Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2019 Jun 11;75(Pt 7):984–986. doi: 10.1107/S2056989019006418

Crystal structure of pirfenidone (5-methyl-1-phenyl-1H-pyridin-2-one): an active pharmaceutical ingredient (API)

Mauro Barbero a,b, Matteo Mossotti b, Angelo Sironi c, Giovanni Battista Giovenzana a, Valentina Colombo c,*
PMCID: PMC6659322  PMID: 31392009

The crystal structure of pirfenidone, [5-methyl-1-phenyl­pyridin-2(1H)-one], an active pharmaceutical ingredient (API) approved in Europe and Japan for the treatment of idiopathic pulmonary fibrosis (IPF), is reported here for the first time. It was crystallized from toluene by the temperature gradient technique, and crystallizes in the chiral monoclinic space group P21.

Keywords: crystal structure, pirfenidone, active pharmaceutical ingredient (API), idiopathic pulmonary fibrosis (IPF), hydrogen bonding

Abstract

The crystal structure of pirfenidone, C12H11NO [alternative name: 5-methyl-1-phenyl­pyridin-2(1H)-one], an active pharmaceutical ingredient (API) approved in Europe and Japan for the treatment of Idiopathic pulmonary fibrosis (IPF), is reported here for the first time. It was crystallized from toluene by the temperature gradient technique, and crystallizes in the chiral monoclinic space group P21. The phenyl and pyridone rings are inclined to each other by 50.30 (11)°. In the crystal, mol­ecules are linked by C–H⋯O hydrogen bonds involving the same acceptor atom, forming undulating layers lying parallel to the ab plane.

Chemical context  

Idiopathic Pulmonary Fibrosis (IPF) is a lung disease characterized by cough, scars and dyspnea that leads to progressive and irreversible loss of lung function. Pirfenidone (systematic name: 5-methyl-1-phenyl-1H-pyridin-2-one) has been approved in Japan since 2008 (Pirespa®) and in Europe since 2011 (Esbriet®) for the treatment of IPF, even if its mechanism of action has not been completely elucidated (Richeldi et al., 2011). Different synthetic approaches have been reported, mainly relying on N-aryl­ation reactions of 5-methyl-2-pyridone (Liu et al., 2009; Crifar et al., 2014; Jung et al., 2016; Falb et al., 2017). Pirfenidone has been known since 1974 (Gadekar, 1974) and its anti­fibrotic properties were described in 1990 (Margolin, 1990). Nevertheless, despite its formulation as oral tablets, no information on the solid-state structure of this compound has been reported to date. In the present study, we report and analyse the crystal structure of pirfenidone.graphic file with name e-75-00984-scheme1.jpg

Structural commentary  

The mol­ecular structure of pirfenidone is shown in Fig. 1. This axially chiral mol­ecule crystallizes in the monoclinic space group P21, with one mol­ecule in a general position. The mol­ecule is far from planar with the phenyl (C7–C12) and pyridinone (N1/C1–C5) rings subtending a dihedral angle of 50.30 (11)°.

Figure 1.

Figure 1

A view of the mol­ecular structure of pirfenidone with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

Supra­molecular features  

In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds involving the same acceptor atom (Table 1), forming an undulating network, enclosing Inline graphic(20) ring motifs, and lying parallel to the ab plane (Figs. 2 and 3). The Inline graphic(20) ring motifs are clearly visible in Fig. 3. There are no other significant inter­molecular contacts present according to the analysis of the crystal structure using PLATON (Spek, 2009).

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O1i 0.93 2.33 3.203 (3) 156
C10—H10⋯O1ii 0.93 2.46 3.310 (3) 152

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 2.

Figure 2

A view along the a axis of the crystal packing of pirfenidone. The C—H⋯O hydrogen bonds (see Table 1) are shown as dashed lines.

Figure 3.

Figure 3

A view along the c axis of the crystal packing of pirfenidone. The C—H⋯O hydrogen bonds (see Table 1) are shown as dashed lines.

Database Survey  

A search of the Cambridge Structural Database (CSD, Version 5.40, February 2019; Groom et al., 2016) for 1-phenyl­pyridin-2(1H)-ones, excluding structures with ring atoms being included in further cyclic moieties, gave 40 hits (see supporting information file S1). Only six of these compounds involve an unsubstituted phenyl ring as in the title compound. When considering compounds with no substituent in position-6 of the pyridinone ring (on atom C5 in the title compound; Fig. 1) only three structures fit this extra criteria, viz. S-ethyl 2-oxo-1-phenyl-1,2-di­hydro-3-pyridine­carbo­thio­ate (CSD refcode NOLBIA; Liu et al., 2008), monoclinic space group P21, 4-chloro-6-oxo-1-phenyl-1,6-di­hydro­pyridine-3-carbaldehyde (QIWFIM; Xiang et al., 2008), monoclinic space group P21/c, and methyl 5-benzoyl-2-oxo-1-phenyl-1,2-di­hydro­pyridine-4-carboxyl­ate (TEMKIH; Shao et al., 2012), ortho­rhom­bic space group Pna21 with two independent mol­ecules in the asymmetric unit. In these three compounds, the phenyl ring is inclined to the pyridone ring by ca 65.50, 64.66 and 55.83/57.12°, respectively. This dihedral angle in the title compound, pirfenidone, is 50.30 (11)°. In the other three compounds [AQIKIV (Gorobets et al., 2010), BAFPUV (Dyachenko et al., 2011) and WEDCEP (Allais et al., 2012) – see supporting information file S1] with a substituent in position-6 of the pyridinone ring the corresponding dihedral angle varies from ca 73.02 to 89.28° as a result of steric hindrance.

Synthesis and crystallization  

Pirfenidone was obtained in > 99.5% purity according to the method published previously (Mossotti et al., 2018). Single crystals were grown in the following way: approximately 100 mg of pirfenidone in 2 mL of toluene was heated until complete dissolution. The flask with this solution was then closed and kept at 273–278 K. Well-formed colourless crystals of pirfenidone were obtained after 1 week. The melting point of this crystal form, determined by DSC analysis (heating rate 10 K min−1), is 383 K. This crystallization procedure must be performed in order to grow single crystals suitable for X-ray diffraction analysis and not with the aim of increasing the purity of the product. It is worth nothing that the industrial process is already optimized for the isolation of a pure API (> 99.5%) and a further crystallization step is not needed to improve its purity. We performed several other crystallization trials in order to search for other possible forms of pirfenidone; however, each crystallization attempt gave rise to the same crystal form.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The H atoms were included in calculated positions and treated as riding: C—H = 0.93–0.96 Å with U iso(H) = 1.5U eq(C-meth­yl) and 1.2U eq(C) for other H atoms.

Table 2. Experimental details.

Crystal data
Chemical formula C12H11NO
M r 185.22
Crystal system, space group Monoclinic, P21
Temperature (K) 293
a, b, c (Å) 6.2525 (8), 7.797 (1), 10.2810 (13)
β (°) 104.744 (2)
V3) 484.70 (11)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.50 × 0.45 × 0.05
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Bruker, 2010)
T min, T max 0.692, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 4547, 2128, 1879
R int 0.019
(sin θ/λ)max−1) 0.643
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.037, 0.095, 1.04
No. of reflections 2128
No. of parameters 127
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.11, −0.20
Absolute structure Flack x determined using 762 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)
Absolute structure parameter 0.3 (4)

Computer programs: APEX2 and SAINT (Bruker, 2010), SHELXT2017 (Sheldrick, 2015a ), SHELXL2017 (Sheldrick, 2015b ), ORTEP-3 for Windows (Farrugia, 2012), Mercury (Macrae et al., 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) Pirfenidone, Global. DOI: 10.1107/S2056989019006418/tx2011sup1.cif

e-75-00984-sup1.cif (165.8KB, cif)

CSD search results. DOI: 10.1107/S2056989019006418/tx2011sup3.pdf

e-75-00984-sup3.pdf (115.7KB, pdf)

CCDC reference: 1914224

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

VC gratefully acknowledges Professor H. Stoeckli-Evans for her helpful and valuable suggestions.

supplementary crystallographic information

Crystal data

C12H11NO Dx = 1.269 Mg m3
Mr = 185.22 Melting point: 375 K
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
a = 6.2525 (8) Å Cell parameters from 2547 reflections
b = 7.797 (1) Å θ = 3.3–27.2°
c = 10.2810 (13) Å µ = 0.08 mm1
β = 104.744 (2)° T = 293 K
V = 484.70 (11) Å3 Plate, colourless
Z = 2 0.50 × 0.45 × 0.05 mm
F(000) = 196

Data collection

Bruker SMART APEX CCD diffractometer 1879 reflections with I > 2σ(I)
ω scans Rint = 0.019
Absorption correction: multi-scan (SADABS; Bruker, 2010) θmax = 27.2°, θmin = 2.1°
Tmin = 0.692, Tmax = 0.746 h = −8→8
4547 measured reflections k = −9→10
2128 independent reflections l = −13→13

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2) + (0.0528P)2 + 0.0476P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.095 (Δ/σ)max < 0.001
S = 1.04 Δρmax = 0.11 e Å3
2128 reflections Δρmin = −0.20 e Å3
127 parameters Absolute structure: Flack x determined using 762 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraint Absolute structure parameter: 0.3 (4)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. none

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.7599 (2) 0.5275 (2) 0.62509 (16) 0.0382 (4)
O1 1.0951 (2) 0.6634 (3) 0.69330 (17) 0.0602 (5)
C1 0.9386 (3) 0.6188 (3) 0.6002 (2) 0.0437 (5)
C5 0.5769 (3) 0.4849 (3) 0.5233 (2) 0.0395 (5)
H5 0.460421 0.428046 0.545647 0.047*
C7 0.7635 (3) 0.4782 (3) 0.76141 (19) 0.0401 (5)
C4 0.5595 (3) 0.5219 (3) 0.3929 (2) 0.0430 (5)
C12 0.9445 (4) 0.3913 (3) 0.8390 (2) 0.0497 (5)
H12 1.066616 0.368712 0.805687 0.060*
C8 0.5830 (3) 0.5134 (3) 0.8108 (2) 0.0481 (5)
H8 0.462114 0.572084 0.758231 0.058*
C6 0.3599 (4) 0.4732 (3) 0.2835 (2) 0.0579 (6)
H6A 0.400128 0.387266 0.227127 0.087*
H6B 0.304346 0.572565 0.230447 0.087*
H6C 0.247695 0.428652 0.322817 0.087*
C11 0.9409 (5) 0.3383 (3) 0.9672 (2) 0.0616 (7)
H11 1.061057 0.278817 1.019737 0.074*
C3 0.7416 (4) 0.6079 (3) 0.3637 (2) 0.0527 (6)
H3 0.737708 0.633055 0.274701 0.063*
C2 0.9189 (4) 0.6537 (3) 0.4608 (2) 0.0540 (6)
H2 1.033979 0.710617 0.436893 0.065*
C9 0.5836 (4) 0.4604 (4) 0.9395 (2) 0.0623 (7)
H9 0.462501 0.484254 0.973553 0.075*
C10 0.7616 (5) 0.3728 (4) 1.0174 (2) 0.0649 (7)
H10 0.760634 0.337171 1.103577 0.078*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0355 (8) 0.0426 (9) 0.0362 (8) 0.0009 (8) 0.0084 (7) 0.0007 (7)
O1 0.0399 (8) 0.0725 (11) 0.0631 (11) −0.0111 (8) 0.0038 (7) −0.0046 (9)
C1 0.0368 (10) 0.0430 (12) 0.0524 (12) 0.0007 (9) 0.0134 (9) −0.0023 (10)
C5 0.0380 (9) 0.0395 (11) 0.0398 (10) −0.0026 (9) 0.0078 (8) 0.0011 (9)
C7 0.0411 (10) 0.0397 (11) 0.0362 (10) −0.0013 (8) 0.0034 (8) 0.0002 (8)
C4 0.0524 (11) 0.0376 (11) 0.0376 (10) −0.0009 (10) 0.0087 (9) −0.0001 (9)
C12 0.0496 (12) 0.0478 (12) 0.0459 (12) 0.0081 (10) 0.0017 (10) −0.0051 (10)
C8 0.0395 (10) 0.0602 (13) 0.0435 (11) −0.0003 (10) 0.0082 (8) 0.0070 (11)
C6 0.0705 (15) 0.0570 (15) 0.0399 (11) −0.0077 (13) 0.0026 (11) −0.0004 (11)
C11 0.0708 (16) 0.0522 (14) 0.0469 (13) 0.0053 (12) −0.0126 (12) 0.0046 (11)
C3 0.0694 (15) 0.0522 (14) 0.0410 (11) −0.0091 (11) 0.0224 (11) 0.0002 (10)
C2 0.0559 (13) 0.0556 (14) 0.0576 (14) −0.0113 (12) 0.0276 (11) −0.0015 (11)
C9 0.0595 (14) 0.0851 (19) 0.0450 (13) −0.0110 (13) 0.0183 (11) 0.0036 (13)
C10 0.0826 (19) 0.0688 (17) 0.0378 (12) −0.0134 (16) 0.0054 (12) 0.0103 (12)

Geometric parameters (Å, º)

N1—C5 1.381 (2) C8—C9 1.386 (3)
N1—C1 1.402 (2) C8—H8 0.9300
N1—C7 1.448 (3) C6—H6A 0.9600
O1—C1 1.232 (3) C6—H6B 0.9600
C1—C2 1.432 (3) C6—H6C 0.9600
C5—C4 1.349 (3) C11—C10 1.375 (4)
C5—H5 0.9300 C11—H11 0.9300
C7—C8 1.378 (3) C3—C2 1.338 (3)
C7—C12 1.384 (3) C3—H3 0.9300
C4—C3 1.417 (3) C2—H2 0.9300
C4—C6 1.501 (3) C9—C10 1.376 (4)
C12—C11 1.386 (4) C9—H9 0.9300
C12—H12 0.9300 C10—H10 0.9300
C5—N1—C1 121.93 (17) C4—C6—H6A 109.5
C5—N1—C7 118.39 (16) C4—C6—H6B 109.5
C1—N1—C7 119.67 (16) H6A—C6—H6B 109.5
O1—C1—N1 120.88 (19) C4—C6—H6C 109.5
O1—C1—C2 124.9 (2) H6A—C6—H6C 109.5
N1—C1—C2 114.20 (18) H6B—C6—H6C 109.5
C4—C5—N1 122.94 (19) C10—C11—C12 120.7 (2)
C4—C5—H5 118.5 C10—C11—H11 119.7
N1—C5—H5 118.5 C12—C11—H11 119.7
C8—C7—C12 120.74 (19) C2—C3—C4 121.7 (2)
C8—C7—N1 119.42 (17) C2—C3—H3 119.1
C12—C7—N1 119.81 (19) C4—C3—H3 119.1
C5—C4—C3 116.47 (19) C3—C2—C1 122.6 (2)
C5—C4—C6 122.2 (2) C3—C2—H2 118.7
C3—C4—C6 121.4 (2) C1—C2—H2 118.7
C7—C12—C11 119.0 (2) C10—C9—C8 120.6 (2)
C7—C12—H12 120.5 C10—C9—H9 119.7
C11—C12—H12 120.5 C8—C9—H9 119.7
C7—C8—C9 119.3 (2) C11—C10—C9 119.7 (2)
C7—C8—H8 120.4 C11—C10—H10 120.2
C9—C8—H8 120.4 C9—C10—H10 120.2

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C8—H8···O1i 0.93 2.33 3.203 (3) 156
C10—H10···O1ii 0.93 2.46 3.310 (3) 152

Symmetry codes: (i) x−1, y, z; (ii) −x+2, y−1/2, −z+2.

Funding Statement

This work was funded by Università degli Studi di Milano grant PSR2018_DIP_005_COLOMBO_VALENTINA to Valentina Colombo.

References

  1. Allais, C., Baslé, O., Grassot, J.-M., Fontaine, M., Anguille, S., Rodriguez, J. & Constantieux, T. (2012). Adv. Synth. Catal. 354, 2084–2088.
  2. Bruker (2010). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Crifar, C., Petiot, P., Ahmad, T. & Gagnon, A. (2014). Chem. Eur. J. 20, 2755–2760. [DOI] [PubMed]
  4. Dyachenko, V. D., Butyukova, O. S., Dyachenko, A. D. & Shishkin, O. V. (2011). Zh. Obshch. Khim. 81, 857–868.
  5. Falb, E., Ulanenko, K., Tor, A., Gottesfeld, R., Weitman, M., Afri, M., Gottlieb, H. & Hassner, A. (2017). Green Chem. 19, 5046–5053.
  6. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  7. Gadekar, S. M. (1974). Patent DE 2362958.
  8. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  9. Jung, S.-H., Sung, D.-B., Park, C.-H. & Kim, W.-S. (2016). J. Org. Chem. 81, 7717–7724. [DOI] [PubMed]
  10. Liu, J., Liang, D., Wang, M. & Liu, Q. (2008). Synthesis, pp. 3633–3638.
  11. Liu, K. K.-C., Sakya, S. M., O’Donnell, C. J. & Li, J. (2009). Mini Rev. Med. Chem. 9, 1655–1675. [DOI] [PubMed]
  12. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  13. Margolin, S. B. C. O. T. (1990). Patent EP 0383591.
  14. Mossotti, M., Barozza, A., Roletto, J. & Paissoni, P. (2018). Patent US 2018319747.
  15. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  16. Richeldi, L., Yasothan, U. & Kirkpatrick, P. (2011). Nat. Rev. Drug Discov. 10, 489–490. [DOI] [PubMed]
  17. Shao, Y., Yao, W., Liu, J., Zhu, K. & Li, Y. (2012). Synthesis, 44, 3301–3306.
  18. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  19. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  20. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  21. Gorobets, N. Yu., Tkachova, V. P., Tkachov, R. P., Dyachenko, O. D., Rusanov, E. B. & Dyachenko, V. D. (2010). ARKIVOC, 11, 254–264.
  22. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  23. Xiang, D., Wang, K., Liang, Y., Zhou, G. & Dong, D. (2008). Org. Lett. 10, 345–348. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) Pirfenidone, Global. DOI: 10.1107/S2056989019006418/tx2011sup1.cif

e-75-00984-sup1.cif (165.8KB, cif)

CSD search results. DOI: 10.1107/S2056989019006418/tx2011sup3.pdf

e-75-00984-sup3.pdf (115.7KB, pdf)

CCDC reference: 1914224

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES