Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Sep 15;374(Pt 3):707–714. doi: 10.1042/BJ20030528

A study of host defence peptide beta-defensin 3 in primates.

Michele Boniotto 1, Nikolinka Antcheva 1, Igor Zelezetsky 1, Alessandro Tossi 1, Valeria Palumbo 1, Maria Vittoria Verga Falzacappa 1, Silvia Sgubin 1, Laura Braida 1, Antonio Amoroso 1, Sergio Crovella 1
PMCID: PMC1223632  PMID: 12795637

Abstract

We have investigated the molecular evolution of the gene coding for beta-defensin 3 (DEFB103) in 17 primate species including humans. Unlike the DEFB4 genes (coding for beta-defensin 2) [Boniotto, Tossi, Del Pero, Sgubin, Antcheva, Santon and Masters (2003) Genes Immun. 4, 251-257], DEFB103 shows a marked degree of conservation in humans, Great Apes and New and Old World monkeys. Only the Hylobates concolor defensin hcBD3 showed an amino acid variation Arg17-->Trp17 that could have a functional implication, as it disrupts an intramolecular salt bridge with Glu27, which locally decreases the charge and may favour dimerization in the human congener hBD3. This is thought to involve the formation of an intermolecular salt bridge between Glu28 and Lys32 on another monomer [Schibli, Hunter, Aseyev, Starner, Wiencek, McCray, Tack and Vogel (2002) J. Biol. Chem. 277, 8279-8289]. To test the role of dimerization in mediating biological activity, we synthesized hBD3, hcBD3 and an artificial peptide in which the Lys26-Glu27-Glu28 stretch was replaced by the equivalent Phe-Thr-Lys stretch from human beta-defensin 1 and we characterized their structure and anti-microbial activity. Although the structuring and dimerization of these peptides were found to differ significantly, this did not appear to affect markedly the anti-microbial potency, the broad spectrum of activity or the insensitivity of the anti-microbial action to the salinity of the medium.

Full Text

The Full Text of this article is available as a PDF (183.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aiyar A. The use of CLUSTAL W and CLUSTAL X for multiple sequence alignment. Methods Mol Biol. 2000;132:221–241. doi: 10.1385/1-59259-192-2:221. [DOI] [PubMed] [Google Scholar]
  2. Bauer F., Schweimer K., Klüver E., Conejo-Garcia J. R., Forssmann W. G., Rösch P., Adermann K., Sticht H. Structure determination of human and murine beta-defensins reveals structural conservation in the absence of significant sequence similarity. Protein Sci. 2001 Dec;10(12):2470–2479. doi: 10.1110/ps.24401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boniotto M., Tossi A., DelPero M., Sgubin S., Antcheva N., Santon D., Masters J., Crovella S. Evolution of the beta defensin 2 gene in primates. Genes Immun. 2003 Jun;4(4):251–257. doi: 10.1038/sj.gene.6363958. [DOI] [PubMed] [Google Scholar]
  4. Del Pero Massimiliano, Boniotto Michele, Zuccon Dario, Cervella Piero, Spanò Andrea, Amoroso Antonio, Crovella Sergio. Beta-defensin 1 gene variability among non-human primates. Immunogenetics. 2002 Jan 24;53(10-11):907–913. doi: 10.1007/s00251-001-0412-x. [DOI] [PubMed] [Google Scholar]
  5. Deléage G., Geourjon C. An interactive graphic program for calculating the secondary structure content of proteins from circular dichroism spectrum. Comput Appl Biosci. 1993 Apr;9(2):197–199. doi: 10.1093/bioinformatics/9.2.197. [DOI] [PubMed] [Google Scholar]
  6. García J. R., Jaumann F., Schulz S., Krause A., Rodríguez-Jiménez J., Forssmann U., Adermann K., Klüver E., Vogelmeier C., Becker D. Identification of a novel, multifunctional beta-defensin (human beta-defensin 3) with specific antimicrobial activity. Its interaction with plasma membranes of Xenopus oocytes and the induction of macrophage chemoattraction. Cell Tissue Res. 2001 Nov;306(2):257–264. doi: 10.1007/s004410100433. [DOI] [PubMed] [Google Scholar]
  7. García J. R., Krause A., Schulz S., Rodríguez-Jiménez F. J., Klüver E., Adermann K., Forssmann U., Frimpong-Boateng A., Bals R., Forssmann W. G. Human beta-defensin 4: a novel inducible peptide with a specific salt-sensitive spectrum of antimicrobial activity. FASEB J. 2001 Aug;15(10):1819–1821. [PubMed] [Google Scholar]
  8. Giangaspero A., Sandri L., Tossi A. Amphipathic alpha helical antimicrobial peptides. Eur J Biochem. 2001 Nov;268(21):5589–5600. doi: 10.1046/j.1432-1033.2001.02494.x. [DOI] [PubMed] [Google Scholar]
  9. Harder J., Bartels J., Christophers E., Schroder J. M. Isolation and characterization of human beta -defensin-3, a novel human inducible peptide antibiotic. J Biol Chem. 2000 Nov 20;276(8):5707–5713. doi: 10.1074/jbc.M008557200. [DOI] [PubMed] [Google Scholar]
  10. Jia H. P., Schutte B. C., Schudy A., Linzmeier R., Guthmiller J. M., Johnson G. K., Tack B. F., Mitros J. P., Rosenthal A., Ganz T. Discovery of new human beta-defensins using a genomics-based approach. Gene. 2001 Jan 24;263(1-2):211–218. doi: 10.1016/s0378-1119(00)00569-2. [DOI] [PubMed] [Google Scholar]
  11. Kumar S., Tamura K., Jakobsen I. B., Nei M. MEGA2: molecular evolutionary genetics analysis software. Bioinformatics. 2001 Dec;17(12):1244–1245. doi: 10.1093/bioinformatics/17.12.1244. [DOI] [PubMed] [Google Scholar]
  12. Mandal M., Jagannadham M. V., Nagaraj R. Antibacterial activities and conformations of bovine beta-defensin BNBD-12 and analogs:structural and disulfide bridge requirements for activity. Peptides. 2002 Mar;23(3):413–418. doi: 10.1016/s0196-9781(01)00628-3. [DOI] [PubMed] [Google Scholar]
  13. Nei M., Gojobori T. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol. 1986 Sep;3(5):418–426. doi: 10.1093/oxfordjournals.molbev.a040410. [DOI] [PubMed] [Google Scholar]
  14. Sahly Hany, Schubert Sabine, Harder Jürgen, Rautenberg Peter, Ullmann Uwe, Schröder Jens, Podschun Rainer. Burkholderia is highly resistant to human Beta-defensin 3. Antimicrob Agents Chemother. 2003 May;47(5):1739–1741. doi: 10.1128/AAC.47.5.1739-1741.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Schibli David J., Hunter Howard N., Aseyev Vladimir, Starner Timothy D., Wiencek John M., McCray Paul B., Jr, Tack Brian F., Vogel Hans J. The solution structures of the human beta-defensins lead to a better understanding of the potent bactericidal activity of HBD3 against Staphylococcus aureus. J Biol Chem. 2001 Dec 11;277(10):8279–8289. doi: 10.1074/jbc.M108830200. [DOI] [PubMed] [Google Scholar]
  16. Schutte Brian C., Mitros Joseph P., Bartlett Jennifer A., Walters Jesse D., Jia Hong Peng, Welsh Michael J., Casavant Thomas L., McCray Paul B., Jr Discovery of five conserved beta -defensin gene clusters using a computational search strategy. Proc Natl Acad Sci U S A. 2002 Feb 19;99(4):2129–2133. doi: 10.1073/pnas.042692699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Tiozzo E., Rocco G., Tossi A., Romeo D. Wide-spectrum antibiotic activity of synthetic, amphipathic peptides. Biochem Biophys Res Commun. 1998 Aug 10;249(1):202–206. doi: 10.1006/bbrc.1998.9114. [DOI] [PubMed] [Google Scholar]
  18. Tossi A., Sandri L., Giangaspero A. Amphipathic, alpha-helical antimicrobial peptides. Biopolymers. 2000;55(1):4–30. doi: 10.1002/1097-0282(2000)55:1<4::AID-BIP30>3.0.CO;2-M. [DOI] [PubMed] [Google Scholar]
  19. Tossi A., Tarantino C., Romeo D. Design of synthetic antimicrobial peptides based on sequence analogy and amphipathicity. Eur J Biochem. 1997 Dec 1;250(2):549–558. doi: 10.1111/j.1432-1033.1997.0549a.x. [DOI] [PubMed] [Google Scholar]
  20. Walsh P. S., Metzger D. A., Higuchi R. Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques. 1991 Apr;10(4):506–513. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES