Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2021 Aug 25;80:103572. doi: 10.1016/j.csi.2021.103572

Integration of fuzzy-weighted zero-inconsistency and fuzzy decision by opinion score methods under a q-rung orthopair environment: A distribution case study of COVID-19 vaccine doses

AS Albahri a,d, OS Albahri a, AA Zaidan a,, Alhamzah Alnoor e, HA Alsattar a, Rawia Mohammed a, AH Alamoodi a, BB Zaidan a, Uwe Aickelin b, Mamoun Alazab c, Salem Garfan a, Ibraheem YY Ahmaro f, MA Ahmed g
PMCID: PMC8386109  PMID: 34456503

Abstract

Owing to the limitations of Pythagorean fuzzy and intuitionistic fuzzy sets, scientists have developed a distinct and successive fuzzy set called the q-rung orthopair fuzzy set (q-ROFS), which eliminates restrictions encountered by decision-makers in multicriteria decision making (MCDM) methods and facilitates the representation of complex uncertain information in real-world circumstances. Given its advantages and flexibility, this study has extended two considerable MCDM methods the fuzzy-weighted zero-inconsistency (FWZIC) method and fuzzy decision by opinion score method (FDOSM) under the fuzzy environment of q-ROFS. The extensions were called q-rung orthopair fuzzy-weighted zero-inconsistency (q-ROFWZIC) method and q-rung orthopair fuzzy decision by opinion score method (q-ROFDOSM). The methodology formulated had two phases. The first phase ‘development’ presented the sequential steps of each method thoroughly.The q-ROFWZIC method was formulated and used in determining the weights of evaluation criteria and then integrated into the q-ROFDOSM for the prioritisation of alternatives on the basis of the weighted criteria. In the second phase, a case study regarding the MCDM problem of coronavirus disease 2019 (COVID-19) vaccine distribution was performed. The purpose was to provide fair allocation of COVID-19 vaccine doses. A decision matrix based on an intersection of ‘recipients list’ and ‘COVID-19 distribution criteria’ was adopted. The proposed methods were evaluated according to systematic ranking assessment and sensitivity analysis, which revealed that the ranking was subject to a systematic ranking that is supported by high correlation results over different scenarios with variations in the weights of criteria.

Keywords: COVID-19, Vaccine, Multicriteria decision-making, q-Rung orthopair fuzzy, FWZIC, FDOSM

1. Introduction

Decision-making techniques are gaining wide attention, of which the multicriteria decision-making (MCDM) is the most vital [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19]. MCDM is one of the most common real-life behaviours that can be represented as the outcomes of mental and reasoning processes for the identification of the most suitable alternatives concerning predefined attributes or criteria [20], [21], [22], [23], [24], [25], [26], [27], [28], [29], [30], [31], [32], [33], [34], [35], [36], [37], [38], [39], [40]. In several cases, decision makers (DMs) have difficulty in expressing a specific preference and precise evaluation values accurately when case studies rely on unreliable, ambiguous or incomplete information [41], [42], [43], [44], [45], [46], [47], [48], [49]. Presuming that the preferences of alternatives to qualities articulated by DMs or experts are precise is unrealistic because of the complications of objectivity and vagueness of human reasoning [50][94-101]. Hence, conducting an optimal decision process is an extremely difficult task for DMs. Hence, the principle of fuzzy sets is presented to address MCDM concerns in uncertainty and vagueness, utilising the membership degree to illustrate the level of an element involving a fuzzy set [51]. To improve accuracy in the information expression of evaluation criteria and reliability of decision-making results, researchers have developed tools using different generalisations of fuzzy sets for different application scenarios, including the intuitionistic fuzzy set (IFS) [52] and Pythagorean fuzzy set (PFS) [53]. In complex and varied practical decision-making, fuzzy sets and particular derived fuzzy numbers have potential defects[[51], [94], [95], [96], [97], [98], [99], [100], [101]].

The concept of IFSs takes into account the expression of membership (µ) and non-membership (υ) degrees, and thus the selection of support the MCDM problems are involved. However, this fuzzy set has disadvantages in the context of decision-making information description, and these disadvantages impose restrictions on the representation of membership and non-membership grades, making the sum of the two parameters lower than or equal to 1 [50]. Owing to the limitations of IFSs, researchers have developed a more comprehensive fuzzy set, called the PFS. Notably, the concept of PFSs is driven from IFSs, but more generalisation is involved [54]. PFSs are distinguished in the summation of squares of membership and non-membership grades, which are real numbers bounded by 1 (less than or equal to 1) [55]. The constraint of the PFSs is better than that of IFSs, as indicated in this example: 0.42 +  0.82 =  0.16 + 0.64 = 0.8  ≤ 1. PFSs have received considerable attraction from scientists because it can overcome higher degrees of ambiguously [56, 57]. In the reality, the DMs are obligated to the constraints of PFSs as they cannot provide values to the membership and non-membership grades clearly on the basis of their own preferences [55]. Owing to the limitations of PFSs, a distinct and successive fuzzy set is needed to address the restrictions encountered by DMs.

Yager [58] developed a novel fuzzy concept called the q-rung orthopair fuzzy set (q-ROFS) to solve the disadvantages of information expression in traditional fuzzy sets (i.e. IFSs and PFSs). In the q-ROFSs, the constraint of other fuzzy sets is removed, and the summation of the q powers of membership and non-membership grades are real numbers between the interval [0, 1]. Thus, the DMs are allowed to select any grades for µ and υ anywhere freely (µ ∈ [0, 1] and υ ∈ [0, 1]) [59]. For example, when DM is asked to give his or her preference about a specific case, he or she assigns a value of 0.9 for membership grade and a value of 0.8 for non-membership grade. In this case, the conditions of IFSs and PFSs cannot be achieved because of their constraints. However, the exampled membership and non-membership grades can be represented using a q-ROFS and raising the parameter of the q value to a value equal or greater than 4. When q = 1, the q-ROFS degrades to IFSs. When q = 2, the q-ROFS becomes PFSs (Fig. 1 concludes the relationship amongst IFSs, PFSs and q-ROFS).

Fig. 1.

Fig. 1:

Concept relationship between IFSs, PFSs and q-ROFS [50].

Owning to the structure representation, the constraint of q-ROFS is considered much better than the other constraints because it provides more space and flexibility under uncertain conditions and enables DMs to select the membership and non-membership degrees freely [60]. Since it was set up, many researchers have extensively studied and utilised it to solve ungainly and troublesome fuzzy cases from different perspectives. Some aggregation operators in the framework of q-ROFSs, such as q-rung orthopair fuzzy Einstein ordered weighted geometric, q-rung orthopair fuzzy Einstein weighted geometric, q-rung orthopair fuzzy Einstein weighted averaging and q-rung orthopair fuzzy Einstein ordered weighted averaging, were presented [41]. Another study [61] was evaluated site selection scheme of garbage disposal plant and support for garbage disposal site selection by illustrating a novel MCDM technique depending on interval q-rung orthopair fuzzy weighted power Muirhead mean operator. A study by [62] defined the conception, the operational laws, score function and accuracy function of Q-rung orthopair normal fuzzy (q-RONF) set. Furthermore, they introduced several novel aggregation operators to aggregate the q-RONF information, including the q-RONF weighted, the q-RONF hybrid operator and the q-RONF ordered weighted. Accordingly [63] measured the q-rung orthopair hesitant fuzzy sets)q-ROHFSs(and the properties related to the distance and similarity measures of q-ROHFSs, and the axiomatised definition and formula for the entropy of q-ROHFSs. Moreover, a q-rung orthopair shadowed set was suggested to represent attribute values and extends the vlsekriterijumska optimizcija i kaompromisno resenje (VIKOR) [50]. The authors in [64] introduced the hybrid concept of q-rung orthopair m-polar fuzzy set (qROmPFS) and developed a robust MCDM approach where several uncertainties are measured by the proposed concept. Additionally, a decision-making model has been developed and used for hybrid q-ROFSs with notions of covering rough sets and techniques for the order of preference by similarity to ideal solution (TOPSIS) [55]. In [56], the entropy measure and TOPSIS based on the correlation coefficient was investigated. Accordingly. the performance of green suppliers with experts’ subjective evaluations was measured with an effective and applicable MCGDM method and q-ROFSs-based TOPSIS method [65]. A systematic selection of a renewable energy source was presented using a q-ROFSs-based MCDM framework considering sustainability attributes [66].

From a different MCDM aspect, the fuzzy decision by opinion score method (FDOSM) was developed [67], which presented a comprehensive solution to resolve different challenges in MCDM. The development of the FDOSM considered the concept of an ideal solution, reduced the number of comparisons, defined fair and implicit understandable comparisons, prevented inconsistency, reduced vagueness and yielded a minimum number of mathematical operations. The first version of the FDOSM focuses exclusively on triangular fuzzy numbers (TFNs) and considers the arithmetic mean operator in the direct aggregation MCDM approach whilst neglecting the other operators. The FDOSM neglects the application of distance measurement and compromise rank MCDM approaches, presenting a serious issue that may lead to different ranking results. Consequently, the FDOSM is extended using same fuzzy set, but it focuses on other direct aggregation operators, which include geometric mean, harmonic mean and root mean square. In this version, distance measurement and compromise rank approaches are applied for the identification of the best alternative [45]. The last version of FDOSM is extended on the basis of interval type-2 trapezoidal membership [68]. However, the concept of FDOSM can assign weights for the criteria of each alternative in an implicit way. The FDOSM is limited when it explicitly computes weight for each criterion. To resolve this issue, a method explicitly assigning weights to criteria without pairwise comparison among the sets of criteria is needed. According to the literature review, the latest method was proposed in [69], namely, fuzzy-weighted zero-inconsistency (FWZIC) method, which can provide weights for criteria with zero inconstancy. The FWZIC method solves the following limitations of the best worst method and analytic hierarchy process: (i) the inability of the procedure to offer decision maker instant feedback on the consistency of pairwise comparisons, (ii) absence of accounting for ordinary consistency and (iii) shortage of consistency threshold value for evaluating the reliability of results [69]. However, FWZIC was developed according to TFNs. However, it is limited when used in solving uncertainty and vagueness issues. Owing to the advantages of the interval type-2 trapezoidal membership in the definition of the exact membership function, a new version of FWZIC was developed [70].

In summary, taking the advantages of q-ROFS in dealing with the uncertain conditions by providing a more space in the data representation and structuring effectively, the authors of this study extended the FWZIC and FDOSM under the fuzzy environment of q-ROFS. The extensions were called q-rung orthopair fuzzy-weighted zero-inconsistency (q-ROFWZIC) method and q-rung orthopair fuzzy decision by opinion score method (q-ROFDOSM). The detailed description and steps of each and corresponding case studies are illustrated in the following section.

2. Methodology

Two sequential phases are presented in the proposed methodology, which are development and case study phases. In the development phase, the proposed MCDM methods are formulated and integrated. The first method (q-ROFWZIC) is developed and used in determining the weights of the evaluation criteria, and the second method (q-ROFDOSM) is developed for the prioritisation of the alternatives on the basis of the weighted criteria. The second phase presents the description of a distribution case study of coronavirus disease 2019 (COVID-19) vaccine doses as a proof of concept. The summarised methodology is illustrated in Fig. 2 .

Fig. 2.

Fig. 2:

Methodology flowchart.

2.1. Phase I: Development of MCDM Methods

In this methodology phase, the mechanism of two MCDM methods based on the q-ROFSs environment was developed. The weighting process for the evaluation criteria is achieved by using q-ROFWZIC, while q-ROFDOSM is used for the ranking of alternatives. The q-ROFWZIC method has five steps, and the q-ROFDOSM is formulated on the basis of two stages: data transformation and data processing as seen (Fig. 2). The following subsections describe each method separately and provide relevant mathematical expressions.

2.1.1. Formulation of q-ROFWZIC method

In this section, the details of the five steps of q-ROFWZIC method are explained for the purpose of weight determination for the evaluation criteria used.

Step 1: Definition of the set of evaluation criteria

This step has two processes. The first process is the exploration and presentation of a predefined set of evaluation criteria, and the second process is the classification and categorisation of all the collected criteria. The defined and selected criteria must be evaluated by a panel of experts, as explained in the next step.

Step 2: Structured expert judgement

To evaluate and define the level of importance for the evaluation criteria, a panel of three experts must be identified and utilised. After exploration and identification of the list of prospective experts, selection and nomination commence, and the structured expert judgement (SEJ) panel is established. Lastly, an evaluation form is developed and used in obtaining the consensus of all the SEJ panelists for each criterion, the linguistic scale is converted into its equivalent numerical scale.

  • a)

    Identify experts: Anyone who has knowledge about a subject cannot be considered an expert. Instead, an ‘expert for a given subject’ is used here to designate a person whose present or past field involves the subject in question and who is regarded by others as knowledgeable about the subject. Such individual is occasionally designated in the literature as a ‘domain’ or ‘substantive’ expert. This process distinguishes the individual from ‘normative experts’, that is, experts in statistics and subjective probability.

  • b)

    Select experts: After the identification of the set of experts, the experts who will be involved in the study must be selected. In general, the largest number of experts consistent with the level of resources should be used. All potential experts named during expert identification can be contacted through email, and whether they are interested and whether they consider themselves potential experts for the panel are determined.

  • c)

    Develop the evaluation form: The development of an evaluation form is a crucial step because this instrument is used in obtaining expert consensus. Before the finalisation of the evaluation form, the questionnaire undergoes reliability and validity testing, and the potential experts can review it.

  • d)

    Define the level of importance scale: In this step, the selected group of experts can define the level of importance or significance of each criterion with a five-point Likert scale. No theoretical reason exists to rule out different lengths of a response scale [69]. The options reflect an underlying continuum rather than a finite number of possible attitudes. Various lengths ranging from 2 points to 11 points or higher are used in surveys. Five has become the norm in Likert scales probably because it strikes a balance between the conflicting goals of offering sufficient choices (because providing only two or three options means measuring only the direction rather than the strength of opinion) and makes things manageable for respondents (few people have a clear idea of the difference between the 8th and 9th points in an 11‐point agree–disagree scale). Research confirms that data from Likert items (and those from similar rating scales) becomes significantly less accurate when the number of scale points decreases to values below five or increases to values above seven. However, these studies provide no reasons for preferring five-point scales to seven‐point scales.

  • e)

    Convert linguistic scale to equivalent numerical scale: As mentioned, all preference values are identified in a subjective form, which cannot be used for further analysis unless the values are converted into numerical values. Thus, in this step, the level of importance or significance of each criterion recorded by each expert on the linguistic Likert scale is converted into an equivalent numerical scale, as shown in Table 1 .

Table 1.

Five-point Likert scale and equivalent numerical scale.

Numerical scoring scale Linguistic scoring scale
1 Not important
2 Moderately Slight important
3 Moderately important
4 Important
5 Very important

A Likert scale assumes that the evaluation criteria have different important levels that should be assigned by an expert. The importance level is assigned with a linguistic scale that facilitates the process of the evaluation criteria. The importance levels range from ‘not important’ level to ‘very important’. However, when an additional analysis needs to be conducted on the scores obtained by experts, it is difficult to extract any useful information from linguistic scores unless it is converted into numerical values. Thus, an equivalent numerical value has been provided along with each linguistic term where measuring the importance level of the evaluation criteria.

Step 3: Building an expert decision matrix

The previous step clarifies how the experts can be selected and how their preferences must indicate. In this step, an expert decision matrix (EDM) is constructed. The main parts of the EDM are the evaluation criteria used and alternatives, as shown in Table 2 .

Table 2.

Expert decision matrix.

Criteria Experts C1 C2 Cn
E1 Imp (E1/C1) Imp (E1/C2) Imp (E1/Cn)
E2 Imp (E2/C1) Imp (E2/C2) Imp (E2/Cn)
E3 Imp (E3/C1) Imp (E3/C2) Imp (E3/Cn)
...
Em Imp (En/C1) Imp (En/C2) Imp (Em/Cn)

**Imp represents the importance level.

According to Table 2, a crossover is made between the evaluation criteria and the SEJ panel. Each criterion (Cj) in the attribute intersects with each selective expert (Ei), where the expert has scored the suitable level of importance for each criterion. The EDM is the base for further analysis steps in the proposed method, which are illustrated in the next steps.

Step 4: Application of q-ROFS membership function

In this step, the q-ROFS membership function and subsequent defuzzification process are applied to the EDM data, and the data are transformed to a q‐ROF-EDM to increase their precision and ease of use in further analysis. However, in MCDM, the problem is uncertain and imprecise because assigning a precise preference rate to any criterion is difficult. The advantage of using the fuzzy method is the use of vague numbers instead of crisp numbers in the determination of the relative values of attributes (criteria); this approach addresses the issue of imprecise and uncertain problems. The q-ROFS is an objective having the form of [71] and defined in Eqs. (1) and (2).

P={m,(μd(m),vd(m))|mm}, (1)

where μd: M → [0, 1] is the membership function, while vd: M → [0, 1] is non-membership function of element mM to p, and it must fulfil the restriction seen in Eq. (2).

0<(μd(m))q+(vd(m))q1,whereq1. (2)

The degree of hesitancy is presented in Eq. (3) as following:

πm(m)=(μd(m))q+(vd(m))q(μd(m))q.(vd(m))qq. (3)

The applied q-rung orthopair fuzzy arithmetic mean (q-ROFA) aggregation operation is shown in Eq. (4) as follows:

qROFA(a˜1,a˜2,,a˜n)=(1k=1n(1μkq))1q,k=1nvk (4)

Eq. (5) shows the q-ROFS division operation as follows:

p1p2=(μ1μ2,v1qv2q1v2q),ifμ1min{μ2,μ2π1π2},v1v2. (5)

Eq. (6) shows the equation of q-ROFS division on a crisp value. The value of each linguistic term with q-ROFS is shown in Table 3 .

p/λ=(1(1(μp)q)1λq,(vp)1λ),λ>0. (6)
Table 3.

Linguistic terms and their equivalent q-ROFS.

Linguistic scale q-ROFS
Not important (0.20, 0.90)
Slight important (0.40, 0.60)
Moderately important (0.65, 0.50)
Important (0.80, 0.45)
Very important (0.90, 0.20)

Table 3 indicates that all linguistic variables are converted into q-ROFS. The fuzzy number is assumed to be the variable for each criterion for Expert K. In other words, Expert K must ask to identify the importance level of the evaluation criteria within variables measured using a linguistic scale.

Step 5: Computation of the final values of the weight coefficients of the evaluation criteria

Based on the fuzzification data for the criteria in the previous step, the final values of the weight coefficients of the evaluation criteria (w1, w2,  ..., wn)T are calculated as follows:

  • a)

    The ratio of fuzzification data is computed using Eqs. (3), (4) and (5). The preceding equations are used with q-ROFS, as shown in Table 4 .

  • b)
    The mean values are computed for the identification of the fuzzy values of the weight coefficients of the evaluation criteria (w1˜,w2˜,...,wn˜)T. The q‐ROF-EDM is used in computing the weight value of each criterion with Eqs. (3)(6), where Eq. (7) symbolises the process.
    wj˜=(i=1mImp(Eij˜/Cij)j=1nImp(Eij˜/Cij))/m),fori=1,2,3,..mandj=1,2,3,..n. (7)
  • c)
    Defuzzification is performed for the determination of the final weight. Eq. (8) is used as the defuzzification method for scoring each criterion. For the calculation of the final values of the weight coefficients, the weight for the importance of each criterion should be assigned given the sum of the weights of all the criteria for the rescaling purpose applied in this stage.
    Sk=μkqvkq,whereq1. (8)
Table 4.

q‐ROF-EDM.

Criteria/Experts C1˜ C2˜ Cn˜
E1 Imp(E1/C1)˜j=1nImp(E1/C1j)˜ Imp(E1/C1)˜j=1nImp(E1/C1j)˜ Imp(E1/C1)˜j=1nImp(E1/C1j)˜
E2 Imp(E2/C1)˜j=1nImp(E2/C2j)˜ Imp(E2/C2)˜j=1nImp(E2/C2j) Imp(E2/Cn)˜j=1nImp(E2/C2j)
...
Em Imp(Em/C1)˜j=1nImp(Em/Cmj˜) Imp(Em/C2)˜j=1nImp(Em/Cmj)˜ Imp(Em/Cn)˜j=1nImp(Em/Cmn)˜

where Imp(E1/C1)˜ represent the fuzzy number of Imp (E1/C1).

2.1.2. Formulation of the q-ROFDOSM

The q-ROFDOSM is the extended version of different FDOSM versions [72], [73], [74]. The following description provides information about the first stage of the q-ROFDOSM, which is the data transformation unit. The second stage of the q-ROFDOSM is explained, which is data processing.

Stage One: Data transformation unit

According to [74], the transformation of the decision matrix into an opinion matrix is achieved with the following steps.

Step 1

The ideal solution of each sub evaluation criterion in the decision matrix used is selected. Therefore, the ideal solution is defined in Eq. (9).

A*={[(maxivij|jJ),(minivij|jJ),(OpijI.J)|i=1.2.3..m]}, (9)

where max is the ideal value for benefit criteria, min is the ideal solution for cost criteria and Opijis the ideal value for critical criteria when the ideal value lies between the max and min. The critical value is determined by the decision maker.

Step 2

In this step, the ideal solution value must be selected for each evaluation criterion. Then, a five-point Likert scale is used to perform the reference comparison between the selected ideal solution of each evaluation criterion and other values within same criterion, as shown in Eq. (10).

OpLang={((v˜ijvij|jJ).|i=1.2.3..m)}, (10)

where ⊗ represents the reference comparison between the ideal solution and value of alternatives in the same criterion. The final output of this block indicating the linguistic term is the opinion matrix that is ready to be transformed into a fuzzy opinion matrix by using q-ROFSs, as expressed in Eq. (11).

OpLang=A1Am[op11op1nopm1opmn]. (11)
Stage Two: Data-processing unit

The opinion matrix of each Likert scale refers to the output of the transformation unit. The final block begins by transferring the opinion matrix into a q‐ROF opinion matrix by converting the linguistic terms of the opinion matrix into q-ROFSs using Table 5 .

Table 5.

q‐ROF opinion matrix.

Linguistic scale q-ROFSs
No Difference (0.90, 0.20)
Slight Difference (0.80, 0.45)
Difference (0.65, 0.50)
Big Difference (0.40, 0.60)
Huge Difference (0.20, 0.90)

In the q-ROFDOSM, two different contexts of can be used for ranking the alternatives, which are individual and group decision making (GDM).

2.1.2.1. Individual q-ROFDOSM

q-ROFS is applied with the proposed method in this stage. The obtained explicit weights of each criterion are introduced to q-ROFDOSM for the prioritisation of the alternatives. The fuzzy opinion matrices resulting from the previous stage are aggregated using the equation of the q-rung orthopair fuzzy weighted arithmetic mean (q-ROFWA) aggregation operation (12).

qROFWA(a˜1,a˜2,,a˜n)=(1k=1n(1μkq)wk)1/q,k=1nvkwk (12)

Then, the defuzzification process of each alternative is computed using Eq. (8). After the calculations are performed with the mentioned equations in the individual context of q-ROFDOSM, alternatives can be ranked and prioritised. A value will be assigned to each alternative will be assigned a value, and they will be ordered based on the best value. The vaccine recipient with the highest score will have the highest priority.

2.1.2.2. Group q-ROFDOSM

Owing to the variations that might be found in the ranking of alternatives among decision makers, aggregated decisions obtained from various evaluators are necessary to unify alternative ranking. Thus, this study utilises a GDM with q-ROFDOSM to unify all the variations in the ranking of the decision makers. Furthermore, arithmetic mean is used, and a final score of GDM is obtained. The highest score value is the best alternative. In this case, the decision makers’ opinions are combined after the final alternatives ranking.

2.2. Phase II: MCDM case study

The current phase discusses a case study of COVID-19 vaccine distribution. Countries worldwide faced the greatest challenge last year brought by the coronavirus disease 2019 (COVID-19) pandemic, and the need for a vaccine has become more important than ever [75], [76], [77], [78], [79], [80], [81], [82]. The fair allocation of COVID-19 vaccine distribution is encouraged by the World Health Organisation, and public health benefits must be maximized in order that health products are available and accessible to those in need [83]. However, the distribution mechanism of COVID-19 vaccine doses considered a MCDM problem because of the following issues: required inclusion of different distribution criteria, criteria that are different in significance and increase in problem complexity because of data variation amongst the included criteria. To end this problem complexity, an MCDM-based solution must be used. A comprehensive decision matrix of COVID-19 vaccine distribution is constructed on the basis of the intersection of vaccine recipients (VRs) and distribution criteria, as presented in Table 6 [84].

Table 6.

Constructed decision matrix.

VR C1 C2 C3 C4 C5 VR C1 C2 C3 C4 C5
1 Pharmacist Hypertension, diabetes 31 Green NA 151 - NA 53 Green NA
2 Pharmacist NA 59 Yellow Hearing difficulty 152 - NA 59 Red Epilepsy
3 Doctor Diabetes 37 Green NA 153 - Cardiovascular 83 Orange Hearing difficulty
4 Pharmacist Obesity 47 yellow NA 154 Health worker Respiratory 59 Yellow NA
5 Health Worker NA 29 Green Vision impairment 155 Health worker NA 59 Red NA
6 Electricity supplier NA 29 Red Hearing difficulty 156 Doctor NA 41 Green NA
7 Teacher NA 31 Green NA 157 Nurse NA 29 Green NA
8 Teacher NA 31 Yellow NA 158 Doctor Diabetes 43 Red NA
9 Police officer NA 47 Red NA 159 Medical goods seller Diabetes 43 Green NA
10 Teacher NA 37 Green NA 160 Medical goods seller Obesity 37 Orange NA
11 - Respiratory 59 Red NA 161 Medical goods seller Diabetes 37 Green NA
12 - Cardiovascular 7 Red NA 162 Fire service employee NA 41 Orange Epilepsy
13 - Diabetes 3 Orange NA 163 - NA 17 Yellow NA
14 - Diabetes 43 Yellow NA 164 - NA 23 Green NA
15 - Respiratory 37 Yellow NA 165 - Hypertension 59 Yellow NA
16 Pharmacist NA 43 Green NA 166 - NA 43 Green NA
17 Pharmacist NA 41 Yellow NA 167 - NA 19 Orange NA
18 Doctor Respiratory 41 Green NA 168 Medical goods seller NA 41 Yellow Epilepsy
19 Nurse NA 29 Orange NA 169 Fire service employee Diabetes 47 Yellow NA
20 Pharmacist Cardiovascular 37 Red NA 170 Fire service employee NA 59 Orange NA
21 - Cardiovascular 41 Orange NA 171 Fire service employee Respiratory 61 Orange Vision impairment
22 - NA 13 Green NA 172 Doctor NA 59 Green NA
23 - NA 11 Green NA 173 Health worker Cardiovascular 61 Orange NA
24 - Respiratory 89 Yellow Vision impairment 174 Midwife NA 23 Red NA
25 - NA 61 Green NA 175 Nurse Hypertension 43 Red NA
26 Medical goods seller Hypertension 43 Orange Hearing difficulty 176 Health worker Respiratory 43 Red NA
27 Medical goods seller Diabetes 47 Green NA 177 Health worker Diabetes 41 Red NA
28 Teacher Respiratory 59 Yellow NA 178 Doctor NA 41 Yellow NA
29 Police officer NA 47 Yellow NA 179 Doctor Hypertension 29 Yellow NA
30 police officer NA 53 Green NA 180 Postal employee NA 29 Red NA
31 midwife Diabetes 31 Orange NA 181 Medical goods seller Cardiovascular 43 Yellow Vision impairment
32 Health Worker NA 47 Red Hearing difficulty 182 Religious staff Respiratory 59 Red NA
33 Nurse Hypertension, cardiovascular 43 Yellow NA 183 Journalist Hypertension 53 Red NA
34 Midwife Obesity 23 Orange NA 184 Electricity supplier NA 53 Red NA
35 Doctor Obesity, hypertension 61 Yellow NA 185 Education specialist NA 23 Red NA
36 Pharmacist NA 59 Green NA 186 Medical goods seller NA 23 Red NA
37 Specialist education professional Cardiovascular, hypertension 59 Orange NA 187 - NA 1 Yellow NA
38 Electricity supplier NA 41 Orange NA 188 - NA 29 Orange NA
39 Police officer NA 31 Yellow NA 189 - Diabetes 59 Red Epilepsy
40 Religious staff Cardiovascular 59 Yellow Hearing difficulty 190 - NA 7 Green NA
41 Teacher Hypertension 47 Orange NA 191 - NA 41 Orange NA
42 Health Worker NA 37 Orange NA 192 - NA 31 Green NA
43 Doctor NA 37 Green NA 193 Midwife NA 31 Yellow NA
44 Nurse Diabetes 41 Green Hearing difficulty 194 Midwife Hypertension 53 Yellow NA
45 Pharmacist Diabetes 53 Red NA 195 Health worker NA 43 Green NA
46 Doctor Obesity 41 Green NA 196 Health worker NA 61 Red Vision impairment
47 - Cardiovascular 97 Red Vision impairment 197 Nurse Respiratory 23 Yellow NA
48 - NA 31 Orange NA 198 Delivery worker NA 31 Green NA
49 - NA 29 Orange NA 199 Medical goods seller NA 47 Orange NA
50 - NA 53 Red NA 200 Medical goods seller Cardiovascular, Hypertension 61 Orange NA
51 - Obesity 53 Orange NA 201 Medical goods sales NA 37 Green Epilepsy
52 - NA 47 Orange NA 202 Education specialist Respiratory 23 Red NA
53 Journalist NA 31 Yellow NA 203 Police officer NA 43 Yellow NA
54 Journalist NA 31 Orange NA 204 - NA 2 Red NA
55 Journalist Diabetes 59 Green NA 205 - NA 2 Green NA
56 Teacher NA 41 Yellow NA 206 - Diabetes 67 Red Epilepsy
57 Probation staff NA 31 Green Hearing difficulty 207 - NA 2 Orange NA
58 Pharmacist NA 43 Yellow NA 208 - NA 2 Yellow NA
59 Pharmacist NA 53 Yellow NA 209 - NA 5 Green NA
60 Nurse NA 59 Green NA 210 Medical goods seller NA 29 Green NA
61 Midwife NA 23 Yellow NA 211 Fire service employee NA 29 Yellow NA
62 Health Worker NA 61 Green Hearing difficulty 212 Medical goods seller NA 41 Red NA
63 - NA 47 Red NA 213 Midwife NA 23 Orange NA
64 - NA 19 Orange NA 214 Health worker NA 61 Orange NA
65 - Hypertension 83 Yellow Vision impairment 215 Doctor NA 61 Red NA
66 - NA 5 Orange NA 216 Doctor NA 59 Yellow NA
67 Doctor NA 29 Orange NA 217 Health worker Obesity 59 Green Epilepsy
68 Nurse NA 31 Yellow NA 218 Midwife Diabetes 41 Red NA
69 Fire service Employee NA 29 Yellow NA 219 - Respiratory 89 Green Hearing difficulty
70 Postal employee Respiratory 53 Green NA 220 - NA 7 Orange NA
71 Journalist Hypertension 61 Red NA 221 - Cardiovascular 83 Orange Epilepsy
72 - NA 19 Orange NA 222 Medical goods seller NA 47 Yellow NA
73 - NA 61 Orange NA 223 Education specialist NA 41 Red Epilepsy
74 - NA 61 Green NA 224 Medical goods seller Respiratory 61 Green NA
75 Pharmacist Obesity 41 Orange NA 225 - NA 43 Orange NA
76 Midwife Respiratory 37 Yellow NA 226 - Obesity 59 Orange NA
77 Doctor NA 23 Orange NA 227 - NA 3 Green NA
78 Midwife Respiratory 59 Red NA 228 - Hypertension 89 Orange Hearing difficulty
79 Health worker Hypertension 41 Yellow Epilepsy 229 - NA 17 Green NA
80 Doctor NA 59 Yellow NA 230 Doctor Hypertension 41 Yellow NA
81 Nurse NA 37 Red NA 231 Health worker NA 61 Red NA
82 Religious staff Hypertension 53 Green NA 232 Nurse Respiratory 61 Orange NA
83 Delivery worker NA 23 Yellow NA 233 Health worker NA 47 Green NA
84 Postal employee NA 23 Green NA 234 Midwife NA 61 Orange NA
85 Specialist education professional Obesity, diabetes 61 Yellow Vision impairment 235 - Hypertension 89 Red Hearing difficulty
86 Fire service employee Respiratory 59 Orange NA 236 - NA 1 Orange NA
87 Pharmacist Obesity 23 Red NA 237 - Hypertension 79 Green NA
88 Doctor NA 41 Orange NA 238 Probation staff NA 23 Yellow NA
89 Health worker NA 47 Red NA 239 Religious staff Diabetes 53 Orange NA
90 - NA 13 Orange NA 240 Electricity supplier NA 41 Orange NA
91 - NA 7 Green NA 241 Religious staff Hypertension 59 Red NA
92 - NA 11 Orange NA 242 - Hypertension 71 Red NA
93 - Diabetes, hypertension 97 Yellow Epilepsy 243 - NA 2 Yellow NA
94 - NA 89 Yellow Epilepsy 244 - Cardiovascular 47 Orange NA
95 Probation staff NA 41 Red NA 245 Doctor NA 43 Red NA
96 Journalist Cardiovascular, hypertension 61 Red NA 246 Midwife Respiratory 61 Red NA
97 Medical goods seller Obesity 59 Yellow NA 247 Pharmacist NA 53 Green Hearing difficulty
98 Charity staff NA 59 Orange NA 248 Midwife Diabetes, hypertension 31 Yellow NA
99 Doctor NA 53 Yellow NA 249 Midwife NA 59 Yellow NA
100 Doctor NA 53 Red NA 250 Midwife NA 47 Orange NA
101 Pharmacist NA 37 Orange NA 251 Probation staff Cardiovascular, hypertension 61 Red NA
102 - NA 47 Green NA 252 Postal employee NA 41 Green NA
103 - NA 47 Green NA 253 Education specialist NA 43 Green NA
104 - NA 61 Orange NA 254 Delivery worker Hypertension 59 Orange NA
105 - NA 71 Yellow NA 255 Journalist Respiratory 61 Red Vision impairment
106 Electricity supplier NA 43 Red NA 256 - NA 1 Red NA
107 Charity staff NA 37 Red Hearing difficulty 257 - NA 1 Red NA
108 Religious staff NA 47 Orange NA 258 - Obesity 31 Yellow NA
109 Pharmacist NA 43 Red NA 259 - NA 11 Green NA
110 Doctor Cardiovascular, hypertension 47 Yellow NA 260 Nurse NA 23 Red NA
111 - Obesity 29 Green NA 261 Pharmacist NA 47 Orange NA
112 - NA 5 Red NA 262 Pharmacist Hypertension 53 Yellow NA
113 - NA 41 Red NA 263 Fire service employee NA 23 Green NA
114 - NA 59 Orange NA 264 Religious staff NA 23 Red NA
115 - NA 3 Green NA 265 Electricity supplier Cardiovascular 53 Orange Hearing difficulty
116 Midwife NA 29 Red NA 266 Religious staff Respiratory 53 Orange NA
117 Nurse Obesity, diabetes 29 Yellow NA 267 Teacher NA 31 Yellow NA
118 Midwife Diabetes 58 Green Hearing difficulty 268 Education specialist Hypertension 41 Yellow NA
119 Health worker NA 53 Orange NA 269 - NA 5 Green NA
120 Electricity supplier Cardiovascular 61 Red NA 270 - NA 2 Red NA
121 Postal employee Respiratory 31 Orange NA 271 - NA 59 Green NA
122 Journalist Obesity 53 Orange NA 272 - NA 37 Red NA
123 Teacher NA 37 Green NA 273 - Obesity 61 Green NA
124 - Diabetes 61 Green NA 274 - Hypertension 97 Red Hearing difficulty
125 - Respiratory 97 Yellow Hearing difficulty 275 Health worker Diabetes 41 Orange NA
126 - Respiratory 79 Green NA 276 Nurse Respiratory 31 Yellow NA
127 Religious staff Respiratory 43 Red NA 277 Nurse NA 59 Orange NA
128 Religious staff Obesity, diabetes 43 Green Hearing difficulty 278 - Hypertension 37 Yellow NA
129 Religious staff NA 29 Green NA 279 - NA 1 Green NA
130 Nurse Respiratory 29 Green NA 280 - Cardiovascular 61 Orange NA
131 Health worker NA 53 Green NA 281 - Diabetes 83 Red Epilepsy
132 Midwife Obesity, diabetes 29 Orange NA 282 - Obesity 73 Red NA
133 Health worker NA 37 Orange NA 283 Teacher Cardiovascular, hypertension 61 Red NA
134 Health worker NA 47 Orange NA 284 Education specialist Obesity, diabetes 61 Red NA
135 - Obesity 73 Red NA 285 - NA 5 Green NA
136 - NA 13 Yellow NA 286 - NA 97 Orange NA
137 - NA 59 Yellow NA 287 Religious staff NA 29 Red NA
138 - NA 2 Yellow NA 288 Police officer Diabetes 61 Red NA
139 Charity staff NA 37 Yellow NA 289 Journalist NA 47 Yellow Vision impairment
140 Charity staff NA 53 Orange NA 290 Medical goods seller NA 47 Green NA
141 Delivery worker Diabetes 59 Orange Epilepsy 291 Midwife NA 31 Yellow NA
142 Electricity supplier Obesity 43 Orange NA 292 Doctor Hypertension 37 Orange NA
143 Nurse Respiratory 29 Orange NA 293 Health worker NA 41 Green NA
144 Doctor NA 53 Orange NA 294 Health worker NA 37 Yellow NA
145 Pharmacist Obesity 53 Yellow NA 295 - NA 5 Green NA
146 Teacher NA 37 Green NA 296 - NA 19 Orange NA
147 Fire service employee NA 43 Green NA 297 - Hypertension 73 Orange NA
148 Teacher NA 47 Yellow NA 298 - NA 7 Orange NA
149 Education specialist NA 31 Orange NA 299 Medical goods seller NA 47 Red NA
150 - NA 37 Yellow NA 300 Religious staff NA 31 Red NA

This adopted decision matrix feeds by a dataset who represent the alternatives considering five criteria: C1=vaccine recipient memberships, C2=chronic disease conditions, C3=age, C4=geographic locations severity; and, C5=disabilities [84]. In this adopted dataset, 300 cases of vaccine recipients were created. Although the generalisation and inclusion of more than 300 cases are possible, the insights from the generated cases usually can satisfy the concepts of the presented work, from which the results can then meet the desired goals. A coding scheme using the exception-handling model was developed in Python to generate the augmented dataset of the 300 cases based on the five discussed criteria [84]. The most suitable probabilities and certain assumptions about COVID-19 vaccine alternatives were generated. In that date set, the rule-based control scheme was based on expert opinions with precise descriptions for the criteria. After generating the dataset, a panel of three experts subjectively validated it to increase the veracity of the data to the best extent possible and cover most recipients’ situations. The three expert panellists were identified and selected from related study areas (i.e. molecular biology, immunology, biomedical engineering, medical biotechnology and clinical microbiology). Finally, according to the same expert panel, C3 and C4 have ranges of measures and are considered benefit criteria (that is, a larger value is more important), whereas other criteria are fitted to categorical data, which can be considered critical criteria [84]. Lastly, this decision matrix is introduced to start with the distribution process.Thus, a COVID-19 vaccine distribution can be achieved accordingly

3. Discussion results

This section presents the result to the aforementioned case study, which is the vaccine distribution mechanism achieved after prioritising the COVID-19 vaccine recipients. In this regard, Section 3.1 provides the results of the q-ROFWZIC method and the constructed criteria weights. In particular, the judgement of the three experts is converted using mathematical calculations. The purpose is to show the overall weights within this section. Section 3.2 displays the distribution results of the COVID-19 recipients. The distribution is based on the individual decision-making and GDM contexts of q-ROFDOSM.

3.1. Criteria weighting results

This section provides the weight determination results of the COVID-19 vaccine distribution criteria with the q-ROFWZIC method developed in Section 2.2.1. After the involved steps, the distribution criteria are weighted according to the three experts’ preferences without any inconsistency after the method philosophy. Based on q values (i.e. q = 1, 3, 5, 7, 10) used in q-ROFS, the final weight results of the five criteria for vaccine distribution are obtained (Table 7 ).

Table 7.

Weight determination.

Criteria/q C1 C2 C3 C4 C5
q = 1 0.202 0.202 0.236 0.194 0.164
q = 3 0.203 0.202 0.220 0.183 0.190
q = 5 0.206 0.197 0.241 0.160 0.194
q = 7 0.211 0.187 0.261 0.136 0.203
q = 10 0.221 0.169 0.287 0.103 0.217

According to step 4, the process of q-ROFS membership function is used in transforming crisp values to equivalent fuzzy numbers. The process of transformation and the fuzzification of the experts’ opinions on the significance of the five criteria are achieved. The ratio values of the criteria are computed according to Eqs. (3), (4) and (5), then the mean of the experts’ preference for each criterion is calculated and used in determining the fuzzy weight. Then, Eqs. (7) and (8) are used in determining the final weight for each of the five criteria, as explained in step 5. For all q-ROFWZIC values of 1, 3, 5, 7 and 10, age (C3) received the highest weight as the first important criterion, followed by vaccine recipient memberships (C1). For q-ROFWZIC values (q = 1, 3, 5), Chronic Disease Conditions (C2) received the third important criteria. For q-ROFWZIC values of 7 and 10, Disabilities (C5) received the third important criteria. For q-ROFWZIC value of 1, Geographic Locations Severity (C4) received the fourth important criteria. For q-ROFWZIC values of 3 and 5, Disabilities (C5) received the fourth important criteria. For q-ROFWZIC values of 7 and 10, Chronic Disease Conditions (C2) received the fourth important criteria. Finally, for q-ROFWZIC values of 3, 5, 7 and 10, Geographic Locations Severity (C4) received the lowest weight as the fifth important criteria. For q-ROFWZIC value of 1, Disabilities (C5) received the lowest weight as the fifth important criteria. Practically, these calculated weight values are integrated to the q-ROFDOSM for the computation of the distribution results of the 300 vaccine recipients.

3.2. Distribution results

The results and discussions presented in this section pertain to the distribution of the COVID-19 vaccine and are based on individual and GDM contexts. The opinion matrix and fuzzy opinion matrix used in the distribution of the COVID-19 vaccine are processed. By using the five scales, the three decision makers provided their opinions on the conversion of the decision matrix into the opinion matrix. According to Eq. (9), the decision makers determined the ideal solution value according to the COVID-19 vaccine distribution criteria. The opinion matrix was created by comparing the ideal solution with other values per criterion or each alternative with the linguistic terms and converted into a fuzzy opinion matrix. The q-ROFDOSM method was applied on the resulting fuzzy opinion matrices for determination of the COVID-19 vaccine distribition. At q values of 1, 3, 5, 7 and 10, the results of the COVID-19 vaccine distribution based on the individual decision-making context of q-ROFDOSM are presented in Table 8 along with a sample of 10 vaccine recipients. The remaining is presented in Table A1 in the Appendix.

Table 8.

Vaccine distribution results based on individual q-ROFDOSM (first 10 alternatives).

q = 1
Alternatives Expert 1 Expert 2 Expert 3
Score Final rank Score Final rank Score Final rank
VR1 -0.190854 218 -0.378625 248 -0.294512 241
VR2 0.241797 54 0.133978 60 0.182772 56
VR3 -0.021543 144 -0.110281 145 -0.110281 171
VR4 -0.115005 190 -0.289401 209 -0.212635 209
VR5 -0.13084 204 -0.31839 244 -0.15489 196
VR6 0.078329 114 -0.001965 106 -0.001965 135
VR7 -0.269037 235 -0.48015 269 -0.294512 241
VR8 -0.186338 208 -0.382637 250 -0.212635 209
VR9 0.035383 128 0.012109 96 0.153367 61
VR10 -0.363175 263 -0.48015 269 -0.294512 241
q = 3
Alternatives Expert 1 Expert 2 Expert 3
score final rank score final rank score final rank
VR1 -0.130612 205 -0.327956 248 -0.231083 233
VR2 0.27259 69 0.159673 71 0.222882 71
VR3 0.078316 131 0.014126 118 0.014126 157
VR4 -0.064433 189 -0.247035 214 -0.155851 209
VR5 -0.079331 204 -0.239367 213 -0.073248 185
VR6 0.145141 111 0.094111 93 0.094111 122
VR7 -0.22061 234 -0.425087 269 -0.231083 233
VR8 -0.149352 219 -0.33734 250 -0.155851 209
VR9 0.105552 123 0.114789 86 0.272782 47
VR10 -0.305836 262 -0.425087 269 -0.231083 233
q = 5
Alternatives Expert 1 Expert 2 Expert 3
score final rank score final rank score final rank
VR1 -0.045117 205 -0.205559 248 -0.128103 233
VR2 0.18326 86 0.104189 91 0.155117 81
VR3 0.116648 117 0.079693 100 0.079693 132
VR4 -0.011278 189 -0.156481 214 -0.083244 210
VR5 -0.028273 202 -0.13111 213 -0.015679 179
VR6 0.117504 116 0.090003 97 0.090003 129
VR7 -0.113159 234 -0.276722 269 -0.128103 233
VR8 -0.076365 220 -0.220682 250 -0.083244 210
VR9 0.098267 127 0.115263 80 0.242009 33
VR10 -0.165607 262 -0.276722 269 -0.128103 233
q = 7
Alternatives Expert 1 Expert 2 Expert 3
score final rank score final rank score final rank
VR1 -0.006175 194 -0.12517 248 -0.067522 233
VR2 0.110879 108 0.060162 101 0.097272 101
VR3 0.112545 103 0.093842 79 0.093842 103
VR4 0.008955 189 -0.096914 217 -0.042656 210
VR5 -0.006762 196 -0.066428 208 0.008087 177
VR6 0.082033 117 0.067481 94 0.067481 126
VR7 -0.053512 234 -0.177565 269 -0.067522 233
VR8 -0.036637 222 -0.142507 250 -0.042656 210
VR9 0.072285 120 0.088602 82 0.190354 27
VR10 -0.083814 250 -0.177565 269 -0.067522 233
q = 10
Alternatives Expert 1 Expert 2 Expert 3
score final rank score final rank score final rank
VR1 0.00956 189 -0.059204 248 -0.024363 216
VR2 0.050663 113 0.02489 113 0.046543 113
VR3 0.088206 84 0.082568 49 0.082568 71
VR4 0.013559 174 -0.047112 217 -0.014532 207
VR5 0.000597 198 -0.022901 206 0.01409 166
VR6 0.043713 117 0.037974 93 0.037974 124
VR7 -0.016359 234 -0.093189 269 -0.024363 216
VR8 -0.011633 222 -0.075758 250 -0.014532 207
VR9 0.040108 118 0.051437 80 0.127586 24
VR10 0.43889 269 0.454543 274 0.493271 227

As mentioned in Section 2.1.2, the highest alternative must have the highest score, and the lowest alternative must have the lowest score value. However, for the analysis of the q-ROFDOSM final rank results, Table 9 shows the best four alternatives (VR) obtained from the three experts for all q values.

Table 9.

Individual ranking results of the best four alternatives for various values of q.

Experts\q Expert 1 Expert 2 Expert 3
q = 1 VR281>VR221> VR274>VR93 VR281>VR221>VR125>VR274 VR221>VR281>VR274>VR47
q = 3 VR281>VR221>VR47>VR274 VR281>VR221>VR232>VR206 VR221>VR281>VR274>VR189
q = 5 VR281>VR221>VR93>VR274 VR281>VR221>VR232>VR206 VR221>VR281>VR93>VR49
q = 7 VR281>VR221>VR93>VR274 VR281>VR221>VR93>VR232 VR281>VR221>VR94>VR93
q = 10 VR281>VR221>VR93>VR94 VR281>VR221>VR93>VR94 VR281>VR221>VR94>VR93

As shown in Table 9, we aimed to analyse the effect of variation in q value on the individual q-ROFDOSM ranking results. For this purpose, we presented the best four alternatives (VR) for various values of q, and the ranking results were provided the three experts. Variation in q values has an effect on ranking for the best four alternatives of each expert. For example, for the first and second experts with all q values, the best alternative was VR281, followed by VR221. For the third expert with q values of 1, 3 and 5, the best alternative is VR221, followed by VR28. For q values of 7 and 10, the best alternative is VR281, followed by VR221. Moreover, for all q values, the third and fourth ranks are relatively different. However, the effectiveness for q values on the best four alternatives presented in Table 9 did not provide a precise conclusion on the overall 300 alternatives. Therefore, to discuss the real effectiveness of q values on q-ROFDOSM individual ranking results, we calculated the overall variations that occurred in the ranking orders for the individual ranking for each expert.

The results showed that for expert 1, 277 out of 300 alternatives (92.33%) were changed and received different rank orders. A total of 23 alternatives (7.67%) received the same ranking order and did not change when the applied q values were 1, 3, 7 and 10). Moreover, for expert 2, 245 out of 300 alternatives (81.67%) were changed and received different rank orders, and 55 alternatives (18.33%) received the same ranking order and did not change. Finally, for expert 3, 284 out of 300 alternatives (94.67%) were changed and received different rank orders. A total of 16 alternatives (5.33%) received the same ranking order and did not change. Although little variance was observed for the best four ranking orders among alternatives (Table 9), the orders did not reflect the full picture of how q values affected the ranking results. Therefore, we concluded that a large variance occurred on the ranking orders and score values based on q values. This large variance indicated the existence of q values that were effective on vaccine distribution.

The ranking results changed in the three experts. This case showed the significance of variation in experts’ preferences in decision analysis. For instance, as shown in Table 9 and Table A1 (Appendix), for the first and second experts when q = 1, VR281 was the best alternative rank, and scores of 0.54033175 and 0.50524958 were obtained, respectively. For the third expert, VR221 was the first alternative rank, and a score of 0.523566903 was obtained.

After reviewing the scores and ranking orders results for the individual q-ROFDOSM, we found differences among the three experts that were been obtained for the vaccine recipients. Overall, no unique prioritisation result based on the opinions provided by the three experts was observed. Owing to this variance, GDM, is essential to final and unique prioritisation when all the experts’ opinions are considered. Furthermore, GDM is necessary to the resolution of the problem of variations in the final rank. As mentioned in Section 2.1.2, the final results of the three decision-makers were aggregated, and the final GDM raking for COVID-19 vaccine distribution was obtained. In addition, the results of the COVID-19 vaccine distribution based on the GDM-based q-ROFDOSM are presented in Table 10 for q values of 1, 3, 5, 7 and 10 in a sample of 10 vaccine recipients.

Table 10.

Vaccine distribution results based on GDM q-ROFDOSM (first 10 alternatives).

Alternatives q = 1 q = 3 q = 5 q = 7 q = 10
Score Final rank Score Final rank Score Final rank Score Final rank Score Final rank
VR1 -0.2879969 234 -0.2298837 234 -0.1262594 228 -0.0662891 226 -0.02466931 217
VR2 0.1861822 53 0.2183817 68 0.1475219 86 0.0894377 101 0.04069889 114
VR3 -0.0807016 166 0.0355225 141 0.0920117 118 0.100076 91 0.0844476 63
VR4 -0.2056802 210 -0.1557731 210 -0.0836673 210 -0.0435386 212 -0.01602858 206
VR5 -0.2013731 209 -0.1306485 198 -0.0583542 198 -0.0217009 196 -0.00273792 194
VR6 0.0247994 116 0.1111214 108 0.0991704 114 0.0723318 116 0.03988728 115
VR7 -0.3478996 258 -0.2922598 258 -0.1726611 249 -0.0995332 245 -0.04463694 243
VR8 -0.2605366 228 -0.214181 228 -0.1267636 230 -0.0739335 231 -0.03397462 232
VR9 0.0669532 95 0.1643745 84 0.1518465 82 0.1170806 80 0.07304372 80
VR10 -0.379279 270 -0.3206686 266 -0.1901438 257 -0.1096338 257 -0.04885261 256

As Tables 10 and A2 (Appendix) illustrate, for q values of 3, 5, 7 and 10, the highest-ranked (rank 1) recipient is VR281, who obtained the highest scores. After the profile data of this alternative were reviewed, the specifications of VR281’s criteria were related to C1, C2, C3, C4 and C5 as he is not a vaccine recipient, has diabetes, is 83 years old, is from a red geographical location and is disabled with epilepsy. Although VR281 did not belong to any recipient memberships (C1), the weight of the age criterion (See Table 7), which indicated that age weight received higher priority for all q values based on the three experts, played a major role in the decision-making process, and the alternative was considered a high priority. Hence, the remaining criteria varied somewhat in terms of importance.

VR170, who was almost located in the middle of the ranking results, ranked 144th when q = 1 (obtained a score of -0.046208476), rank 156th when q = 3 (obtained a score of 0.004883422), rank 157th when q = 5 (obtained a score of 0.031371872), rank 155th when q = 7 (obtained a score of 0.030999934) and rank 150th when q = 10 (obtained a score of 0.019926159). The criterion specifications of VR170 were related to C1, C2, C3, C4 and C5 as he has a recipient membership (fire service employee), is not affected by a chronic disease, 5is 9 years old, is from an orange geographical location and is not affected by disabilities. Clearly, a satisfactory ranking result was assigned to alternative VR170 especially the vaccine distribution criteria specifications are relatively averagely important and earned a middle priority.

The lowest-ranked recipients were the alternatives VR166, VR190, VR205, VR209, VR229 and VR285, and they obtained the same ranking order (rank 293) and same scores for all q values. They received scores (-0.510442612), (-0.468345475), (-0.31952474), (-0.218707219) and (-0.131237497) for q values of 1, 3, 5, 7 and 10, respectively. The closeness of the criterion specifications for these alternatives was the reason for their admission in the same order of priority and their identical scores. For instance, the criterion specifications of VR166 were related to C1, C2, C3, C4 and C5 as he has no vaccine recipient membership, is not affected by a chronic disease, is 43 years old, is from a green geographical location and is not affected by disabilities. The worst ranked had no vaccine recipient membership, were not affected by any chronic condition, were young, were from green or yellow geographic locations and were slightly affected by disabilities.

In line with the results of the analysis on how the q values affected the first four ranking results presented previously for individual q-ROFDOSM (See Table 9), Table 11 presents the best four alternatives based on the GDM q-ROFDOSM.

Table 11.

GDM q-ROFDOSM ranking of the best and worst four alternatives for various values of q.

Experts\q Best four alternatives
q = 1 VR281>VR221>VR274>VR47
q = 3 VR281>VR221>VR274>VR93
q = 5 VR281>VR221>VR93>VR274
q = 7 VR281>VR221>VR93>VR94
q = 10 VR281>VR221>VR93>VR94

As shown in Table 11, for all q values, the best alternative was VR281, followed by VR221. For q values of 1 and 3, VR274 and VR93 were third in rank, whereas VR93 was third in rank when the q values were 5, 7 and 10. Finally, the fourth in rank was VR47 when q = 1, VR93 when q = 3, VR274 when q = 5 and VR94 when q = 7 and q = 10.

To discuss the effect of q values on GDM q-ROFDOSM, we calculated the variations that occurred in the ranking orders for the GDM ranking results when the q values were 1, 3, 5, 7 and 10). In these contexts, 290 out of 300 alternatives (96.67%) were changed and received different rank orders at these q values, whereas 10 alternatives (3.33%) received the same rank order and did not change. Therefore, with regard to how q values affect GDM q-ROFDOSM ranking orders, the large variance occurred. This conclusion was in line with the individual q-ROFDOSM. Thus, q values play a key role in the overall ranking for the COVID-19 vaccine distribution for individual and GDM q-ROFDOSM and should be considered. Finally, the rank of COVID-19 vaccine distribution is in line when comparing the GDM results with the opinion matrices. Thus, it is considered as the final ranking results for COVID-19 vaccine distribution, which will be evaluated in detail in the next section.

4. Evaluation

In this section, the efficiency of the proposed methods was evaluated and tested through two assessment processes. First, the systematic ranking of the vaccine recipients’ ranking results was evaluated. Second, the impact of changing the criteria weight on the ranking result was examined and analysed under nine scenarios.

4.1. Systematic ranking evaluation

In this section, the systematic ranking assessment was conducted for the assessment of the GDM results of COVID-19 vaccine distribution. In this regard, vaccine recipients were divided into different groups according to their prioritisation order. Such process is known and has been performed in previous MCDM works [85], [86], [87], [88]. Notably, neither group numbers nor the number of vaccine recipients in each group influence validation results [89], [90], [91], [92]. Subsequently, the validation of COVID-19 vaccine distribution results include several procedures as follows:

  • The aggregation of all opinion matrices into one unified matrix

  • The aggregated matrix are sorted according to GDM results of vaccine distribution per each q value

  • The vaccine recipients are divided into 6 equally numbered groups.

  • The mean value (x¯) for each group is calculated thereafter based on Eq. (13)
    x¯=1ni=1nxi (13)

Upon the mean calculation for each of the six groups, these results must be compared. This step ensures the validity of the systematic ranking, and certain conditions are required according to the q-ROFDOSM philosophy in the comparison process where the lowest mean value for each group indicates validity as follows:

  • The first group mean is assumed to be the lowest when result validity is checked

  • The first group's mean must be lower than the second group's mean

  • The second group's mean result must be higher than that of the first group

  • The same concept applies to the third, fourth, fifth and sixth groups

Based on the mean results obtained under previous conditions, the evaluation was consistent, and thus its results were considered valid. Table 12 presents the validation results for the group results obtained using the proposed methods.

Table 12.

Validation of group distribution results.

Group # q1 q3 q5 q7 q10
Mean value
Group 1 2.705333333 2.716 2.728 2.78 2.854666667
Group 2 3.221333333 3.232 3.265333333 3.284 3.257333333
Group 3 3.554666667 3.578666667 3.554666667 3.505333333 3.474666667
Group 4 3.862666667 3.816 3.796 3.776 3.770666667
Group 5 4.121333333 4.122666667 4.126666667 4.130666667 4.124
Group 6 4.442666667 4.442666667 4.437333333 4.432 4.426666667

Table 12 presents the results of six groups results for each q value (q1, q3, q5, q7 and q10). The ranking results of each group in each q rank was consistent with the q-ROFDOSM philosophy comparison conditions, in which the mean value for the first group in each scenario was smaller than the mean results for group 2. The same concept was applied, and the fact that group mean is smaller than the mean of the next corresponding group in each q rank was considered. After the process was successfully achieved in all the groups, the ranking was considered valid. The mean values based on the statistical validation results indicated that the GDM-based q-ROFDOSM results of COVID-19 vaccine distribution were valid and systematically ranked.

4.2. Sensitivity analysis evaluation

In this second evaluation process, the sensitivity of the proposed methods against the changing criterion weight was analysed. Thus, the sensitivity analysis predicted the impact of changes in criterion weights on the systematic ranking results of the vaccine distribution results. First, the most important criterion was identified for each q value. In this study, out of the five criteria, C3 (age) was the most important criterion for all q values, as presented in Table 7. For the examination of the effect of changes in the weights of the criteria, nine different scenarios for each q value generated from criterion weight relativity were computed using Eq. 13 [93]. The relative change for each criterion over the most important one (age) with respect to each q values were computed using the elasticity coefficient (αc), as shown in Table 13 .

wc=(1ws)×(wco/Wc0)=wcoΔxαc, (13a)

Table 13.

Elasticity coefficient (αc) for changing weights.

T value Criteria C1 C2 C3 C4 C5
q = 1 αc 0.265029784 0.264919514 0.309581718 0.254094521 0.215956182
q = 3 αc 0.261365974 0.259631919 0.282267619 0.235169164 0.243832944
q = 5 αc 0.272378478 0.260122827 0.318655605 0.211350989 0.256147706
q = 7 αc 0.286538268 0.253515984 0.354018201 0.184625748 0.27532
q = 10 αc 0.311238476 0.237532804 0.403305378 0.145317753 0.305910967

For a q value,

  • ws is the higher significant contribution.

  • wco represents the original weight values computed using q-ROFWZIC method.

  • Wc0 is the total of original weights for the changing criteria weight values.

  • Δx is the range of change applied on the five criteria weight values, which represents the limit values of the most significant criterion in this study (age) as follows:
    • Ø
      For q = 1, − 0.236 ≤ ▵x ≤ 0.763
    • Ø
      For q = 3, − 0.220 ≤ ▵x ≤ 0.779
    • Ø
      For q = 5, − 0.241 ≤ ▵x ≤ 0.758
    • Ø
      For q = 7,  − 0.261 ≤ ▵x ≤ 0.738
    • Ø
      For q = 10, −0.287 ≤ ▵x ≤ 0.712

The q value for each criterion showed changes in their weights according to Eq. 13, as shown in Table 13. For all (α_c) with respect to q values (q = 1, 3, 5,7, 10), age (C3) received the highest weight, whereas geographic location severity (C4) received the lowest weight, except when q = 1, in which Disabilities (C5) had the lowest weight. Then, the interval range of Δx for q values were used in generating nine new weighting values for each criterion. The range was split into nine equal relative values according to the number of scenarios, as shown in Table 14 .

Table 14.

New weights for each criterion for q values under nine scenarios.

q = 1
C1 C2 C3 C4 C5
q-ROFWZIC 0.202377431 0.202293228 0.236397404 0.194027236 0.164904701
S1 0.202377431 0.202293228 0.236397404 0.194027236 0.164904701
S2 0.265029784 0.264919514 0.00E+00 0.254094521 0.215956182
S3 0.231901061 0.231804574 0.125 0.222332706 0.188961659
S4 0.198772338 0.198689635 0.25 0.190570891 0.161967136
S5 0.165643615 0.165574696 0.375 0.158809075 0.134972613
S6 0.132514892 0.132459757 0.5 0.12704726 0.107978091
S7 0.099386169 0.099344818 0.625 0.095285445 0.080983568
S8 0.066257446 0.066229878 0.75 0.06352363 0.053989045
S9 0.033128723 0.033114939 0.875 0.031761815 0.026994523
q = 3
q-ROFWZIC 0.203831065 0.20247873 0.220131597 0.183401 0.190157608
S1 0.261365974 0.259631919 0.00E+00 0.235169164 0.243832944
S2 0.228695227 0.227177929 0.125 0.205773018 0.213353826
S3 0.19602448 0.194723939 0.25 0.176376873 0.182874708
S4 0.163353734 0.162269949 0.375 0.146980727 0.15239559
S5 0.130682987 0.129815959 0.5 0.117584582 0.121916472
S6 0.09801224 0.09736197 0.625 0.088188436 0.091437354
S7 0.065341493 0.06490798 0.75 0.058792291 0.060958236
S8 0.032670747 0.03245399 0.875 0.029396145 0.030479118
S9 1.00E-05 1.00E-05 0.99996 1.00E-05 1.00E-05
q = 5
q-ROFWZIC 0.206557707 0.197263657 0.241651879 0.160277625 0.194249132
S1 0.272378478 0.260122827 0.00E+00 0.211350989 0.256147706
S2 0.238331168 0.227607473 0.125 0.184932115 0.224129243
S3 0.204283859 0.19509212 0.25 0.158513242 0.19211078
S4 0.170236549 0.162576767 0.375 0.132094368 0.160092317
S5 0.136189239 0.130061413 0.5 0.105675494 0.128073853
S6 0.102141929 0.09754606 0.625 0.079256621 0.09605539
S7 0.06809462 0.065030707 0.75 0.052837747 0.064036927
S8 0.03404731 0.032515353 0.875 0.026418874 0.032018463
S9 1.00E-05 1.00E-05 0.99996 1.00E-05 1.00E-05
q = 7
q-ROFWZIC 0.211620692 0.187232331 0.261457491 0.136353963 0.203335523
S1 0.286538268 0.253515984 2.22E-16 0.184625748 0.27532
S2 0.250720985 0.221826486 0.125 0.16154753 0.240905
S3 0.214903701 0.190136988 0.25 0.138469311 0.20649
S4 0.179086418 0.15844749 0.375 0.115391093 0.172075
S5 0.143269134 0.126757992 0.5 0.092312874 0.13766
S6 0.107451851 0.095068494 0.625 0.069234656 0.103245
S7 0.071634567 0.063378996 0.75 0.046156437 0.06883
S8 0.035817284 0.031689498 0.875 0.023078219 0.034415
S9 1.00E-05 1.00E-05 0.99996 1.00E-05 1.00E-05
q = 10
q-ROFWZIC 0.221789555 0.169266653 0.287396731 0.103553906 0.217993155
S1 0.311238476 0.237532804 1.11E-16 0.145317753 0.305910967
S2 0.272333666 0.207841204 0.125 0.127153034 0.267672096
S3 0.233428857 0.178149603 0.25 0.108988315 0.229433225
S4 0.194524047 0.148458003 0.375 0.090823596 0.191194354
S5 0.155619238 0.118766402 0.5 0.072658876 0.152955484
S6 0.116714428 0.089074802 0.625 0.054494157 0.114716613
S7 0.077809619 0.059383201 0.75 0.036329438 0.076477742
S8 0.038904809 0.029691601 0.875 0.018164719 0.038238871
S9 1.00E-05 1.00E-05 0.99996 1.00E-05 1.00E-05

The ninth new weight value for each q value was used in assessing the sensitivity of the 300 vaccine recipients’ prioritisation at changing criterion weights. The aim was to determine how target q-ROFWZIC weights are affected according to changes under the scenarios for each q value. Fig. 3 illustrates the influences of changes in the criterion weight in the first 10 ranks when q = 1. Figs. A1, A2, A3 and A4 in the Appendix illustrate the influences of changes in criterion weight in the first ten ranks at q values of 3, 5, 7 and 10, respectively. The criterion weights played a vital role in the change in the priority of each vaccine recipient. These scenario results for the nine values supported the research assertion about the significant contribution of the five criteria. Notably, although this change was logical and likely, the unchanged results in most scenarios indicated the efficiency of the proposed integration methods in handling the sensitive cases, which had large datasets, and produced supportive results for the outcomes of systematic ranking.

Fig. 3.

Fig. 3:

Sensitivity analysis of first 10 vaccine receipts ranks in nine scenarios (q = 1).

Fig. A1.

Fig. A1

Sensitivity analysis of first 10 vaccine receipts ranks in 9 scenarios (q = 3).

Fig. A2.

Fig. A2

Sensitivity analysis of first 10 vaccine receipts ranks in 9 scenarios (q = 5).

Fig. A3.

Fig. A3

Sensitivity analysis of first 10 vaccine receipts ranks in 9 scenarios (q = 7).

Fig. A4.

Fig. A4

Sensitivity analysis of first 10 vaccine receipts ranks in 9 scenarios (q = 10).

Based on sensitively analyses results visualised in Figs. 3, A1, A2, A3 and A4, the new ranking results obtained based on the ninth scenario weights for all q values needed to be compared with previous ranking results obtained based on q-ROFWZIC weights (the weights presented in Table 7). The sensitively analysis comparisons can be discussed from two points of view as follows:

First three ranks effectiveness: the comparison with respect to the first three ranking alternatives needed to be discussed because of the vaccine recipients received important orders. When q = 1, the scenarios S3, S4, S5, S6, S7, S8 and S9 had the same ranking results as q-ROFWZIC. The results were obtained by the first three alternatives (V48, V98 and V155), and other scenarios (S1 and S2) were relatively different.

When q = 3, scenarios S3, S4, S5, S6, S7, S8 and S9 had the same ranking results as q-ROFWZIC, which were obtained by the first three alternatives (V271, V289 and V115). THe other scenarios (S1 and S2) were relatively different. When q = 5, 3 and 10, scenarios S3, S4, S5, S6, S7 and S8 had the same ranking results as q-ROFWZIC, which were obtained by the first three alternatives (V271, V289 and V77). The other scenarios (S1, S2 and S9) were relatively different. When the above new results were compared with the first three ranks obtained from q-ROFWZIC weights, no large differences among the first three ranking results for the sensitively of q values were observed. However, the first three ranks cannot provide the full sensitive analyses for the overall changing occurred in the ranking results. Therefore, the overall effect should be discussed.

Overall rank effectiveness: after the overall ranking results were obtained, we found the changing behaviour of the nine scenarios with respect to each q value. How exactly the overall new ranking results affected the previous ranking results obtained from q-ROFWZIC weights must be determined. We measured the effectiveness by calculating the changes that occurred in the orders among the ranks, then we calculated the changes in percentages in the ranking orders. In other words, for q = 1, the number of changes that occurred in the ranking orders obtained from q-ROFWZIC weights after S1 weights were applied was 295 (98.33%), and only five orders did not change and had the same order. Table 15 explains the overall effectiveness on the ranking results among the ninth scenario's weights and q-ROFWZIC weights.

Table 15.

Overall effectiveness (percentages %) between ranks of ninth scenarios weights and q-ROFWZIC weights.

Scenarios q = 1 q = 3 q = 5 q = 7 q = 10
Changing percentage (%) in rank towards q-ROFWZIC S1 98.33 98.33 99.33 98.67 98.67
S2 95.67 92.67 92.67 89.00 85.33
S3 45.00 62.67 52.67 51.67 68.33
S4 88.33 90.67 92.00 87.67 91.33
S5 89.67 92.33 92.00 92.33 92.00
S6 89.67 92.33 92.00 92.00 92.67
S7 90.00 91.67 91.33 91.67 92.67
S8 89.67 91.67 91.33 91.67 93.33
S9 95.00 91.67 92.00 90.00 93.33
mean 86.81 89.33 88.37 87.19 89.74

Table 15 presents the final sensitive analyses for all scenarios with respect to all q values. The highest mean value was obtained when q = 10 (89.74%). The lowest mean value was obtained when q = 1 (86.81%). These interesting results indicated that the rank stability was almost highly sensitive and similar to each other with respect to all q values, and then ranking obtained by q-ROFWZIC weight was affected by the nine scenarios. Surely, these widely changing results in the weights’ numbers changed the overall ranking results. This concept was already reported and considered one of the other MCDM issues and an ‘important criteria’. If we review these issues concepts, we can realise that the ‘important criteria’ have been sensitively recognised and proven here and is a vaccine distribution. At this step, sensitivity analysis was perform for the investigation of the priority ranking stability. However, the sensitivity of the priority ranks of the q values for the nine scenarios were influenced by changes in the criterion weights, and the overall ranks for all vaccine recipients also changed, except some priority ranks (the first three ranks). This fact was probably because of some important issues of criterion importance and has been demonstrated for q-ROFWZIC weights. Finally, the Spearman correlation coefficient (SCC) was used in statistically evaluating the relationships among the results of the 15 scenarios [93]. Fig. 4 shows the high-level correlation among the nine scenarios for all 300 vaccine recipients when q = 1. The remaining correlations for other q values are shown in Figs. A5 , A6 , Fig. A7, Fig. A8 .

Fig. 4.

Fig. 4:

Correlation of ranks among nine scenarios for all 300 vaccine recipients for q of 1.

Fig. A5.

Fig. A5

Correlation of ranks among 9 scenarios for all 300 vaccine recipients for q = 3.

Fig. A6.

Fig. A6

Correlation of ranks among 9 scenarios for all 300 vaccine recipients for q = 5.

Fig. A7.

Fig. A7

Correlation of ranks among 9 scenarios for all 300 vaccine recipients for q = 7.

Fig. A8.

Fig. A8

Correlation of ranks among 9 scenarios for all 300 vaccine recipients for q = 10.

Fig. 4 illustrates the correlation analysis results for the vaccine recipients’ ranking under nine scenarios according to the obtained correlation values for a q value of 1. A high correlation of ranks was observed in all scenarios. For the scenarios S2, S3 and S4, the high SCC values were 0.9872, 0.9998 and 0.9866, respectively, whereas the S9 had the lowest SCC value (0.8658). In the same context, the other correlation results were summarised as follows. For q = 3, the scenarios (S2, S3 and S4) obtained height correlation, where the SCC values were 0.991068166, 0.999110381 and 0.983735559, respectively. S9 had the lowest SCC value of 0.843518692. When q = 5, the scenarios (S2, S3 and S4) obtained height correlation, where the SCC values were 0.987873209, 0.99981133 and 0.988569992, respectively, whereas S9 had the lowest SCC value (0.842974338). When q = 7, scenarios S2, S3 and S4 had height correlation, where the SCC values were 0.983886001, 0.999838187 and 0.992322563, respectively, whereas S9 had the lowest SCC value (0.835992688). When q = 10, scenarios S1, S2, S3, S4, S5 and S6 had the highest correlation results. The SCC values were 0.93096899, 0.981698586, 0.999229063, 0.995156505, 0.976486891 and 0.936642031, respectively. S9 had the lowest SCC value (0.820391763).

In conclusion, for all q values, the highest correlation SCC value corresponded to a q value of 10, in which all the scenarios obtained high correlation analysis results. Accordingly, these high correlation values indicated a significant correlation of the rank outcomes, which in turn supported the systematic ranking results for the q values.

5. Conclusion

The main contribution of this study is a novel extension of FWZIC and FDOSM under the fuzzy environment of q-ROFS. The study methodology was presented on the basis of two phases (Fig. 2), which formulated the steps of the q-ROFWZIC method for criterion weighting and its integration with q-ROFDOSM for alternative ranking. The proposed extension of the methods was applied to the interesting case study of COVID-19 vaccine dose distribution. The robustness of the proposed methods was tested and evaluated with two systematic ranking assessment methods and sensitivity analysis. However, the proposed methods had three main limitations that might be solved in the future works. First, q-ROFWZIC and q-ROFDOSM methods were formulated with one aggregation operator. Second, both methods utilised only one defuzzification technique to produce the final weighting and ranking results. Third, the importance measurement reflected on each decision maker preferences involved in both methods was not considered. Several future directions are recommended: (1) presenting and processing a huge dataset of COVID-19 vaccine recipients by considering all probabilities for each alternative and distribution criteria; (2), performing the proposed MCDM method should be based on two levels: firstly, each vaccine recipient membership (i.e. frontline health workers, key workers and frontline staff employees and none or both children and homemakers will be prioritised, and secondly each alternative within each membership will be prioritised, followed by accumulating them effectively. This direction might investigate other distribution criteria and their effectiveness including the family income and nutritional habits.

CRediT authorship contribution statement

A.S. Albahri: Data curation, Writing – original draft, Visualization. O.S. Albahri: Software, Supervision. A.A. Zaidan: Software, Supervision. Alhamzah Alnoor: Data curation, Writing – original draft, Visualization. H.A. Alsattar: Conceptualization, Methodology. Rawia Mohammed: Data curation, Writing – original draft, Visualization. A.H. Alamoodi: Investigation, Software, Validation, Writing – review & editing. B.B. Zaidan: Investigation, Software, Validation, Writing – review & editing. Uwe Aickelin: Software, Supervision. Mamoun Alazab: Software, Supervision. Salem Garfan: Conceptualization, Methodology. Ibraheem Y.Y. Ahmaro: Conceptualization, Methodology. M.A. Ahmed: Conceptualization, Methodology.

Declaration of competing interest

The authors declares no conflict of interest

Acknowledgement

The authors are grateful to the Universiti Pendidikan Sultan Idris, Malaysia for funding this study under Grant No. 2020-0296-109-11 .

Appendix

Tables A1 and A2

Table A1.

Results of individual q-ROFDOSM.

q = 1
Alternatives Expert 1 Expert 2 Expert 3
Score Final rank Score Final rank Score Final rank
VR1 -0.190854 218 -0.378625 248 -0.294512 241
VR2 0.241797 54 0.133978 60 0.182772 56
VR3 -0.021543 144 -0.110281 145 -0.110281 171
VR4 -0.115005 190 -0.289401 209 -0.212635 209
VR5 -0.13084 204 -0.31839 244 -0.15489 196
VR6 0.078329 114 -0.001965 106 -0.001965 135
VR7 -0.269037 235 -0.48015 269 -0.294512 241
VR8 -0.186338 208 -0.382637 250 -0.212635 209
VR9 0.035383 128 0.012109 96 0.153367 61
VR10 -0.363175 263 -0.48015 269 -0.294512 241
VR11 0.330179 21 0.27567 22 0.322667 16
VR12 0.209614 74 0.080889 70 0.18726 51
VR13 0.020571 136 -0.065652 129 0.002195 132
VR14 -0.037938 169 -0.128636 167 0.00455 130
VR15 0.109813 99 0.17791 39 0.095576 83
VR16 -0.190854 218 -0.378625 248 -0.294512 241
VR17 -0.115005 190 -0.289401 209 -0.212635 209
VR18 0.284053 41 0.164875 40 0.09146 86
VR19 0.097806 102 -0.14555 176 0.018381 118
VR20 0.253721 52 0.139748 55 0.18726 51
VR21 -0.052779 174 -0.065652 129 -0.065652 170
VR22 -0.4627 291 -0.48015 269 -0.588478 293
VR23 -0.363175 263 -0.48015 269 -0.294512 241
VR24 0.427625 6 0.331839 10 0.373441 11
VR25 -0.251335 231 -0.48015 269 -0.254023 230
VR26 0.125322 93 0.048068 80 0.108069 79
VR27 -0.108997 179 -0.205331 186 -0.125477 180
VR28 0.230994 57 -0.128636 167 0.085559 90
VR29 -0.272756 243 -0.212635 194 -0.289401 233
VR30 -0.169193 205 -0.190854 181 -0.021543 138
VR31 0.083372 111 -0.065652 129 0.056836 102
VR32 0.139302 90 -0.001965 106 0.117522 78
VR33 0.216527 65 -0.212635 194 0.147256 66
VR34 -0.040551 171 -0.131448 173 -0.057712 166
VR35 0.319497 29 0.274031 23 0.274031 25
VR36 -0.099267 176 -0.035011 117 -0.190854 199
VR37 0.150309 86 0.020571 88 0.134092 75
VR38 -0.197354 220 -0.301518 216 -0.21566 219
VR39 -0.186338 208 -0.212635 194 -0.039635 150
VR40 0.143588 89 0.073855 77 0.133978 76
VR41 0.083372 111 -0.065652 129 0.056836 102
VR42 -0.117815 195 -0.301518 216 -0.14555 186
VR43 -0.021543 144 -0.110281 145 -0.110281 171
VR44 0.254314 51 0.052912 79 0.188546 50
VR45 0.307268 37 0.139748 55 0.253721 30
VR46 0.164875 81 0.09146 67 0.09146 86
VR47 0.412919 7 0.454382 3 0.454382 4
VR48 -0.197354 220 -0.301518 216 -0.21566 219
VR49 -0.117815 195 -0.301518 216 -0.14555 186
VR50 -0.024535 149 -0.033676 114 -0.033676 146
VR51 0.03865 126 -0.040551 123 0.083372 93
VR52 -0.197354 220 -0.301518 216 -0.21566 219
VR53 -0.366242 280 -0.272756 205 -0.289401 233
VR54 -0.285972 250 -0.301518 216 -0.21566 219
VR55 -0.099359 177 -0.205331 186 -0.035011 148
VR56 -0.186338 208 -0.382637 250 -0.212635 209
VR57 -0.213866 229 -0.15489 178 -0.228829 229
VR58 -0.115005 190 -0.289401 209 -0.212635 209
VR59 -0.030723 151 -0.186338 180 -0.115005 175
VR60 0.05749 117 -0.294512 212 -0.021543 138
VR61 -0.366242 280 -0.382637 250 -0.382637 271
VR62 0.02854 135 -0.117594 148 0.018762 117
VR63 -0.110029 183 -0.123423 149 -0.206604 204
VR64 -0.117815 195 -0.301518 216 -0.14555 186
VR65 0.331839 20 0.331839 10 0.373441 11
VR66 -0.285972 250 -0.301518 216 -0.398073 275
VR67 0.097806 102 0.018381 93 0.018381 118
VR68 0.043912 120 -0.212635 194 -0.039635 150
VR69 -0.272756 243 -0.212635 194 -0.289401 233
VR70 0.122533 94 -0.108997 143 0.164822 58
VR71 0.213142 70 0.330179 13 0.267667 26
VR72 -0.285972 250 -0.301518 216 -0.398073 275
VR73 -0.030815 153 -0.105112 139 -0.033241 143
VR74 -0.251335 231 -0.254023 203 -0.254023 230
VR75 0.134092 91 0.002195 105 0.056836 102
VR76 0.04377 122 -0.128636 167 -0.128636 184
VR77 0.097806 102 0.018381 93 0.018381 118
VR78 0.27986 44 0.155125 43 0.091972 85
VR79 0.271902 47 0.15359 47 0.250681 31
VR80 0.116614 96 0.043912 84 0.043912 106
VR81 0.22175 61 0.012109 96 0.153367 61
VR82 -0.023197 148 -0.108997 143 -0.035011 148
VR83 -0.272756 243 -0.382637 250 -0.289401 233
VR84 -0.363175 263 -0.48015 269 -0.294512 241
VR85 0.248774 53 0.143588 54 0.241797 33
VR86 0.223245 59 0.134092 59 0.083372 93
VR87 0.209633 73 0.087637 68 0.139768 73
VR88 0.097806 102 0.018381 93 0.018381 118
VR89 0.035383 128 -0.123423 149 0.012109 122
VR90 -0.197354 220 -0.301518 216 -0.21566 219
VR91 -0.363175 263 -0.48015 269 -0.378625 258
VR92 -0.285972 250 -0.301518 216 -0.398073 275
VR93 0.394863 12 0.43757 5 0.43757 6
VR94 0.359892 16 0.316397 14 0.394912 10
VR95 -0.033676 159 -0.123423 149 -0.048888 154
VR96 0.213142 70 0.218326 29 0.267667 26
VR97 0.04099 123 -0.037938 118 0.030116 111
VR98 -0.18749 215 -0.197354 182 -0.197354 201
VR99 0.116614 96 0.043912 84 0.043912 106
VR100 0.279965 43 0.22175 28 0.22175 39
VR101 -0.052692 173 -0.21566 201 -0.14555 186
VR102 -0.4627 291 -0.48015 269 -0.48015 285
VR103 -0.363175 263 -0.48015 269 -0.378625 258
VR104 -0.030815 153 -0.105112 139 -0.033241 143
VR105 0.147786 87 -0.091187 137 0.036678 109
VR106 -0.110029 183 -0.123423 149 -0.123423 178
VR107 0.010019 142 -0.001965 106 -0.001965 135
VR108 -0.197354 220 -0.301518 216 -0.21566 219
VR109 0.092047 108 -0.048888 125 0.012109 122
VR110 0.216527 65 0.147256 51 0.147256 66
VR111 -0.108997 179 -0.205331 186 -0.125477 180
VR112 -0.110029 183 -0.123423 149 -0.206604 204
VR113 -0.033676 159 0.080889 70 -0.048888 154
VR114 -0.18749 215 0.020571 88 -0.197354 201
VR115 -0.4627 291 -0.205331 186 -0.48015 285
VR116 -0.033676 159 0.080889 70 0.012109 122
VR117 0.216527 65 0.00455 101 0.147256 66
VR118 0.018681 140 0.011114 100 -0.062214 169
VR119 -0.033241 156 -0.197354 182 -0.052692 162
VR120 0.213142 70 0.218326 29 0.218326 40
VR121 0.160425 82 -0.065652 129 0.192395 49
VR122 -0.033301 158 -0.040551 123 0.083372 93
VR123 -0.269037 235 -0.48015 269 -0.294512 241
VR124 0.121118 95 -0.023197 111 0.05735 101
VR125 0.463481 3 0.331839 10 0.406643 9
VR126 0.317158 33 0.04602 82 0.106656 80
VR127 0.27567 46 0.17915 38 0.139748 74
VR128 0.011114 141 -0.205331 186 -0.004554 137
VR129 -0.363175 263 -0.205331 186 -0.378625 258
VR130 0.284053 41 -0.060162 128 0.09146 86
VR131 -0.169193 205 -0.363175 245 -0.190854 199
VR132 0.020571 136 -0.065652 129 0.002195 132
VR133 -0.117815 195 -0.301518 216 -0.14555 186
VR134 -0.117815 195 -0.301518 216 -0.14555 186
VR135 0.305207 38 0.225928 26 0.167589 57
VR136 -0.366242 280 -0.382637 250 -0.382637 271
VR137 -0.172547 207 -0.272756 205 -0.186338 198
VR138 -0.366242 280 -0.382637 250 -0.484438 287
VR139 -0.366242 280 -0.382637 250 -0.382637 271
VR140 -0.18749 215 -0.197354 182 -0.197354 201
VR141 0.317871 32 0.264468 25 0.310503 19
VR142 -0.11788 203 -0.131448 173 -0.131448 185
VR143 0.364872 13 0.056836 78 0.192447 47
VR144 0.164904 79 0.097806 63 0.097806 81
VR145 0.152271 84 0.030116 87 0.085559 90
VR146 -0.269037 235 -0.48015 269 -0.294512 241
VR147 -0.363175 263 -0.294512 212 -0.378625 258
VR148 -0.186338 208 -0.382637 250 -0.212635 209
VR149 -0.117815 195 -0.301518 216 -0.14555 186
VR150 -0.366242 280 -0.382637 250 -0.484438 287
VR151 -0.254023 233 -0.363175 245 -0.269037 232
VR152 0.231564 56 0.158964 41 0.226656 36
VR153 0.318581 30 0.366786 8 0.366786 14
VR154 0.230994 57 -0.037938 118 0.085559 90
VR155 0.108786 100 -0.033676 114 0.092047 84
VR156 -0.021543 144 -0.110281 145 -0.110281 171
VR157 -0.021543 144 -0.294512 212 -0.110281 171
VR158 0.360842 14 0.304029 16 0.304029 22
VR159 -0.108997 179 -0.205331 186 -0.125477 180
VR160 -0.040551 171 -0.131448 173 -0.057712 166
VR161 -0.108997 179 -0.205331 186 -0.125477 180
VR162 0.10372 101 0.138703 58 0.087904 89
VR163 -0.366242 280 -0.382637 250 -0.484438 287
VR164 -0.363175 263 -0.48015 269 -0.378625 258
VR165 0.04099 123 -0.037938 118 0.030116 111
VR166 -0.4627 291 -0.48015 269 -0.588478 293
VR167 -0.117815 195 -0.301518 216 -0.14555 186
VR168 0.049247 119 -0.033512 113 0.034551 110
VR169 -0.037938 169 0.00455 101 -0.055153 165
VR170 -0.033241 156 -0.052692 126 -0.052692 162
VR171 0.349987 17 0.280207 20 0.240068 34
VR172 0.05749 117 -0.021543 110 -0.021543 138
VR173 0.203123 76 0.093415 64 0.195862 46
VR174 -0.110029 183 -0.123423 149 -0.206604 204
VR175 0.360842 14 0.18726 37 0.304029 22
VR176 0.322667 27 0.080889 70 0.18726 51
VR177 0.209614 74 0.080889 70 0.18726 51
VR178 0.043912 120 -0.039635 122 -0.039635 150
VR179 0.216527 65 0.147256 51 0.147256 66
VR180 -0.033676 159 -0.123423 149 0.012109 122
VR181 0.073855 116 -0.007345 109 0.057589 100
VR182 0.330179 21 0.155125 43 0.209614 42
VR183 0.159489 83 0.155125 43 0.209614 42
VR184 -0.024535 149 -0.033676 114 -0.033676 146
VR185 0.035383 128 -0.123423 149 0.012109 122
VR186 -0.033676 159 -0.123423 149 -0.048888 154
VR187 -0.366242 280 -0.382637 250 -0.484438 287
VR188 -0.285972 250 -0.301518 216 -0.398073 275
VR189 0.412158 9 0.365848 9 0.437775 5
VR190 -0.4627 291 -0.48015 269 -0.588478 293
VR191 -0.197354 220 -0.301518 216 -0.21566 219
VR192 -0.363175 263 -0.48015 269 -0.378625 258
VR193 -0.366242 280 -0.382637 250 -0.382637 271
VR194 -0.030808 152 -0.037938 118 -0.115098 177
VR195 -0.269037 235 -0.48015 269 -0.294512 241
VR196 0.255951 50 0.149041 50 0.248837 32
VR197 0.328602 23 0.00455 101 0.147256 66
VR198 -0.363175 263 -0.48015 269 -0.378625 258
VR199 -0.197354 220 -0.301518 216 -0.21566 219
VR200 0.151307 85 0.093415 64 0.150309 65
VR201 -0.016633 143 -0.104598 138 -0.030584 142
VR202 0.322667 27 0.080889 70 0.18726 51
VR203 -0.186338 208 -0.212635 194 -0.039635 150
VR204 -0.110029 183 -0.123423 149 -0.123423 178
VR205 -0.4627 291 -0.48015 269 -0.588478 293
VR206 0.406533 10 0.412158 6 0.367572 13
VR207 -0.197354 220 -0.301518 216 -0.21566 219
VR208 -0.272756 243 -0.382637 250 -0.289401 233
VR209 -0.4627 291 -0.48015 269 -0.588478 293
VR210 -0.363175 263 -0.48015 269 -0.378625 258
VR211 -0.272756 243 -0.212635 194 -0.289401 233
VR212 -0.033676 159 -0.123423 149 -0.048888 154
VR213 -0.285972 250 -0.301518 216 -0.398073 275
VR214 0.03442 133 -0.105112 139 0.025128 115
VR215 0.326335 25 0.279965 21 0.279965 24
VR216 0.116614 96 0.043912 84 -0.115005 175
VR217 0.238582 55 0.117164 62 0.224268 38
VR218 0.091972 109 0.080889 70 0.012028 129
VR219 0.344544 18 0.288536 19 0.235052 35
VR220 -0.285972 250 -0.301518 216 -0.398073 275
VR221 0.498403 2 0.466378 2 0.523567 1
VR222 -0.272756 243 -0.382637 250 -0.289401 233
VR223 0.277107 45 0.158964 41 0.257625 29
VR224 0.182402 77 -0.023197 111 0.043635 108
VR225 -0.285972 250 -0.301518 216 -0.398073 275
VR226 0.03865 126 -0.182419 179 0.027739 114
VR227 -0.363175 263 -0.48015 269 -0.378625 258
VR228 0.318581 30 0.292041 18 0.318581 17
VR229 -0.4627 291 -0.48015 269 -0.588478 293
VR230 0.216527 65 0.147256 51 0.147256 66
VR231 0.167637 78 0.04641 81 0.159557 59
VR232 0.446754 5 0.195862 35 0.311698 18
VR233 -0.269037 235 -0.48015 269 -0.294512 241
VR234 -0.030815 153 -0.105112 139 -0.033241 143
VR235 0.412919 7 0.389848 7 0.412919 7
VR236 -0.285972 250 -0.301518 216 -0.301518 255
VR237 0.14369 88 0.04602 82 -0.025628 141
VR238 -0.272756 243 -0.382637 250 -0.289401 233
VR239 0.093415 106 0.020571 88 0.083372 93
VR240 -0.285972 250 -0.301518 216 -0.301518 255
VR241 0.218326 64 0.155125 43 0.209614 42
VR242 0.343626 19 0.268667 24 0.213142 41
VR243 -0.366242 280 -0.382637 250 -0.484438 287
VR244 0.020571 136 -0.065652 129 0.002195 132
VR245 0.22175 61 0.153367 48 0.153367 61
VR246 0.326238 26 0.218326 29 0.159489 60
VR247 0.018762 139 -0.269037 204 -0.062125 168
VR248 -0.115098 193 -0.128636 167 -0.212736 217
VR249 -0.2593 234 -0.272756 205 -0.366242 257
VR250 -0.285972 250 -0.301518 216 -0.398073 275
VR251 0.268667 48 0.218326 29 0.267667 26
VR252 -0.363175 263 -0.48015 269 -0.294512 241
VR253 -0.269037 235 -0.48015 269 -0.294512 241
VR254 0.093415 106 0.020571 88 0.083372 93
VR255 0.397344 11 0.301519 17 0.345168 15
VR256 -0.110029 183 -0.123423 149 -0.206604 204
VR257 0.035383 128 -0.123423 149 0.012109 122
VR258 -0.104911 178 -0.200702 185 -0.055127 164
VR259 -0.363175 263 -0.48015 269 -0.378625 258
VR260 0.22175 61 0.012109 96 0.153367 61
VR261 -0.285972 250 -0.301518 216 -0.398073 275
VR262 0.04099 123 0.085559 69 0.030116 111
VR263 -0.363175 263 -0.294512 212 -0.378625 258
VR264 -0.033676 159 -0.123423 149 -0.048888 154
VR265 0.128432 92 0.125322 61 0.125322 77
VR266 0.223245 59 0.020571 88 0.083372 93
VR267 -0.186338 208 -0.382637 250 -0.212635 209
VR268 0.030116 134 -0.128636 167 0.00455 130
VR269 -0.4627 291 -0.48015 269 -0.588478 293
VR270 -0.110029 183 -0.123423 149 -0.206604 204
VR271 -0.346253 262 -0.363175 245 -0.4627 284
VR272 0.035383 128 0.012109 96 0.012109 122
VR273 -0.088215 175 -0.284314 208 -0.169261 197
VR274 0.454382 4 0.454382 3 0.48779 3
VR275 0.083372 111 -0.065652 129 0.056836 102
VR276 0.328602 23 0.00455 101 0.147256 66
VR277 0.164904 79 -0.052692 126 0.097806 81
VR278 -0.115098 193 -0.128636 167 -0.212736 217
VR279 -0.363175 263 -0.48015 269 -0.378625 258
VR280 0.086757 110 0.093415 64 0.025049 116
VR281 0.50525 1 0.540332 1 0.50525 2
VR282 0.305207 38 0.225928 26 0.225928 37
VR283 0.313579 34 0.218326 29 0.307268 20
VR284 0.313579 34 0.218326 29 0.307268 20
VR285 -0.4627 291 -0.48015 269 -0.588478 293
VR286 0.074737 115 0.13932 57 0.074737 99
VR287 -0.033676 159 -0.123423 149 -0.048888 154
VR288 0.313579 34 0.307268 15 0.406982 8
VR289 -0.217709 230 -0.23237 202 -0.150076 195
VR290 -0.363175 263 -0.48015 269 -0.378625 258
VR291 -0.366242 280 -0.382637 250 -0.484438 287
VR292 0.258479 49 0.192447 36 0.192447 47
VR293 -0.269037 235 -0.48015 269 -0.294512 241
VR294 -0.186338 208 -0.382637 250 -0.212635 209
VR295 -0.269037 235 -0.48015 269 -0.294512 241
VR296 -0.197354 220 -0.301518 216 -0.21566 219
VR297 0.292041 40 0.151307 49 0.203123 45
VR298 -0.117815 195 -0.14555 176 -0.14555 186
VR299 -0.033676 159 -0.123423 149 -0.048888 154
VR300 -0.033676 159 -0.123423 149 -0.048888 154
q = 3
Alternatives Expert 1 Expert 2 Expert 3
Score final rank Score final rank Score final rank
VR1 -0.130612 205 -0.327956 248 -0.231083 233
VR2 0.27259 69 0.159673 71 0.222882 71
VR3 0.078316 131 0.014126 118 0.014126 157
VR4 -0.064433 189 -0.247035 214 -0.155851 209
VR5 -0.079331 204 -0.239367 213 -0.073248 185
VR6 0.145141 111 0.094111 93 0.094111 122
VR7 -0.22061 234 -0.425087 269 -0.231083 233
VR8 -0.149352 219 -0.33734 250 -0.155851 209
VR9 0.105552 123 0.114789 86 0.272782 47
VR10 -0.305836 262 -0.425087 269 -0.231083 233
VR11 0.377745 28 0.337076 20 0.37483 20
VR12 0.260942 74 0.167456 62 0.276996 41
VR13 0.06881 136 -0.000572 131 0.064082 138
VR14 0.001663 168 -0.07201 166 0.071259 131
VR15 0.170959 104 0.223638 48 0.176582 83
VR16 -0.130612 205 -0.327956 248 -0.231083 233
VR17 -0.064433 189 -0.247035 214 -0.155851 209
VR18 0.356714 41 0.238963 47 0.194821 76
VR19 0.188102 92 -0.079571 174 0.132984 100
VR20 0.316605 51 0.218567 49 0.276996 41
VR21 0.00514 167 -0.000572 131 -0.000572 170
VR22 -0.415233 291 -0.425087 269 -0.564717 293
VR23 -0.305836 262 -0.425087 269 -0.231083 233
VR24 0.452275 12 0.360692 13 0.39699 13
VR25 -0.208595 231 -0.425087 269 -0.214075 230
VR26 0.166931 105 0.115163 85 0.169972 86
VR27 -0.058042 185 -0.1389 180 -0.064842 179
VR28 0.269094 70 -0.07201 166 0.133424 93
VR29 -0.228857 242 -0.155851 193 -0.247035 247
VR30 -0.135662 207 -0.130612 179 0.078316 125
VR31 0.126665 119 -0.000572 131 0.133252 96
VR32 0.195892 89 0.094111 93 0.21331 75
VR33 0.279536 61 -0.155851 193 0.239195 60
VR34 -0.005596 173 -0.07973 176 -0.010142 173
VR35 0.379934 25 0.32507 23 0.32507 27
VR36 -0.05172 183 0.008072 124 -0.130612 202
VR37 0.184598 99 0.06881 104 0.191793 79
VR38 -0.14704 210 -0.24925 217 -0.164679 220
VR39 -0.149352 219 -0.155851 193 0.070729 133
VR40 0.163783 107 0.106309 91 0.159673 89
VR41 0.126665 119 -0.000572 131 0.133252 96
VR42 -0.072651 194 -0.24925 217 -0.079571 186
VR43 0.078316 131 0.014126 118 0.014126 157
VR44 0.309457 55 0.127636 84 0.276007 46
VR45 0.360064 40 0.218567 49 0.316605 29
VR46 0.238963 80 0.194821 58 0.194821 76
VR47 0.465015 8 0.482826 4 0.482826 6
VR48 -0.14704 210 -0.24925 217 -0.164679 220
VR49 -0.072651 194 -0.24925 217 -0.079571 186
VR50 0.054009 148 0.046851 114 0.046851 146
VR51 0.061525 145 -0.005596 139 0.126665 106
VR52 -0.14704 210 -0.24925 217 -0.164679 220
VR53 -0.32838 280 -0.228857 206 -0.247035 247
VR54 -0.240808 250 -0.24925 217 -0.164679 220
VR55 -0.05321 184 -0.1389 180 0.008072 161
VR56 -0.149352 219 -0.33734 250 -0.155851 209
VR57 -0.151289 229 -0.073248 172 -0.158754 219
VR58 -0.064433 189 -0.247035 214 -0.155851 209
VR59 0.009207 164 -0.149352 192 -0.064433 177
VR60 0.139085 112 -0.231083 209 0.078316 125
VR61 -0.32838 280 -0.33734 250 -0.33734 271
VR62 0.073623 135 -0.073802 173 0.06786 137
VR63 -0.015776 175 -0.02139 141 -0.100572 197
VR64 -0.072651 194 -0.24925 217 -0.079571 186
VR65 0.360692 39 0.360692 13 0.39699 13
VR66 -0.240808 250 -0.24925 217 -0.36883 275
VR67 0.188102 92 0.132984 75 0.132984 100
VR68 0.129269 116 -0.155851 193 0.070729 133
VR69 -0.228857 242 -0.155851 193 -0.247035 247
VR70 0.180021 100 -0.058042 160 0.238066 67
VR71 0.288297 57 0.377745 12 0.30785 31
VR72 -0.240808 250 -0.24925 217 -0.36883 275
VR73 0.017897 160 -0.066946 162 0.001538 165
VR74 -0.208595 231 -0.214075 203 -0.214075 230
VR75 0.191793 90 0.064082 109 0.133252 96
VR76 0.127038 118 -0.07201 166 -0.07201 184
VR77 0.188102 92 0.132984 75 0.132984 100
VR78 0.352101 44 0.214307 51 0.171294 85
VR79 0.33441 48 0.258966 41 0.35533 25
VR80 0.186258 96 0.129269 81 0.129269 104
VR81 0.310251 52 0.114789 86 0.272782 47
VR82 0.013153 163 -0.058042 160 0.008072 161
VR83 -0.228857 242 -0.33734 250 -0.247035 247
VR84 -0.305836 262 -0.425087 269 -0.231083 233
VR85 0.277132 66 0.163783 70 0.27259 51
VR86 0.276528 67 0.191793 60 0.126665 106
VR87 0.261326 73 0.155817 72 0.21897 72
VR88 0.188102 92 0.132984 75 0.132984 100
VR89 0.105552 123 -0.02139 141 0.114789 112
VR90 -0.14704 210 -0.24925 217 -0.164679 220
VR91 -0.305836 262 -0.425087 269 -0.327956 257
VR92 -0.240808 250 -0.24925 217 -0.36883 275
VR93 0.469215 7 0.486764 3 0.486764 5
VR94 0.426166 14 0.391824 11 0.469824 7
VR95 0.046851 150 -0.02139 141 0.043972 148
VR96 0.288297 57 0.264536 35 0.30785 31
VR97 0.068315 139 0.001663 127 0.063557 141
VR98 -0.150672 226 -0.14704 189 -0.14704 205
VR99 0.186258 96 0.129269 81 0.129269 104
VR100 0.353613 43 0.310251 26 0.310251 30
VR101 0.006556 166 -0.164679 201 -0.079571 186
VR102 -0.415233 291 -0.425087 269 -0.425087 285
VR103 -0.305836 262 -0.425087 269 -0.327956 257
VR104 0.017897 160 -0.066946 162 0.001538 165
VR105 0.203193 87 -0.052292 159 0.088166 124
VR106 -0.015776 175 -0.02139 141 -0.02139 175
VR107 0.098292 129 0.094111 93 0.094111 122
VR108 -0.14704 210 -0.24925 217 -0.164679 220
VR109 0.172385 102 0.043972 117 0.114789 112
VR110 0.279536 61 0.239195 44 0.239195 60
VR111 -0.058042 185 -0.1389 180 -0.064842 179
VR112 -0.015776 175 -0.02139 141 -0.100572 197
VR113 0.046851 150 0.167456 62 0.043972 148
VR114 -0.150672 226 0.06881 104 -0.14704 205
VR115 -0.415233 291 -0.1389 180 -0.425087 285
VR116 0.046851 150 0.167456 62 0.114789 112
VR117 0.279536 61 0.071259 99 0.239195 60
VR118 0.066622 143 0.055009 111 -0.000295 169
VR119 0.001538 170 -0.14704 189 0.006556 163
VR120 0.288297 57 0.264536 35 0.264536 54
VR121 0.227345 82 -0.000572 131 0.289745 39
VR122 0.000652 172 -0.005596 139 0.126665 106
VR123 -0.22061 234 -0.425087 269 -0.231083 233
VR124 0.206411 86 0.013153 122 0.136885 92
VR125 0.482408 6 0.360692 13 0.442818 11
VR126 0.371885 32 0.092298 96 0.14863 91
VR127 0.337076 47 0.252637 42 0.218567 73
VR128 0.055009 147 -0.1389 180 0.057382 144
VR129 -0.305836 262 -0.1389 180 -0.327956 257
VR130 0.356714 41 0.013739 121 0.194821 76
VR131 -0.135662 207 -0.305836 245 -0.130612 202
VR132 0.06881 136 -0.000572 131 0.064082 138
VR133 -0.072651 194 -0.24925 217 -0.079571 186
VR134 -0.072651 194 -0.24925 217 -0.079571 186
VR135 0.365877 33 0.269508 33 0.231136 68
VR136 -0.32838 280 -0.33734 250 -0.33734 271
VR137 -0.143254 209 -0.228857 206 -0.149352 208
VR138 -0.32838 280 -0.33734 250 -0.464217 287
VR139 -0.32838 280 -0.33734 250 -0.33734 271
VR140 -0.150672 226 -0.14704 189 -0.14704 205
VR141 0.382917 24 0.342148 19 0.379996 18
VR142 -0.073628 202 -0.07973 176 -0.07973 195
VR143 0.431553 13 0.133252 74 0.290635 37
VR144 0.241347 78 0.188102 61 0.188102 80
VR145 0.190923 91 0.063557 110 0.133424 93
VR146 -0.22061 234 -0.425087 269 -0.231083 233
VR147 -0.305836 262 -0.231083 209 -0.327956 257
VR148 -0.149352 219 -0.33734 250 -0.155851 209
VR149 -0.072651 194 -0.24925 217 -0.079571 186
VR150 -0.32838 280 -0.33734 250 -0.464217 287
VR151 -0.214075 233 -0.305836 245 -0.22061 232
VR152 0.338101 46 0.290817 27 0.32326 28
VR153 0.379236 26 0.40453 9 0.40453 12
VR154 0.269094 70 0.001663 127 0.133424 93
VR155 0.164382 106 0.046851 114 0.172385 84
VR156 0.078316 131 0.014126 118 0.014126 157
VR157 0.078316 131 -0.231083 209 0.014126 157
VR158 0.422933 15 0.396739 10 0.396739 15
VR159 -0.058042 185 -0.1389 180 -0.064842 179
VR160 -0.005596 173 -0.07973 176 -0.010142 173
VR161 -0.058042 185 -0.1389 180 -0.064842 179
VR162 0.209998 85 0.272933 31 0.214184 74
VR163 -0.32838 280 -0.33734 250 -0.464217 287
VR164 -0.305836 262 -0.425087 269 -0.327956 257
VR165 0.068315 139 0.001663 127 0.063557 141
VR166 -0.415233 291 -0.425087 269 -0.564717 293
VR167 -0.072651 194 -0.24925 217 -0.079571 186
VR168 0.152411 109 0.102211 92 0.157248 90
VR169 0.001663 168 0.071259 99 -0.002902 172
VR170 0.001538 170 0.006556 125 0.006556 163
VR171 0.396056 21 0.322077 25 0.266858 53
VR172 0.139085 112 0.078316 98 0.078316 125
VR173 0.250201 76 0.131112 78 0.245531 59
VR174 -0.015776 175 -0.02139 141 -0.100572 197
VR175 0.422933 15 0.276996 30 0.396739 15
VR176 0.37483 30 0.167456 62 0.276996 41
VR177 0.260942 74 0.167456 62 0.276996 41
VR178 0.129269 116 0.070729 103 0.070729 133
VR179 0.279536 61 0.239195 44 0.239195 60
VR180 0.046851 150 -0.02139 141 0.114789 112
VR181 0.106309 122 0.051311 112 0.10995 120
VR182 0.377745 28 0.214307 51 0.260942 55
VR183 0.225938 83 0.214307 51 0.260942 55
VR184 0.054009 148 0.046851 114 0.046851 146
VR185 0.105552 123 -0.02139 141 0.114789 112
VR186 0.046851 150 -0.02139 141 0.043972 148
VR187 -0.32838 280 -0.33734 250 -0.464217 287
VR188 -0.240808 250 -0.24925 217 -0.36883 275
VR189 0.464918 10 0.430736 8 0.503466 4
VR190 -0.415233 291 -0.425087 269 -0.564717 293
VR191 -0.14704 210 -0.24925 217 -0.164679 220
VR192 -0.305836 262 -0.425087 269 -0.327956 257
VR193 -0.32838 280 -0.33734 250 -0.33734 271
VR194 0.007821 165 0.001663 127 -0.065945 183
VR195 -0.22061 234 -0.425087 269 -0.231083 233
VR196 0.308098 56 0.199802 57 0.303745 34
VR197 0.389648 22 0.071259 99 0.239195 60
VR198 -0.305836 262 -0.425087 269 -0.327956 257
VR199 -0.14704 210 -0.24925 217 -0.164679 220
VR200 0.200886 88 0.131112 78 0.184598 82
VR201 0.104142 128 0.049175 113 0.107908 121
VR202 0.37483 30 0.167456 62 0.276996 41
VR203 -0.149352 219 -0.155851 193 0.070729 133
VR204 -0.015776 175 -0.02139 141 -0.02139 175
VR205 -0.415233 291 -0.425087 269 -0.564717 293
VR206 0.491209 4 0.464918 6 0.445894 10
VR207 -0.14704 210 -0.24925 217 -0.164679 220
VR208 -0.228857 242 -0.33734 250 -0.247035 247
VR209 -0.415233 291 -0.425087 269 -0.564717 293
VR210 -0.305836 262 -0.425087 269 -0.327956 257
VR211 -0.228857 242 -0.155851 193 -0.247035 247
VR212 0.046851 150 -0.02139 141 0.043972 148
VR213 -0.240808 250 -0.24925 217 -0.36883 275
VR214 0.081113 130 -0.066946 162 0.075446 128
VR215 0.406214 18 0.353613 17 0.353613 26
VR216 0.186258 96 0.129269 81 -0.064433 177
VR217 0.287752 60 0.194427 59 0.298398 35
VR218 0.171294 103 0.167456 62 0.113552 119
VR219 0.403641 20 0.325966 22 0.296614 36
VR220 -0.240808 250 -0.24925 217 -0.36883 275
VR221 0.548557 2 0.522165 2 0.583051 1
VR222 -0.228857 242 -0.33734 250 -0.247035 247
VR223 0.361952 38 0.290817 27 0.382883 17
VR224 0.246511 77 0.013153 122 0.074239 129
VR225 -0.240808 250 -0.24925 217 -0.36883 275
VR226 0.061525 145 -0.142464 188 0.056734 145
VR227 -0.305836 262 -0.425087 269 -0.327956 257
VR228 0.379236 26 0.345244 18 0.379236 19
VR229 -0.415233 291 -0.425087 269 -0.564717 293
VR230 0.279536 61 0.239195 44 0.239195 60
VR231 0.231738 81 0.110066 90 0.226943 69
VR232 0.509882 3 0.245531 43 0.371102 21
VR233 -0.22061 234 -0.425087 269 -0.231083 233
VR234 0.017897 160 -0.066946 162 0.001538 165
VR235 0.465015 8 0.436536 7 0.465015 8
VR236 -0.240808 250 -0.24925 217 -0.24925 255
VR237 0.219301 84 0.092298 96 0.030548 156
VR238 -0.228857 242 -0.33734 250 -0.247035 247
VR239 0.131112 114 0.06881 104 0.126665 106
VR240 -0.240808 250 -0.24925 217 -0.24925 255
VR241 0.264536 72 0.214307 51 0.260942 55
VR242 0.413532 17 0.324179 24 0.288297 40
VR243 -0.32838 280 -0.33734 250 -0.464217 287
VR244 0.06881 136 -0.000572 131 0.064082 138
VR245 0.310251 52 0.272782 32 0.272782 47
VR246 0.40482 19 0.264536 35 0.225938 70
VR247 0.06786 142 -0.22061 204 0.001051 168
VR248 -0.065945 192 -0.07201 166 -0.157601 217
VR249 -0.232128 249 -0.228857 206 -0.32838 270
VR250 -0.240808 250 -0.24925 217 -0.36883 275
VR251 0.324179 50 0.264536 35 0.30785 31
VR252 -0.305836 262 -0.425087 269 -0.231083 233
VR253 -0.22061 234 -0.425087 269 -0.231083 233
VR254 0.131112 114 0.06881 104 0.126665 106
VR255 0.457579 11 0.332181 21 0.37034 22
VR256 -0.015776 175 -0.02139 141 -0.100572 197
VR257 0.105552 123 -0.02139 141 0.114789 112
VR258 -0.078151 203 -0.156871 200 -0.002391 171
VR259 -0.305836 262 -0.425087 269 -0.327956 257
VR260 0.310251 52 0.114789 86 0.272782 47
VR261 -0.240808 250 -0.24925 217 -0.36883 275
VR262 0.068315 139 0.133424 73 0.063557 141
VR263 -0.305836 262 -0.231083 209 -0.327956 257
VR264 0.046851 150 -0.02139 141 0.043972 148
VR265 0.177988 101 0.166931 69 0.166931 87
VR266 0.276528 67 0.06881 104 0.126665 106
VR267 -0.149352 219 -0.33734 250 -0.155851 209
VR268 0.063557 144 -0.07201 166 0.071259 131
VR269 -0.415233 291 -0.425087 269 -0.564717 293
VR270 -0.015776 175 -0.02139 141 -0.100572 197
VR271 -0.311733 279 -0.305836 245 -0.415233 284
VR272 0.105552 123 0.114789 86 0.114789 112
VR273 -0.046232 182 -0.228853 205 -0.136685 204
VR274 0.482826 5 0.482826 4 0.511385 3
VR275 0.126665 119 -0.000572 131 0.133252 96
VR276 0.389648 22 0.071259 99 0.239195 60
VR277 0.241347 78 0.006556 125 0.188102 80
VR278 -0.065945 192 -0.07201 166 -0.157601 217
VR279 -0.305836 262 -0.425087 269 -0.327956 257
VR280 0.147887 110 0.131112 78 0.074148 130
VR281 0.569452 1 0.581347 1 0.569452 2
VR282 0.365877 33 0.269508 33 0.269508 52
VR283 0.364065 35 0.264536 35 0.360064 23
VR284 0.364065 35 0.264536 35 0.360064 23
VR285 -0.415233 291 -0.425087 269 -0.564717 293
VR286 0.16105 108 0.209246 55 0.16105 88
VR287 0.046851 150 -0.02139 141 0.043972 148
VR288 0.364065 35 0.360064 16 0.458179 9
VR289 -0.15995 230 -0.166556 202 -0.091334 196
VR290 -0.305836 262 -0.425087 269 -0.327956 257
VR291 -0.32838 280 -0.33734 250 -0.464217 287
VR292 0.328595 49 0.290635 29 0.290635 37
VR293 -0.22061 234 -0.425087 269 -0.231083 233
VR294 -0.149352 219 -0.33734 250 -0.155851 209
VR295 -0.22061 234 -0.425087 269 -0.231083 233
VR296 -0.14704 210 -0.24925 217 -0.164679 220
VR297 0.345244 45 0.200886 56 0.250201 58
VR298 -0.072651 194 -0.079571 174 -0.079571 186
VR299 0.046851 150 -0.02139 141 0.043972 148
VR300 0.046851 150 -0.02139 141 0.043972 148
q = 5
Alternatives Expert 1 Expert 2 Expert 3
Score final rank Score final rank Score final rank
VR1 -0.045117 205 -0.205559 248 -0.128103 233
VR2 0.18326 86 0.104189 91 0.155117 81
VR3 0.116648 117 0.079693 100 0.079693 132
VR4 -0.011278 189 -0.156481 214 -0.083244 210
VR5 -0.028273 202 -0.13111 213 -0.015679 179
VR6 0.117504 116 0.090003 97 0.090003 129
VR7 -0.113159 234 -0.276722 269 -0.128103 233
VR8 -0.076365 220 -0.220682 250 -0.083244 210
VR9 0.098267 127 0.115263 80 0.242009 33
VR10 -0.165607 262 -0.276722 269 -0.128103 233
VR11 0.283182 33 0.260493 20 0.279962 21
VR12 0.190947 81 0.141684 65 0.21817 43
VR13 0.06745 139 0.021789 131 0.061079 145
VR14 0.02265 175 -0.026943 168 0.073968 137
VR15 0.148018 102 0.176732 51 0.153108 82
VR16 -0.045117 205 -0.205559 248 -0.128103 233
VR17 -0.011278 189 -0.156481 214 -0.083244 210
VR18 0.293071 29 0.206362 38 0.186869 68
VR19 0.177801 89 -0.029896 174 0.148164 86
VR20 0.236851 54 0.170219 52 0.21817 43
VR21 0.029819 166 0.021789 131 0.021789 167
VR22 -0.257096 291 -0.276722 269 -0.424756 293
VR23 -0.165607 262 -0.276722 269 -0.128103 233
VR24 0.349438 10 0.27693 15 0.295287 17
VR25 -0.091507 231 -0.276722 269 -0.104831 230
VR26 0.117826 115 0.091169 96 0.121587 97
VR27 -0.005647 185 -0.062741 180 -0.017166 180
VR28 0.199749 73 -0.026943 168 0.111207 113
VR29 -0.124389 242 -0.083244 193 -0.156481 247
VR30 -0.058836 207 -0.045117 179 0.116648 103
VR31 0.099213 124 0.021789 131 0.117173 99
VR32 0.143856 106 0.090003 97 0.171722 79
VR33 0.223904 60 -0.083244 193 0.206843 51
VR34 0.011994 180 -0.038555 176 0.003958 175
VR35 0.298077 28 0.248936 23 0.248936 29
VR36 0.004864 183 0.030457 126 -0.045117 201
VR37 0.133237 110 0.06745 108 0.151473 83
VR38 -0.070479 211 -0.159064 217 -0.099202 220
VR39 -0.076365 220 -0.083244 193 0.106865 117
VR40 0.108702 121 0.076582 103 0.104189 121
VR41 0.099213 124 0.021789 131 0.117173 99
VR42 -0.025486 194 -0.159064 217 -0.029896 186
VR43 0.116648 117 0.079693 100 0.079693 132
VR44 0.236583 55 0.110257 85 0.224809 41
VR45 0.261982 46 0.170219 52 0.236851 38
VR46 0.206362 72 0.186869 47 0.186869 68
VR47 0.361265 8 0.365367 4 0.365367 7
VR48 -0.070479 211 -0.159064 217 -0.099202 220
VR49 -0.025486 194 -0.159064 217 -0.029896 186
VR50 0.071981 136 0.066122 113 0.066122 143
VR51 0.051678 161 0.011994 157 0.099213 123
VR52 -0.070479 211 -0.159064 217 -0.099202 220
VR53 -0.203683 280 -0.124389 205 -0.156481 247
VR54 -0.143429 250 -0.159064 217 -0.099202 220
VR55 -0.001789 184 -0.062741 180 0.030457 164
VR56 -0.076365 220 -0.220682 250 -0.083244 210
VR57 -0.067341 209 -0.015679 162 -0.081445 209
VR58 -0.011278 189 -0.156481 214 -0.083244 210
VR59 0.034825 165 -0.076365 192 -0.011278 177
VR60 0.149894 100 -0.128103 208 0.116648 103
VR61 -0.203683 280 -0.220682 250 -0.220682 271
VR62 0.079921 134 -0.021987 167 0.070529 140
VR63 0.027261 168 0.018966 139 -0.043342 196
VR64 -0.025486 194 -0.159064 217 -0.029896 186
VR65 0.27693 40 0.27693 15 0.295287 17
VR66 -0.143429 250 -0.159064 217 -0.276918 278
VR67 0.177801 89 0.148164 61 0.148164 86
VR68 0.139032 107 -0.083244 193 0.106865 117
VR69 -0.124389 242 -0.083244 193 -0.156481 247
VR70 0.157921 97 -0.005647 160 0.201753 59
VR71 0.233374 56 0.283182 13 0.217839 48
VR72 -0.143429 250 -0.159064 217 -0.276918 278
VR73 0.052943 158 -0.018312 163 0.021465 168
VR74 -0.091507 231 -0.104831 203 -0.104831 230
VR75 0.151473 98 0.061079 116 0.117173 99
VR76 0.1288 113 -0.026943 168 -0.026943 185
VR77 0.177801 89 0.148164 61 0.148164 86
VR78 0.274982 41 0.166361 54 0.145998 90
VR79 0.244373 53 0.211042 33 0.276735 23
VR80 0.170391 93 0.139032 72 0.139032 92
VR81 0.258237 48 0.115263 80 0.242009 33
VR82 0.036275 164 -0.005647 160 0.030457 164
VR83 -0.124389 242 -0.220682 250 -0.156481 247
VR84 -0.165607 262 -0.276722 269 -0.128103 233
VR85 0.191289 79 0.108702 86 0.18326 71
VR86 0.213094 67 0.151473 60 0.099213 123
VR87 0.193072 78 0.121559 75 0.172442 78
VR88 0.177801 89 0.148164 61 0.148164 86
VR89 0.098267 127 0.018966 139 0.115263 106
VR90 -0.070479 211 -0.159064 217 -0.099202 220
VR91 -0.165607 262 -0.276722 269 -0.205559 258
VR92 -0.143429 250 -0.159064 217 -0.276918 278
VR93 0.378715 5 0.382379 3 0.382379 3
VR94 0.344822 12 0.327954 8 0.381198 4
VR95 0.066122 142 0.018966 139 0.058895 148
VR96 0.233374 56 0.194971 41 0.217839 48
VR97 0.061795 153 0.02265 127 0.056349 156
VR98 -0.077168 227 -0.070479 189 -0.070479 205
VR99 0.170391 93 0.139032 72 0.139032 92
VR100 0.282139 35 0.258237 21 0.258237 26
VR101 0.036325 163 -0.099202 202 -0.029896 186
VR102 -0.257096 291 -0.276722 269 -0.276722 276
VR103 -0.165607 262 -0.276722 269 -0.205559 258
VR104 0.052943 158 -0.018312 163 0.021465 168
VR105 0.197166 76 0.006301 159 0.101514 122
VR106 0.027261 168 0.018966 139 0.018966 171
VR107 0.094815 132 0.090003 97 0.090003 129
VR108 -0.070479 211 -0.159064 217 -0.099202 220
VR109 0.150674 99 0.058895 117 0.115263 106
VR110 0.223904 60 0.206843 35 0.206843 51
VR111 -0.005647 185 -0.062741 180 -0.017166 180
VR112 0.027261 168 0.018966 139 -0.043342 196
VR113 0.066122 142 0.141684 65 0.058895 148
VR114 -0.077168 227 0.06745 108 -0.070479 205
VR115 -0.257096 291 -0.062741 180 -0.276722 276
VR116 0.066122 142 0.141684 65 0.115263 106
VR117 0.223904 60 0.073968 104 0.206843 51
VR118 0.065414 152 0.053807 119 0.026448 166
VR119 0.021465 177 -0.070479 189 0.036325 161
VR120 0.233374 56 0.194971 41 0.194971 60
VR121 0.185866 85 0.021789 131 0.237661 37
VR122 0.017937 179 0.011994 157 0.099213 123
VR123 -0.113159 234 -0.276722 269 -0.128103 233
VR124 0.197653 75 0.036275 124 0.139971 91
VR125 0.365202 7 0.27693 15 0.334469 11
VR126 0.316446 21 0.101819 93 0.131657 95
VR127 0.260493 47 0.186115 48 0.170219 80
VR128 0.053807 157 -0.062741 180 0.05513 159
VR129 -0.165607 262 -0.062741 180 -0.205559 258
VR130 0.293071 29 0.044392 121 0.186869 68
VR131 -0.058836 207 -0.165607 245 -0.045117 201
VR132 0.06745 139 0.021789 131 0.061079 145
VR133 -0.025486 194 -0.159064 217 -0.029896 186
VR134 -0.025486 194 -0.159064 217 -0.029896 186
VR135 0.302294 24 0.20501 39 0.188759 66
VR136 -0.203683 280 -0.220682 250 -0.220682 271
VR137 -0.068716 210 -0.124389 205 -0.076365 208
VR138 -0.203683 280 -0.220682 250 -0.348835 287
VR139 -0.203683 280 -0.220682 250 -0.220682 271
VR140 -0.077168 227 -0.070479 189 -0.070479 205
VR141 0.280577 36 0.257847 22 0.277351 22
VR142 -0.029662 203 -0.038555 176 -0.038555 195
VR143 0.337388 15 0.117173 78 0.242382 31
VR144 0.207455 70 0.177801 50 0.177801 75
VR145 0.144673 105 0.056349 118 0.111207 113
VR146 -0.113159 234 -0.276722 269 -0.128103 233
VR147 -0.165607 262 -0.128103 208 -0.205559 258
VR148 -0.076365 220 -0.220682 250 -0.083244 210
VR149 -0.025486 194 -0.159064 217 -0.029896 186
VR150 -0.203683 280 -0.220682 250 -0.348835 287
VR151 -0.104831 233 -0.165607 245 -0.113159 232
VR152 0.272629 42 0.245964 25 0.258173 27
VR153 0.301614 26 0.308391 11 0.308391 15
VR154 0.199749 73 0.02265 127 0.111207 113
VR155 0.132652 111 0.066122 113 0.150674 84
VR156 0.116648 117 0.079693 100 0.079693 132
VR157 0.116648 117 -0.128103 208 0.079693 132
VR158 0.323698 18 0.314779 10 0.314779 12
VR159 -0.005647 185 -0.062741 180 -0.017166 180
VR160 0.011994 180 -0.038555 176 0.003958 175
VR161 -0.005647 185 -0.062741 180 -0.017166 180
VR162 0.183046 87 0.234847 29 0.188162 67
VR163 -0.203683 280 -0.220682 250 -0.348835 287
VR164 -0.165607 262 -0.276722 269 -0.205559 258
VR165 0.061795 153 0.02265 127 0.056349 156
VR166 -0.257096 291 -0.276722 269 -0.424756 293
VR167 -0.025486 194 -0.159064 217 -0.029896 186
VR168 0.145041 104 0.121263 76 0.149904 85
VR169 0.02265 175 0.073968 104 0.014943 174
VR170 0.021465 177 0.036325 122 0.036325 161
VR171 0.291195 31 0.219274 31 0.172548 77
VR172 0.149894 100 0.116648 79 0.116648 103
VR173 0.191252 80 0.104351 88 0.183083 72
VR174 0.027261 168 0.018966 139 -0.043342 196
VR175 0.323698 18 0.21817 32 0.314779 12
VR176 0.279962 37 0.141684 65 0.21817 43
VR177 0.190947 81 0.141684 65 0.21817 43
VR178 0.139032 107 0.106865 87 0.106865 117
VR179 0.223904 60 0.206843 35 0.206843 51
VR180 0.066122 142 0.018966 139 0.115263 106
VR181 0.076582 135 0.047665 120 0.079919 131
VR182 0.283182 33 0.166361 54 0.190947 62
VR183 0.178353 88 0.166361 54 0.190947 62
VR184 0.071981 136 0.066122 113 0.066122 143
VR185 0.098267 127 0.018966 139 0.115263 106
VR186 0.066122 142 0.018966 139 0.058895 148
VR187 -0.203683 280 -0.220682 250 -0.348835 287
VR188 -0.143429 250 -0.159064 217 -0.276918 278
VR189 0.340684 13 0.32096 9 0.374598 6
VR190 -0.257096 291 -0.276722 269 -0.424756 293
VR191 -0.070479 211 -0.159064 217 -0.099202 220
VR192 -0.165607 262 -0.276722 269 -0.205559 258
VR193 -0.203683 280 -0.220682 250 -0.220682 271
VR194 0.028688 167 0.02265 127 -0.01822 184
VR195 -0.113159 234 -0.276722 269 -0.128103 233
VR196 0.227062 59 0.148164 64 0.21939 42
VR197 0.307244 22 0.073968 104 0.206843 51
VR198 -0.165607 262 -0.276722 269 -0.205559 258
VR199 -0.070479 211 -0.159064 217 -0.099202 220
VR200 0.164742 96 0.104351 88 0.133237 94
VR201 0.124616 114 0.097373 95 0.12788 96
VR202 0.279962 37 0.141684 65 0.21817 43
VR203 -0.076365 220 -0.083244 193 0.106865 117
VR204 0.027261 168 0.018966 139 0.018966 171
VR205 -0.257096 291 -0.276722 269 -0.424756 293
VR206 0.378923 4 0.340684 7 0.335853 10
VR207 -0.070479 211 -0.159064 217 -0.099202 220
VR208 -0.124389 242 -0.220682 250 -0.156481 247
VR209 -0.257096 291 -0.276722 269 -0.424756 293
VR210 -0.165607 262 -0.276722 269 -0.205559 258
VR211 -0.124389 242 -0.083244 193 -0.156481 247
VR212 0.066122 142 0.018966 139 0.058895 148
VR213 -0.143429 250 -0.159064 217 -0.276918 278
VR214 0.08913 133 -0.018312 163 0.079619 136
VR215 0.329103 17 0.282139 14 0.282139 19
VR216 0.170391 93 0.139032 72 -0.011278 177
VR217 0.209984 69 0.162202 59 0.230552 40
VR218 0.145998 103 0.141684 65 0.109484 116
VR219 0.332446 16 0.262148 18 0.253889 28
VR220 -0.143429 250 -0.159064 217 -0.276918 278
VR221 0.42333 2 0.409062 2 0.455195 1
VR222 -0.124389 242 -0.220682 250 -0.156481 247
VR223 0.277752 39 0.245964 25 0.308723 14
VR224 0.21355 66 0.036275 124 0.068862 141
VR225 -0.143429 250 -0.159064 217 -0.276918 278
VR226 0.051678 161 -0.066124 188 0.046157 160
VR227 -0.165607 262 -0.276722 269 -0.205559 258
VR228 0.301614 26 0.283965 12 0.301614 16
VR229 -0.257096 291 -0.276722 269 -0.424756 293
VR230 0.223904 60 0.206843 35 0.206843 51
VR231 0.190792 83 0.103463 92 0.182607 73
VR232 0.398542 3 0.183083 49 0.281906 20
VR233 -0.113159 234 -0.276722 269 -0.128103 233
VR234 0.052943 158 -0.018312 163 0.021465 168
VR235 0.361265 8 0.345999 6 0.361265 8
VR236 -0.143429 250 -0.159064 217 -0.159064 255
VR237 0.221105 65 0.101819 93 0.068203 142
VR238 -0.124389 242 -0.220682 250 -0.156481 247
VR239 0.104351 122 0.06745 108 0.099213 123
VR240 -0.143429 250 -0.159064 217 -0.159064 255
VR241 0.194971 77 0.166361 54 0.190947 62
VR242 0.339707 14 0.248095 24 0.233374 39
VR243 -0.203683 280 -0.220682 250 -0.348835 287
VR244 0.06745 139 0.021789 131 0.061079 145
VR245 0.258237 48 0.242009 28 0.242009 33
VR246 0.322477 20 0.194971 41 0.178353 74
VR247 0.070529 138 -0.113159 204 0.03212 163
VR248 -0.01822 192 -0.026943 168 -0.092478 218
VR249 -0.132675 249 -0.124389 205 -0.203683 257
VR250 -0.143429 250 -0.159064 217 -0.276918 278
VR251 0.248095 52 0.194971 41 0.217839 48
VR252 -0.165607 262 -0.276722 269 -0.128103 233
VR253 -0.113159 234 -0.276722 269 -0.128103 233
VR254 0.104351 122 0.06745 108 0.099213 123
VR255 0.345619 11 0.225857 30 0.246147 30
VR256 0.027261 168 0.018966 139 -0.043342 196
VR257 0.098267 127 0.018966 139 0.115263 106
VR258 -0.035619 204 -0.090527 200 0.017684 173
VR259 -0.165607 262 -0.276722 269 -0.205559 258
VR260 0.258237 48 0.115263 80 0.242009 33
VR261 -0.143429 250 -0.159064 217 -0.276918 278
VR262 0.061795 153 0.111207 84 0.056349 156
VR263 -0.165607 262 -0.128103 208 -0.205559 258
VR264 0.066122 142 0.018966 139 0.058895 148
VR265 0.130305 112 0.117826 77 0.117826 98
VR266 0.213094 67 0.06745 108 0.099213 123
VR267 -0.076365 220 -0.220682 250 -0.083244 210
VR268 0.056349 156 -0.026943 168 0.073968 137
VR269 -0.257096 291 -0.276722 269 -0.424756 293
VR270 0.027261 168 0.018966 139 -0.043342 196
VR271 -0.178581 279 -0.165607 245 -0.257096 275
VR272 0.098267 127 0.115263 80 0.115263 106
VR273 0.011477 182 -0.12935 212 -0.063082 204
VR274 0.365367 6 0.365367 4 0.380814 5
VR275 0.099213 124 0.021789 131 0.117173 99
VR276 0.307244 22 0.073968 104 0.206843 51
VR277 0.207455 70 0.036325 122 0.177801 75
VR278 -0.01822 192 -0.026943 168 -0.092478 218
VR279 -0.165607 262 -0.276722 269 -0.205559 258
VR280 0.137796 109 0.104351 88 0.073855 139
VR281 0.453635 1 0.455904 1 0.453635 2
VR282 0.302294 24 0.20501 39 0.20501 58
VR283 0.269224 43 0.194971 41 0.261982 24
VR284 0.269224 43 0.194971 41 0.261982 24
VR285 -0.257096 291 -0.276722 269 -0.424756 293
VR286 0.188846 84 0.209235 34 0.188846 65
VR287 0.066122 142 0.018966 139 0.058895 148
VR288 0.269224 43 0.261982 19 0.343898 9
VR289 -0.082344 230 -0.092089 201 -0.046528 203
VR290 -0.165607 262 -0.276722 269 -0.205559 258
VR291 -0.203683 280 -0.220682 250 -0.348835 287
VR292 0.25813 51 0.242382 27 0.242382 31
VR293 -0.113159 234 -0.276722 269 -0.128103 233
VR294 -0.076365 220 -0.220682 250 -0.083244 210
VR295 -0.113159 234 -0.276722 269 -0.128103 233
VR296 -0.070479 211 -0.159064 217 -0.099202 220
VR297 0.283965 32 0.164742 58 0.191252 61
VR298 -0.025486 194 -0.029896 174 -0.029896 186
VR299 0.066122 142 0.018966 139 0.058895 148
VR300 0.066122 142 0.018966 139 0.058895 148
q = 7
Alternatives Expert 1 Expert 2 Expert 3
Score final rank Score final rank Score final rank
VR1 -0.006175 194 -0.12517 248 -0.067522 233
VR2 0.110879 108 0.060162 101 0.097272 101
VR3 0.112545 103 0.093842 79 0.093842 103
VR4 0.008955 189 -0.096914 217 -0.042656 210
VR5 -0.006762 196 -0.066428 208 0.008087 177
VR6 0.082033 117 0.067481 94 0.067481 126
VR7 -0.053512 234 -0.177565 269 -0.067522 233
VR8 -0.036637 222 -0.142507 250 -0.042656 210
VR9 0.072285 120 0.088602 82 0.190354 27
VR10 -0.083814 250 -0.177565 269 -0.067522 233
VR11 0.197748 37 0.186347 23 0.195614 24
VR12 0.124841 93 0.09949 71 0.150465 54
VR13 0.048069 151 0.019086 150 0.041485 153
VR14 0.021653 176 -0.010365 171 0.05642 137
VR15 0.1115 107 0.125416 53 0.114137 87
VR16 -0.006175 194 -0.12517 248 -0.067522 233
VR17 0.008955 189 -0.096914 217 -0.042656 210
VR18 0.22676 26 0.160027 35 0.152282 49
VR19 0.143859 77 -0.009754 169 0.12957 68
VR20 0.159429 68 0.114408 59 0.150465 54
VR21 0.026359 174 0.019086 150 0.019086 172
VR22 -0.153987 291 -0.177565 269 -0.32457 293
VR23 -0.083814 250 -0.177565 269 -0.067522 233
VR24 0.265511 11 0.205076 14 0.213592 17
VR25 -0.031444 211 -0.177565 269 -0.047129 218
VR26 0.072211 125 0.059437 102 0.074418 124
VR27 0.009875 185 -0.028156 180 -0.001368 180
VR28 0.135979 81 -0.010365 171 0.077449 121
VR29 -0.063665 242 -0.042656 193 -0.096914 247
VR30 -0.022652 207 -0.006175 168 0.112545 88
VR31 0.063698 130 0.019086 150 0.082724 115
VR32 0.094346 114 0.067481 94 0.12056 81
VR33 0.166607 57 -0.042656 193 0.160044 41
VR34 0.011569 182 -0.021662 177 0.002985 178
VR35 0.217985 30 0.178665 27 0.178665 33
VR36 0.021551 178 0.027754 126 -0.006175 185
VR37 0.080903 118 0.048069 110 0.101769 99
VR38 -0.032113 213 -0.103442 220 -0.061492 223
VR39 -0.036637 222 -0.042656 193 0.105188 94
VR40 0.062999 133 0.047593 115 0.060162 136
VR41 0.063698 130 0.019086 150 0.082724 115
VR42 -0.006952 197 -0.103442 220 -0.009754 187
VR43 0.112545 103 0.093842 79 0.093842 103
VR44 0.172306 53 0.07875 90 0.168753 38
VR45 0.172169 54 0.114408 59 0.159429 48
VR46 0.160027 67 0.152282 36 0.152282 49
VR47 0.267577 9 0.268401 4 0.268401 7
VR48 -0.032113 213 -0.103442 220 -0.061492 223
VR49 -0.006952 197 -0.103442 220 -0.009754 187
VR50 0.058036 135 0.055889 107 0.055889 139
VR51 0.032143 163 0.011569 158 0.063698 128
VR52 -0.032113 213 -0.103442 220 -0.061492 223
VR53 -0.122682 280 -0.063665 205 -0.096914 247
VR54 -0.085508 267 -0.103442 220 -0.061492 223
VR55 0.011163 184 -0.028156 180 0.027754 164
VR56 -0.036637 222 -0.142507 250 -0.042656 210
VR57 -0.025581 209 0.008087 162 -0.038036 209
VR58 0.008955 189 -0.096914 217 -0.042656 210
VR59 0.034091 162 -0.036637 192 0.008955 175
VR60 0.128272 89 -0.067522 209 0.112545 88
VR61 -0.122682 280 -0.142507 250 -0.142507 271
