Skip to main content
Genetics logoLink to Genetics
. 1975 Aug;80(4):667–678. doi: 10.1093/genetics/80.4.667

Chromosomal Basis of the Merozygosity in a Partially Diploid Mutant of Pneumococcus

Mary Lee S Ledbetter 1, Rollin D Hotchkiss 1
PMCID: PMC1213367  PMID: 270

Abstract

A sulfonamide-resistant mutant of pneumococcus, sul r-c, displays a genetic instability, regularly segregating to wild type. DNA extracts of derivatives of the strain possess transforming activities for both the mutant and wild-type alleles, establishing that the strain is a partial diploid. The linkage of sulr-c to str r-61, a stable chromosomal marker, was established, thus defining a chromosomal locus for sulr-c. DNA isolated from sulr-c cells transforms two mutant recipient strains at the same low efficiency as it does a wild-type recipient, although the mutant property of these strains makes them capable of integrating classical "low-efficiency" donor markers equally as efficiently as "high efficiency" markers. Hence sulr-c must have a different basis for its low efficiency than do classical low efficiency point mutations. We suggest that the DNA in the region of the sulr-c mutation has a structural abnormality which leads both to its frequent segregation during growth and its difficulty in efficiently mediating genetic transformation.

Full Text

The Full Text of this article is available as a PDF (769.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bernheimer H. P., Wermundsen I. E. Unstable binary capsulated transformants in pneumococcus. J Bacteriol. 1969 Jun;98(3):1073–1079. doi: 10.1128/jb.98.3.1073-1079.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Campbell A. The steric effect in lysogenization by bacteriophage lambda. I. Lysogenization of a partially diploid strain of Escherichia coli K-12. Virology. 1965 Nov;27(3):329–339. doi: 10.1016/0042-6822(65)90112-1. [DOI] [PubMed] [Google Scholar]
  3. Ephrussi-Taylor H., Sicard A. M., Kamen R. Genetic Recombination in DNA-Induced Transformation of Pneumococcus. I. the Problem of Relative Efficiency of Transforming Factors. Genetics. 1965 Mar;51(3):455–475. doi: 10.1093/genetics/51.3.455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. FOX M. S., HOTCHKISS R. D. Initiation of bacterial transformation. Nature. 1957 Jun 29;179(4574):1322–1325. doi: 10.1038/1791322a0. [DOI] [PubMed] [Google Scholar]
  5. FOX M. S. Phenotypic expression of a genetic property introduced by deoxyribonucleate. J Gen Physiol. 1959 Mar 20;42(4):737–748. doi: 10.1085/jgp.42.4.737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Folk W. R., Berg P. Duplication of the structural gene for glycyl-transfer RNA synthetase in Escherichia coli. J Mol Biol. 1971 Jun 14;58(2):595–610. doi: 10.1016/0022-2836(71)90374-3. [DOI] [PubMed] [Google Scholar]
  7. Gray T. C., Ephrussi-Taylor H. Genetic recombination in DNA-induced transformation of pneumococcus. V. The sbsence of interference, and evidence for the selective elimination of certain donor sites from the final recombinants. Genetics. 1967 Sep;57(1):125–153. doi: 10.1093/genetics/57.1.125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. HORIUCHI T., HORIUCHI S., NOVICK A. The genetic basis of hyper-synthesis of beta-galactosidase. Genetics. 1963 Feb;48:157–169. doi: 10.1093/genetics/48.2.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. HOTCHKISS R. D., EVANS A. H. Analysis of the complex sulfonamide resistance locus of pneumococcus. Cold Spring Harb Symp Quant Biol. 1958;23:85–97. doi: 10.1101/sqb.1958.023.01.012. [DOI] [PubMed] [Google Scholar]
  10. Hotchkiss R. D., Marmur J. DOUBLE MARKER TRANSFORMATIONS AS EVIDENCE OF LINKED FACTORS IN DESOXYRIBONUCLEATE TRANSFORMING AGENTS. Proc Natl Acad Sci U S A. 1954 Feb;40(2):55–60. doi: 10.1073/pnas.40.2.55. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. KELLY M. S., PRITCHARD R. H. UNSTABLE LINKAGE BETWEEN GENETIC MARKERS IN TRANSFORMATION. J Bacteriol. 1965 May;89:1314–1321. doi: 10.1128/jb.89.5.1314-1321.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. KENT J. L., HOTCHKISS R. D. KINETIC ANALYSIS OF MULTIPLE, LINKED RECOMBINATIONS IN PNEUMOCOCCAL TRANSFORMATION. J Mol Biol. 1964 Aug;9:308–322. doi: 10.1016/s0022-2836(64)80209-6. [DOI] [PubMed] [Google Scholar]
  13. Lacks S. Integration efficiency and genetic recombination in pneumococcal transformation. Genetics. 1966 Jan;53(1):207–235. doi: 10.1093/genetics/53.1.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Tiraby J. G., Fox M. S. Marker discrimination in transformation and mutation of pneumococcus. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3541–3545. doi: 10.1073/pnas.70.12.3541. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES