. [DOI] [PubMed] [Google Scholar]
  47. Papavoine C. H., Konings R. N., Hilbers C. W., van de Ven F. J. Location of M13 coat protein in sodium dodecyl sulfate micelles as determined by NMR. Biochemistry. 1994 Nov 8;33(44):12990–12997. doi: 10.1021/bi00248a007. [DOI] [PubMed] [Google Scholar]
  48. Pervushin K. V., Arsen'ev A. S. Spektroskopiia IaMR v issledovaniiakh prostranstvennoi struktury membrannykh peptidov i belkov. Bioorg Khim. 1995 Feb;21(2):83–111. [PubMed] [Google Scholar]
  49. Piotto M., Saudek V., Sklenár V. Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions. J Biomol NMR. 1992 Nov;2(6):661–665. doi: 10.1007/BF02192855. [DOI] [PubMed] [Google Scholar]
  50. Rance M., Sørensen O. W., Bodenhausen G., Wagner G., Ernst R. R., Wüthrich K. Improved spectral resolution in cosy 1H NMR spectra of proteins via double quantum filtering. Biochem Biophys Res Commun. 1983 Dec 16;117(2):479–485. doi: 10.1016/0006-291x(83)91225-1. [DOI] [PubMed] [Google Scholar]
  51. Sansom M. S., Balaram P., Karle I. L. Ion channel formation by zervamicin-IIB. A molecular modelling study. Eur Biophys J. 1993;21(6):369–383. doi: 10.1007/BF00185864. [DOI] [PubMed] [Google Scholar]
  52. Sansom M. S. Models and simulations of ion channels and related membrane proteins. Curr Opin Struct Biol. 1998 Apr;8(2):237–244. doi: 10.1016/s0959-440x(98)80045-6. [DOI] [PubMed] [Google Scholar]
  53. Sansom M. S. The biophysics of peptide models of ion channels. Prog Biophys Mol Biol. 1991;55(3):139–235. doi: 10.1016/0079-6107(91)90004-c. [DOI] [PubMed] [Google Scholar]
  54. Snook C. F., Woolley G. A., Oliva G., Pattabhi V., Wood S. F., Blundell T. L., Wallace B. A. The structure and function of antiamoebin I, a proline-rich membrane-active polypeptide. Structure. 1998 Jun 15;6(6):783–792. doi: 10.1016/s0969-2126(98)00079-3. [DOI] [PubMed] [Google Scholar]
  55. Vinogradova O., Sönnichsen F., Sanders C. R., 2nd On choosing a detergent for solution NMR studies of membrane proteins. J Biomol NMR. 1998 May;11(4):381–386. doi: 10.1023/a:1008289624496. [DOI] [PubMed] [Google Scholar]
  56. Woolley G. A., Epand R. M., Kerr I. D., Sansom M. S., Wallace B. A. Alamethicin pyromellitate: an ion-activated channel-forming peptide. Biochemistry. 1994 Jun 7;33(22):6850–6858. doi: 10.1021/bi00188a014. [DOI] [PubMed] [Google Scholar]
  57. You S., Peng S., Lien L., Breed J., Sansom M. S., Woolley G. A. Engineering stabilized ion channels: covalent dimers of alamethicin. Biochemistry. 1996 May 21;35(20):6225–6232. doi: 10.1021/bi9529216. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES