Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1961 Aug;82(2):195–201. doi: 10.1128/jb.82.2.195-201.1961

MECHANISM OF CHEMICAL MUTAGENESIS IV.

Reaction between Triethylene Melamine and Nucleic Acid Components

Z Lorkiewicz a,1, Waclaw Szybalski a
PMCID: PMC279142  PMID: 16561917

Abstract

Lorkiewicz, Z. (University of Wisconsin, Madison), and Waclaw Szybalski. Mechanism of chemical mutagenesis. IV. Reaction between triethylene melamine and nucleic acid components. J. Bacteriol. 82: 195–201. 1961.—Triethylene melamine interacts primarily with phosphorylated intracellular deoxyribonucleic acid (DNA) precursors and not with DNA. It was found by direct chemical and chromatographic analysis that only pyrimidine precursors of nucleic acids are attacked by triethylene melamine. In the course of the triethylene melamine-deoxycytidine reaction the mutagenicity of the reaction mixture is lost, but the mutagenicity of the triethylene melamine-thymidine reaction products significantly increases above that of the reaction substrates. Several steps are postulated to explain the mechanism of the triethylene melamine-initiated mutagenic reaction: (i) Reaction I, semireversible uptake of triethylene melamine; (ii) reaction II, chemical interaction between triethylene melamine and intracellular thymidine mono- or triphosphate with the production of a functional analogue of the latter; (iii) incorporation of this fraudulent analogue into the newly formed DNA strand; (iv) occurrence of self-perpetuating errors in the sequence of natural bases during subsequent rounds of replication of the analogue-containing DNA strand. It is postulated that the mechanism of mutagenic responses to different types of mutagens can fit either a simplified (mutagenic base analogues) or extended version (radiation) of this schema.

Full text

PDF
195

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BEUKERS R., BERENDS W. Isolation and identification of the irradiation product of thymine. Biochim Biophys Acta. 1960 Jul 15;41:550–551. doi: 10.1016/0006-3002(60)90063-9. [DOI] [PubMed] [Google Scholar]
  2. Benzer S., Freese E. INDUCTION OF SPECIFIC MUTATIONS WITH 5-BROMOURACIL. Proc Natl Acad Sci U S A. 1958 Feb;44(2):112–119. doi: 10.1073/pnas.44.2.112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bessman M. J., Lehman I. R., Adler J., Zimmerman S. B., Simms E. S., Kornberg A. ENZYMATIC SYNTHESIS OF DEOXYRIBONUCLEIC ACID. III. THE INCORPORATION OF PYRIMIDINE AND PURINE ANALOGUES INTO DEOXYRIBONUCLEIC ACID. Proc Natl Acad Sci U S A. 1958 Jul 15;44(7):633–640. doi: 10.1073/pnas.44.7.633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brookes P., Lawley P. D. The reaction of mustard gas with nucleic acids in vitro and in vivo. Biochem J. 1960 Dec;77(3):478–484. doi: 10.1042/bj0770478. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Freese E. THE DIFFERENCE BETWEEN SPONTANEOUS AND BASE-ANALOGUE INDUCED MUTATIONS OF PHAGE T4. Proc Natl Acad Sci U S A. 1959 Apr;45(4):622–633. doi: 10.1073/pnas.45.4.622. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hashimoto K. Streptomycin Resistance in Escherichia Coli Analyzed by Transduction. Genetics. 1960 Jan;45(1):49–62. doi: 10.1093/genetics/45.1.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. IYER V. N., SZYBALSKI W. Two simple methods for the detection of chemical mutagens. Appl Microbiol. 1958 Jan;6(1):23–29. doi: 10.1128/am.6.1.23-29.1958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Iyer V. N., Szybalski W. THE MECHANISM OF CHEMICAL MUTAGENESIS. I. KINETIC STUDIES ON THE ACTION OF TRIETHYLENE MELAMINE (TEM) AND AZASERINE. Proc Natl Acad Sci U S A. 1958 May;44(5):446–456. doi: 10.1073/pnas.44.5.446. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. KAUDEWITZ F. Production of bacterial mutants with nitrous acid. Nature. 1959 Jun 27;183:1829–1830. doi: 10.1038/1831829a0. [DOI] [PubMed] [Google Scholar]
  10. KIRBY K. S. Some new solvent systems for the paper chromatography of nucleic acid degradation products. Biochim Biophys Acta. 1955 Dec;18(4):575–576. doi: 10.1016/0006-3002(55)90157-8. [DOI] [PubMed] [Google Scholar]
  11. KRIEG D. R. Induced reversion of T4rII mutants by ultraviolet irradiation of extracellular phage. Virology. 1959 Oct;9:215–227. doi: 10.1016/0042-6822(59)90116-3. [DOI] [PubMed] [Google Scholar]
  12. LITMAN R. M., EPHRUSSI-TAYLOR H. [Inactivation and mutation of the genetic factors of the desoxyribonucleic acid of pneumococcus by ultraviolet light and by nitrous acid]. C R Hebd Seances Acad Sci. 1959 Aug 10;249:838–840. [PubMed] [Google Scholar]
  13. LITMAN R. M., PARDEE A. B. Production of bacteriophage mutants by a disturbance of deoxyribonucleic acid metabolism. Nature. 1956 Sep 8;178(4532):529–531. doi: 10.1038/178529b0. [DOI] [PubMed] [Google Scholar]
  14. MUNDRY K. W., GIERER A. Die Erzeugung von Mutationen des Tabakmosaikvirus durch chemische Behandlung seiner Nucleinsäure in vitro. Z Vererbungsl. 1958;89(4):614–630. [PubMed] [Google Scholar]
  15. REINER B., ZAMENHOF S. Studies on the chemically reactive groups of deoxyribonucleic acids. J Biol Chem. 1957 Sep;228(1):475–486. [PubMed] [Google Scholar]
  16. RUDNER R., BALBINDER E. Reversions induced by base analogues in Salmonella typhimurium. Nature. 1960 Apr 9;186:180–180. doi: 10.1038/186180a0. [DOI] [PubMed] [Google Scholar]
  17. SINSHEIMER R. L. The photochemistry of cytidylic acid. Radiat Res. 1957 Feb;6(2):121–125. [PubMed] [Google Scholar]
  18. SINSHEIMER R. L. The photochemistry of uridylic acid. Radiat Res. 1954 Dec;1(6):505–513. [PubMed] [Google Scholar]
  19. WIERZCHOWSKI K. L., SHUGAR D. Photochemistry of model oligo- and polynucleotides. II. Homopolymers of adenylic, guanylic and cytidylic acids and several heteropolymers. Acta Biochim Pol. 1960;7:377–399. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES