Skip to main content
Thorax logoLink to Thorax
. 1990 Jan;45(1):42–44. doi: 10.1136/thx.45.1.42

Effect of gamma aminobutyric acid on the carbon dioxide rebreathing response of normal subjects: a study using vigabatrin.

A G Fennerty 1, E M Rimmer 1, J Boulton 1, A Richens 1
PMCID: PMC475642  PMID: 2108511

Abstract

Animal studies suggest that gamma aminobutyric acid (GABA) may be an important neurotransmitter in the control of respiration. Vigabatrin, a new drug for the treatment of epilepsy, is thought to exert its effect by increasing GABA concentrations in the brain. To assess the effect of increased GABA concentrations in the brain on human respiration we measured the ventilatory response to carbon dioxide in seven normal subjects after they had taken vigabatrin or placebo for three days in a double blind crossover study. There was no change in either the slope or the intercept of the curve of the ventilatory response to carbon dioxide after vigabatrin by comparison with placebo. This study suggests that GABA does not have an important role in the control of respiration in normal individuals.

Full text

PDF
42

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Böhlen P., Huot S., Palfreyman M. G. The relationship between GABA concentrations in brain and cerebrospinal fluid. Brain Res. 1979 May 11;167(2):297–305. doi: 10.1016/0006-8993(79)90824-2. [DOI] [PubMed] [Google Scholar]
  2. Grove J., Schechter P. J., Tell G., Koch-Weser J., Sjoerdsma A., Warter J. M., Marescaux C., Rumbach L. Increased gamma-aminobutyric acid (GABA), homocarnosine and beta-alanine in cerebrospinal fluid of patients treated with gamma-vinyl GABA (4-amino-hex-5-enoic acid). Life Sci. 1981 May 21;28(21):2431–2439. doi: 10.1016/0024-3205(81)90511-7. [DOI] [PubMed] [Google Scholar]
  3. Hedner J., Hedner T., Wessberg P., Jonason J. An analysis of the mechanism by which gamma-aminobutyric acid depresses ventilation in the rat. J Appl Physiol Respir Environ Exerc Physiol. 1984 Apr;56(4):849–856. doi: 10.1152/jappl.1984.56.4.849. [DOI] [PubMed] [Google Scholar]
  4. Hoop B., Shih V. E., Kazemi H. Relationship between central nervous system hydrogen ion regulation and amino acid metabolism in hypercapnia, II. Am Rev Respir Dis. 1985 Aug;132(2):248–253. doi: 10.1164/arrd.1985.132.2.248. [DOI] [PubMed] [Google Scholar]
  5. Kneussl M. P., Pappagianopoulos P., Hoop B., Kazemi H. Reversible depression of ventilation and cardiovascular function by ventriculocisternal perfusion with gamma-aminobutyric acid in dogs. Am Rev Respir Dis. 1986 Jun;133(6):1024–1028. doi: 10.1164/arrd.1986.133.6.1024. [DOI] [PubMed] [Google Scholar]
  6. Mueller R. A., Lundberg D. B., Breese G. R., Hedner J., Hedner T., Jonason J. The neuropharmacology of respiratory control. Pharmacol Rev. 1982 Sep;34(3):255–285. [PubMed] [Google Scholar]
  7. Rimmer E. M., Milligan N. M., Richens A. A comparison of the acute effect of single doses of vigabatrin and sodium valproate on photosensitivity in epileptic patients. Epilepsy Res. 1987 Nov-Dec;1(6):339–346. doi: 10.1016/0920-1211(87)90058-1. [DOI] [PubMed] [Google Scholar]
  8. Rimmer E. M., Richens A. Double-blind study of gamma-vinyl GABA in patients with refractory epilepsy. Lancet. 1984 Jan 28;1(8370):189–190. doi: 10.1016/s0140-6736(84)92112-3. [DOI] [PubMed] [Google Scholar]
  9. Rimmer E., Kongola G., Richens A. Inhibition of the enzyme, GABA-aminotransferase in human platelets by vigabatrin, a potential antiepileptic drug. Br J Clin Pharmacol. 1988 Feb;25(2):251–259. doi: 10.1111/j.1365-2125.1988.tb03298.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Yamada K. A., Hamosh P., Gillis R. A. Respiratory depression produced by activation of GABA receptors in hindbrain of cat. J Appl Physiol Respir Environ Exerc Physiol. 1981 Nov;51(5):1278–1286. doi: 10.1152/jappl.1981.51.5.1278. [DOI] [PubMed] [Google Scholar]

Articles from Thorax are provided here courtesy of BMJ Publishing Group

RESOURCES