Abstract
Nafcillin was shown to reversibly inhibit beta-lactamase from Staphylococcus aureus PC1 with characteristics indicative of a type A inhibitor [Citri, Samuni & Zyk (1976) Proc. Natl. Acad. Sci. U.S.A. 73, 1048-1052]. At nafcillin concentrations above 80 mM, complete inactivation occurred within 200 s. Upon removal of the excess nafcillin the inhibited enzyme was re-activated completely, with a rate constant of 2.0 x 10(-3) s-1 (25 degrees C). The inhibited enzyme was shown to be in the form of a covalent acyl-enzyme intermediate. Digestion by pepsin and trypsin yielded a single nafcillin-labelled peptide fragment which was isolated, sequenced and shown to be: Ala-Tyr-Ala-Ser-Thr-Ser-Lys. This sequence corresponds to the region surrounding the active-site serine residue, Ser-70, indicating that the inhibitor is covalently attached to the same residue as productive substrates.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson E. G., Pratt R. F. Pre-steady state beta-lactamase kinetics. The trapping of a covalent intermediate and the interpretation of pH rate profiles. J Biol Chem. 1983 Nov 10;258(21):13120–13126. [PubMed] [Google Scholar]
- Bicknell R., Waley S. G. Single-turnover and steady-state kinetics of hydrolysis of cephalosporins by beta-lactamase I from Bacillus cereus. Biochem J. 1985 Oct 1;231(1):83–88. doi: 10.1042/bj2310083. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cartwright S. J., Coulson A. F. Active site of staphylococcal beta-lactamase. Philos Trans R Soc Lond B Biol Sci. 1980 May 16;289(1036):370–372. [PubMed] [Google Scholar]
- Cartwright S. J., Fink A. L. Isolation of a covalent intermediate in beta -lactamase I catalysis. FEBS Lett. 1982 Jan 25;137(2):186–188. doi: 10.1016/0014-5793(82)80345-1. [DOI] [PubMed] [Google Scholar]
- Cartwright S. J., Tan A. K., Fink A. L. Trapping the acyl-enzyme intermediate in beta-lactamase I catalysis. Biochem J. 1989 Nov 1;263(3):905–912. doi: 10.1042/bj2630905. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Citri N., Samuni A., Zyk N. Acquisition of substrate-specific parameters during the catalytic reaction of penicillinase. Proc Natl Acad Sci U S A. 1976 Apr;73(4):1048–1052. doi: 10.1073/pnas.73.4.1048. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clarke A. J., Mezes P. S., Vice S. F., Dmitrienko G. I., Viswanatha T. Inactivation of Bacillus cereus 569/H beta-lactamase I by 6-beta-(trifluoromethane sulfonyl)amidopenicillanic acid sulfone and its N-methyl derivative. Biochim Biophys Acta. 1983 Nov 14;748(3):389–397. doi: 10.1016/0167-4838(83)90184-x. [DOI] [PubMed] [Google Scholar]
- Cohen S. A., Pratt R. F. Inactivation of Bacillus cereus beta-lactamase I by 6 beta-bromopencillanic acid: mechanism. Biochemistry. 1980 Aug 19;19(17):3996–4003. doi: 10.1021/bi00558a017. [DOI] [PubMed] [Google Scholar]
- Dalbadie-McFarland G., Cohen L. W., Riggs A. D., Morin C., Itakura K., Richards J. H. Oligonucleotide-directed mutagenesis as a general and powerful method for studies of protein function. Proc Natl Acad Sci U S A. 1982 Nov;79(21):6409–6413. doi: 10.1073/pnas.79.21.6409. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fink A. L., Behner K. M., Tan A. K. Kinetic and structural characterization of reversibly inactivated beta-lactamase. Biochemistry. 1987 Jul 14;26(14):4248–4258. doi: 10.1021/bi00388a011. [DOI] [PubMed] [Google Scholar]
- Fisher J., Belasco J. G., Khosla S., Knowles J. R. beta-Lactamase proceeds via an acyl-enzyme intermediate. Interaction of the Escherichia coli RTEM enzyme with cefoxitin. Biochemistry. 1980 Jun 24;19(13):2895–2901. doi: 10.1021/bi00554a012. [DOI] [PubMed] [Google Scholar]
- Fisher J., Charnas R. L., Bradley S. M., Knowles J. R. Inactivation of the RTEM beta-lactamase from Escherichia coli. Interaction of penam sulfones with enzyme. Biochemistry. 1981 May 12;20(10):2726–2731. doi: 10.1021/bi00513a004. [DOI] [PubMed] [Google Scholar]
- Frère J. M. Interaction between serine beta-lactamases and class A substrates: a kinetic analysis and a reaction pathway hypothesis. Biochem Pharmacol. 1981 Mar 15;30(6):549–552. doi: 10.1016/0006-2952(81)90124-6. [DOI] [PubMed] [Google Scholar]
- Hardy L. W., Kirsch J. F. Isolation of a Staphylococcus aureus beta-lactamase-dicloxacillin complex and kinetic studies on the reactivation of the enzyme. Arch Biochem Biophys. 1989 Jan;268(1):338–348. doi: 10.1016/0003-9861(89)90595-x. [DOI] [PubMed] [Google Scholar]
- Kiener P. A., Knott-Hunziker V., Petursson S., Waley S. G. Mechanism of substrate-induced inactivation of beta-lactamase I. Eur J Biochem. 1980 Aug;109(2):575–580. doi: 10.1111/j.1432-1033.1980.tb04830.x. [DOI] [PubMed] [Google Scholar]
- Kiener P. A., Waley S. G. Substrate-induced deactivation of penicillinases. Studies of beta-lactamase I by hydrogen exchange. Biochem J. 1977 Aug 1;165(2):279–285. doi: 10.1042/bj1650279. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Knott-Hunziker V., Waley S. G., Orlek B. S., Sammes P. G. Penicillinase active sites: labelling of serine-44 in beta-lactamase I by 6beta-bromopenicillanic acid. FEBS Lett. 1979 Mar 1;99(1):59–61. doi: 10.1016/0014-5793(79)80248-3. [DOI] [PubMed] [Google Scholar]
- Koerber S. C., Fink A. L. The analysis of enzyme progress curves by numerical differentiation, including competitive product inhibition and enzyme reactivation. Anal Biochem. 1987 Aug 15;165(1):75–87. doi: 10.1016/0003-2697(87)90203-x. [DOI] [PubMed] [Google Scholar]
- Persaud K. C., Pain R. H., Virden R. Reversible deactivation of beta-lactamase by quinacillin. Extent of the conformational change in the isolated transitory complex. Biochem J. 1986 Aug 1;237(3):723–730. doi: 10.1042/bj2370723. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pratt R. F., McConnell T. S., Murphy S. J. Accumulation of acyl-enzyme intermediates during turnover of penicillins by the class A beta-lactamase of Staphylococcus aureus PC1. Biochem J. 1988 Sep 15;254(3):919–922. doi: 10.1042/bj2540919. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sigal I. S., Harwood B. G., Arentzen R. Thiol-beta-lactamase: replacement of the active-site serine of RTEM beta-lactamase by a cysteine residue. Proc Natl Acad Sci U S A. 1982 Dec;79(23):7157–7160. doi: 10.1073/pnas.79.23.7157. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Virden R., Bristow A. F., Pain R. H. Reversible inhibition of penicillinase by quinacillin: evaluation of mechanisms involving two conformational states of the enzyme. Biochem Biophys Res Commun. 1978 Jun 14;82(3):951–956. doi: 10.1016/0006-291x(78)90875-6. [DOI] [PubMed] [Google Scholar]
- Virden R., Bristow A. F., Pain R. H. The active site of penicillinase from Staphylococcus aureus PC1. Isolation of a specific covalent complex with the substrate quinacillin. Biochem J. 1975 Aug;149(2):397–401. doi: 10.1042/bj1490397. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Virden R., Tan A. K., Fink A. L. Cryoenzymology of staphylococcal beta-lactamase: trapping a serine-70-linked acyl-enzyme. Biochemistry. 1990 Jan 9;29(1):145–153. doi: 10.1021/bi00453a018. [DOI] [PubMed] [Google Scholar]