VR62 0.062735 134 -0.002665 167 0.053582 141
VR63 0.031105 166 0.022797 128 -0.028913 200
VR64 -0.006952 197 -0.103442 220 -0.009754 187
VR65 0.205076 33 0.205076 14 0.213592 17
VR66 -0.085508 267 -0.103442 220 -0.215221 278
VR67 0.143859 77 0.12957 43 0.12957 68
VR68 0.12096 96 -0.042656 193 0.105188 94
VR69 -0.063665 242 -0.042656 193 -0.096914 247
VR70 0.118293 100 0.009875 160 0.150548 53
VR71 0.163709 63 0.197748 18 0.138376 64
VR72 -0.085508 267 -0.103442 220 -0.215221 278
VR73 0.051631 148 -0.001603 163 0.019105 169
VR74 -0.031444 211 -0.047129 200 -0.047129 218
VR75 0.101769 112 0.041485 118 0.082724 115
VR76 0.103026 110 -0.010365 171 -0.010365 196
VR77 0.143859 77 0.12957 43 0.12957 68
VR78 0.195031 45 0.113047 62 0.102881 98
VR79 0.174001 52 0.160615 31 0.20324 20
VR80 0.13586 83 0.12096 55 0.12096 79
VR81 0.197118 39 0.088602 82 0.190354 27
VR82 0.031652 165 0.009875 160 0.027754 164
VR83 -0.063665 242 -0.142507 250 -0.096914 247
VR84 -0.083814 250 -0.177565 269 -0.067522 233
VR85 0.1192 99 0.062999 100 0.110879 92
VR86 0.147716 74 0.101769 70 0.063698 128
VR87 0.128904 88 0.081012 87 0.118653 83
VR88 0.143859 77 0.12957 43 0.12957 68
VR89 0.072285 120 0.022797 128 0.088602 107
VR90 -0.032113 213 -0.103442 220 -0.061492 223
VR91 -0.083814 250 -0.177565 269 -0.12517 258
VR92 -0.085508 267 -0.103442 220 -0.215221 278
VR93 0.29684 3 0.297454 3 0.297454 4
VR94 0.272932 7 0.265155 6 0.300952 3
VR95 0.055889 137 0.022797 128 0.046937 145
VR96 0.163709 63 0.1275 47 0.138376 64
VR97 0.041802 156 0.021653 146 0.038175 157
VR98 -0.039938 230 -0.032113 189 -0.032113 205
VR99 0.13586 83 0.12096 55 0.12096 79
VR100 0.208843 32 0.197118 19 0.197118 23
VR101 0.036947 161 -0.061492 204 -0.009754 187
VR102 -0.153987 291 -0.177565 269 -0.177565 276
VR103 -0.083814 250 -0.177565 269 -0.12517 258
VR104 0.051631 148 -0.001603 163 0.019105 169
VR105 0.163782 62 0.024337 127 0.083995 114
VR106 0.031105 166 0.022797 128 0.022797 167
VR107 0.071122 126 0.067481 94 0.067481 126
VR108 -0.032113 213 -0.103442 220 -0.061492 223
VR109 0.110329 109 0.046937 116 0.088602 107
VR110 0.166607 57 0.160044 32 0.160044 41
VR111 0.009875 185 -0.028156 180 -0.001368 180
VR112 0.031105 166 0.022797 128 -0.028913 200
VR113 0.055889 137 0.09949 71 0.046937 145
VR114 -0.039938 230 0.048069 110 -0.032113 205
VR115 -0.153987 291 -0.028156 180 -0.177565 276
VR116 0.055889 137 0.09949 71 0.088602 107
VR117 0.166607 57 0.05642 103 0.160044 41
VR118 0.046075 155 0.038975 119 0.026455 166
VR119 0.019105 179 -0.032113 189 0.036947 160
VR120 0.163709 63 0.1275 47 0.1275 72
VR121 0.134347 87 0.019086 150 0.172005 36
VR122 0.014226 181 0.011569 158 0.063698 128
VR123 -0.053512 234 -0.177565 269 -0.067522 233
VR124 0.155001 71 0.031652 124 0.111027 91
VR125 0.273161 6 0.205076 14 0.243935 10
VR126 0.252035 14 0.080538 88 0.094524 102
VR127 0.186347 47 0.122655 54 0.114408 86
VR128 0.038975 159 -0.028156 180 0.039329 156
VR129 -0.083814 250 -0.028156 180 -0.12517 258
VR130 0.22676 26 0.042914 117 0.152282 49
VR131 -0.022652 207 -0.083814 214 -0.006175 185
VR132 0.048069 151 0.019086 150 0.041485 153
VR133 -0.006952 197 -0.103442 220 -0.009754 187
VR134 -0.006952 197 -0.103442 220 -0.009754 187
VR135 0.231929 24 0.139746 40 0.132762 67
VR136 -0.122682 280 -0.142507 250 -0.142507 271
VR137 -0.030907 210 -0.063665 205 -0.036637 208
VR138 -0.122682 280 -0.142507 250 -0.266085 287
VR139 -0.122682 280 -0.142507 250 -0.142507 271
VR140 -0.039938 230 -0.032113 189 -0.032113 205
VR141 0.196857 42 0.185743 24 0.19477 26
VR142 -0.01332 205 -0.021662 177 -0.021662 197
VR143 0.251498 15 0.082724 86 0.181817 31
VR144 0.158107 69 0.143859 38 0.143859 60
VR145 0.09419 115 0.038175 120 0.077449 121
VR146 -0.053512 234 -0.177565 269 -0.067522 233
VR147 -0.083814 250 -0.067522 209 -0.12517 258
VR148 -0.036637 222 -0.142507 250 -0.042656 210
VR149 -0.006952 197 -0.103442 220 -0.009754 187
VR150 -0.122682 280 -0.142507 250 -0.266085 287
VR151 -0.047129 233 -0.083814 214 -0.053512 220
VR152 0.204208 35 0.191244 20 0.19543 25
VR153 0.223499 28 0.225006 11 0.225006 15
VR154 0.135979 81 0.021653 146 0.077449 121
VR155 0.090155 116 0.055889 107 0.110329 93
VR156 0.112545 103 0.093842 79 0.093842 103
VR157 0.112545 103 -0.067522 209 0.093842 103
VR158 0.234962 19 0.232047 10 0.232047 13
VR159 0.009875 185 -0.028156 180 -0.001368 180
VR160 0.011569 182 -0.021662 177 0.002985 178
VR161 0.009875 185 -0.028156 180 -0.001368 180
VR162 0.144676 76 0.182427 25 0.148427 59
VR163 -0.122682 280 -0.142507 250 -0.266085 287
VR164 -0.083814 250 -0.177565 269 -0.12517 258
VR165 0.041802 156 0.021653 146 0.038175 157
VR166 -0.153987 291 -0.177565 269 -0.32457 293
VR167 -0.006952 197 -0.103442 220 -0.009754 187
VR168 0.122206 95 0.112617 66 0.125686 75
VR169 0.021653 176 0.05642 103 0.013643 174
VR170 0.019105 179 0.036947 121 0.036947 160
VR171 0.200002 36 0.133451 42 0.098155 100
VR172 0.128272 89 0.112545 67 0.112545 88
VR173 0.126144 92 0.067139 97 0.117716 84
VR174 0.031105 166 0.022797 128 -0.028913 200
VR175 0.234962 19 0.150465 37 0.232047 13
VR176 0.195614 43 0.09949 71 0.150465 54
VR177 0.124841 93 0.09949 71 0.150465 54
VR178 0.12096 96 0.105188 68 0.105188 94
VR179 0.166607 57 0.160044 32 0.160044 41
VR180 0.055889 137 0.022797 128 0.088602 107
VR181 0.047593 154 0.033499 123 0.049313 143
VR182 0.197748 37 0.113047 62 0.124841 76
VR183 0.120137 98 0.113047 62 0.124841 76
VR184 0.058036 135 0.055889 107 0.055889 139
VR185 0.072285 120 0.022797 128 0.088602 107
VR186 0.055889 137 0.022797 128 0.046937 145
VR187 -0.122682 280 -0.142507 250 -0.266085 287
VR188 -0.085508 267 -0.103442 220 -0.215221 278
VR189 0.242132 18 0.232048 9 0.269528 6
VR190 -0.153987 291 -0.177565 269 -0.32457 293
VR191 -0.032113 213 -0.103442 220 -0.061492 223
VR192 -0.083814 250 -0.177565 269 -0.12517 258
VR193 -0.122682 280 -0.142507 250 -0.142507 271
VR194 0.024535 175 0.021653 146 -0.002328 184
VR195 -0.053512 234 -0.177565 269 -0.067522 233
VR196 0.151472 72 0.09712 78 0.143445 62
VR197 0.232225 22 0.05642 103 0.160044 41
VR198 -0.083814 250 -0.177565 269 -0.12517 258
VR199 -0.032113 213 -0.103442 220 -0.061492 223
VR200 0.113594 102 0.067139 97 0.080903 119
VR201 0.114829 101 0.103486 69 0.117406 85
VR202 0.195614 43 0.09949 71 0.150465 54
VR203 -0.036637 222 -0.042656 193 0.105188 94
VR204 0.031105 166 0.022797 128 0.022797 167
VR205 -0.153987 291 -0.177565 269 -0.32457 293
VR206 0.277131 5 0.242132 8 0.24104 11
VR207 -0.032113 213 -0.103442 220 -0.061492 223
VR208 -0.063665 242 -0.142507 250 -0.096914 247
VR209 -0.153987 291 -0.177565 269 -0.32457 293
VR210 -0.083814 250 -0.177565 269 -0.12517 258
VR211 -0.063665 242 -0.042656 193 -0.096914 247
VR212 0.055889 137 0.022797 128 0.046937 145
VR213 -0.085508 267 -0.103442 220 -0.215221 278
VR214 0.069961 127 -0.001603 163 0.060523 135
VR215 0.246755 16 0.208843 13 0.208843 19
VR216 0.13586 83 0.12096 55 0.008955 175
VR217 0.150189 73 0.128381 46 0.171822 37
VR218 0.102881 111 0.09949 71 0.07847 120
VR219 0.259701 12 0.199483 17 0.197575 22
VR220 -0.085508 267 -0.103442 220 -0.215221 278
VR221 0.322101 2 0.314996 2 0.348174 2
VR222 -0.063665 242 -0.142507 250 -0.096914 247
VR223 0.204458 34 0.191244 20 0.232465 12
VR224 0.161032 66 0.031652 124 0.047112 144
VR225 -0.085508 267 -0.103442 220 -0.215221 278
VR226 0.032143 163 -0.028898 188 0.028443 163
VR227 -0.083814 250 -0.177565 269 -0.12517 258
VR228 0.223499 28 0.21509 12 0.223499 16
VR229 -0.153987 291 -0.177565 269 -0.32457 293
VR230 0.166607 57 0.160044 32 0.160044 41
VR231 0.135221 86 0.075874 92 0.126829 73
VR232 0.296486 4 0.117716 58 0.199421 21
VR233 -0.053512 234 -0.177565 269 -0.067522 233
VR234 0.051631 148 -0.001603 163 0.019105 169
VR235 0.267577 9 0.259985 7 0.267577 8
VR236 -0.085508 267 -0.103442 220 -0.103442 255
VR237 0.184639 48 0.080538 88 0.063601 134
VR238 -0.063665 242 -0.142507 250 -0.096914 247
VR239 0.067139 128 0.048069 110 0.063698 128
VR240 -0.085508 267 -0.103442 220 -0.103442 255
VR241 0.1275 91 0.113047 62 0.124841 76
VR242 0.25841 13 0.169819 30 0.163709 40
VR243 -0.122682 280 -0.142507 250 -0.266085 287
VR244 0.048069 151 0.019086 150 0.041485 153
VR245 0.197118 39 0.190354 22 0.190354 27
VR246 0.233753 21 0.1275 47 0.120137 82
VR247 0.053582 147 -0.053512 203 0.034886 162
VR248 -0.002328 192 -0.010365 171 -0.060375 221
VR249 -0.073273 249 -0.063665 205 -0.122682 257
VR250 -0.085508 267 -0.103442 220 -0.215221 278
VR251 0.169819 55 0.1275 47 0.138376 64
VR252 -0.083814 250 -0.177565 269 -0.067522 233
VR253 -0.053512 234 -0.177565 269 -0.067522 233
VR254 0.067139 128 0.048069 110 0.063698 128
VR255 0.244024 17 0.141148 39 0.150782 52
VR256 0.031105 166 0.022797 128 -0.028913 200
VR257 0.072285 120 0.022797 128 0.088602 107
VR258 -0.016088 206 -0.052802 202 0.0187 173
VR259 -0.083814 250 -0.177565 269 -0.12517 258
VR260 0.197118 39 0.088602 82 0.190354 27
VR261 -0.085508 267 -0.103442 220 -0.215221 278
VR262 0.041802 156 0.077449 91 0.038175 157
VR263 -0.083814 250 -0.067522 209 -0.12517 258
VR264 0.055889 137 0.022797 128 0.046937 145
VR265 0.080034 119 0.072211 93 0.072211 125
VR266 0.147716 74 0.048069 110 0.063698 128
VR267 -0.036637 222 -0.142507 250 -0.042656 210
VR268 0.038175 160 -0.010365 171 0.05642 137
VR269 -0.153987 291 -0.177565 269 -0.32457 293
VR270 0.031105 166 0.022797 128 -0.028913 200
VR271 -0.097486 279 -0.083814 214 -0.153987 275
VR272 0.072285 120 0.088602 82 0.088602 107
VR273 0.026426 173 -0.072514 213 -0.028744 199
VR274 0.268401 8 0.268401 4 0.276048 5
VR275 0.063698 130 0.019086 150 0.082724 115
VR276 0.232225 22 0.05642 103 0.160044 41
VR277 0.158107 69 0.036947 121 0.143859 60
VR278 -0.002328 192 -0.010365 171 -0.060375 221
VR279 -0.083814 250 -0.177565 269 -0.12517 258
VR280 0.100659 113 0.067139 97 0.051502 142
VR281 0.352528 1 0.352906 1 0.352528 1
VR282 0.231929 24 0.139746 40 0.139746 63
VR283 0.179921 49 0.1275 47 0.172169 34
VR284 0.179921 49 0.1275 47 0.172169 34
VR285 -0.153987 291 -0.177565 269 -0.32457 293
VR286 0.167349 56 0.174735 28 0.167349 39
VR287 0.055889 137 0.022797 128 0.046937 145
VR288 0.179921 49 0.172169 29 0.245264 9
VR289 -0.038933 229 -0.047565 201 -0.022158 198
VR290 -0.083814 250 -0.177565 269 -0.12517 258
VR291 -0.122682 280 -0.142507 250 -0.266085 287
VR292 0.187776 46 0.181817 26 0.181817 31
VR293 -0.053512 234 -0.177565 269 -0.067522 233
VR294 -0.036637 222 -0.142507 250 -0.042656 210
VR295 -0.053512 234 -0.177565 269 -0.067522 233
VR296 -0.032113 213 -0.103442 220 -0.061492 223
VR297 0.21509 31 0.113594 61 0.126144 74
VR298 -0.006952 197 -0.009754 169 -0.009754 187
VR299 0.055889 137 0.022797 128 0.046937 145
VR300 0.055889 137 0.022797 128 0.046937 145
q = 10
Alternatives Expert 1 Expert 2 Expert 3
Score final rank Score final rank Score final rank
VR1 0.00956 189 -0.059204 248 -0.024363 216
VR2 0.050663 113 0.02489 113 0.046543 113
VR3 0.088206 84 0.082568 49 0.082568 71
VR4 0.013559 174 -0.047112 217 -0.014532 207
VR5 0.000597 198 -0.022901 206 0.01409 166
VR6 0.043713 117 0.037974 93 0.037974 124
VR7 -0.016359 234 -0.093189 269 -0.024363 216
VR8 -0.011633 222 -0.075758 250 -0.014532 207
VR9 0.040108 118 0.051437 80 0.127586 24
VR10 -0.029006 249 -0.093189 269 -0.024363 216
VR11 0.113437 44 0.109707 28 0.1126 34
VR12 0.062565 103 0.052421 73 0.080104 75
VR13 0.02389 152 0.009127 154 0.019136 157
VR14 0.013026 180 -0.003436 171 0.032174 131
VR15 0.06947 99 0.073822 55 0.070056 85
VR16 0.00956 189 -0.059204 248 -0.024363 216
VR17 0.013559 174 -0.047112 217 -0.014532 207
VR18 0.154199 21 0.107277 29 0.105514 44
VR19 0.099484 61 -0.000283 169 0.095292 51
VR20 0.083493 90 0.05829 70 0.080104 75
VR21 0.014134 173 0.009127 154 0.009127 178
VR22 -0.071408 291 -0.093189 269 -0.229116 293
VR23 -0.029006 249 -0.093189 269 -0.024363 216
VR24 0.181392 7 0.136471 13 0.139072 17
VR25 0.000873 196 -0.093189 269 -0.013292 205
VR26 0.031572 143 0.027452 108 0.032308 130
VR27 0.010113 182 -0.009763 178 0.002751 180
VR28 0.076949 95 -0.003436 171 0.040884 119
VR29 -0.022612 242 -0.014532 194 -0.047112 247
VR30 -0.0046 207 0.00956 153 0.088206 61
VR31 0.028997 147 0.009127 154 0.043322 114
VR32 0.047415 114 0.037974 93 0.065593 90
VR33 0.108654 53 -0.014532 194 0.10719 37
VR34 0.006032 192 -0.011608 189 -0.00016 185
VR35 0.137601 31 0.112355 27 0.112355 35
VR36 0.019585 169 0.016026 127 0.00956 176
VR37 0.034543 126 0.02389 114 0.051134 110
VR38 -0.009834 213 -0.05749 220 -0.031528 235
VR39 -0.011633 222 -0.014532 194 0.085236 66
VR40 0.025905 150 0.021294 120 0.02489 151
VR41 0.028997 147 0.009127 154 0.043322 114
VR42 0.000287 199 -0.05749 220 -0.000283 187
VR43 0.088206 84 0.082568 49 0.082568 71
VR44 0.110477 50 0.042049 89 0.109968 36
VR45 0.087644 89 0.05829 70 0.083493 70
VR46 0.107277 58 0.105514 34 0.105514 44
VR47 0.172794 11 0.172862 5 0.172862 6
VR48 -0.009834 213 -0.05749 220 -0.031528 235
VR49 0.000287 199 -0.05749 220 -0.000283 187
VR50 0.033584 141 0.03416 96 0.03416 127
VR51 0.01309 178 0.006032 162 0.028997 135
VR52 -0.009834 213 -0.05749 220 -0.031528 235
VR53 -0.057723 280 -0.022612 203 -0.047112 247
VR54 -0.041318 268 -0.05749 220 -0.031528 235
VR55 0.009779 188 -0.009763 178 0.016026 163
VR56 -0.011633 222 -0.075758 250 -0.014532 207
VR57 -0.005057 209 0.01409 128 -0.011322 202
VR58 0.013559 174 -0.047112 217 -0.014532 207
VR59 0.022502 156 -0.011633 192 0.013559 169
VR60 0.092751 75 -0.024363 207 0.088206 61
VR61 -0.057723 280 -0.075758 250 -0.075758 272
VR62 0.035524 125 0.002081 168 0.02902 134
VR63 0.020552 159 0.013566 129 -0.030023 230
VR64 0.000287 199 -0.05749 220 -0.000283 187
VR65 0.136471 32 0.136471 13 0.139072 17
VR66 -0.041318 268 -0.05749 220 -0.158403 278
VR67 0.099484 61 0.095292 36 0.095292 51
VR68 0.089909 78 -0.014532 194 0.085236 66
VR69 -0.022612 242 -0.014532 194 -0.047112 247
VR70 0.0723 98 0.010113 151 0.091972 55
VR71 0.088682 81 0.113437 26 0.066958 87
VR72 -0.041318 268 -0.05749 220 -0.158403 278
VR73 0.034017 138 0.00278 164 0.009962 173
VR74 0.000873 196 -0.013292 193 -0.013292 205
VR75 0.051134 112 0.019136 122 0.043322 114
VR76 0.066697 101 -0.003436 171 -0.003436 196
VR77 0.099484 61 0.095292 36 0.095292 51
VR78 0.112786 47 0.058811 65 0.054586 101
VR79 0.110345 51 0.106948 33 0.129547 21
VR80 0.094271 69 0.089909 41 0.089909 57
VR81 0.129411 37 0.051437 80 0.127586 24
VR82 0.017565 172 0.010113 151 0.016026 163
VR83 -0.022612 242 -0.075758 250 -0.047112 247
VR84 -0.029006 249 -0.093189 269 -0.024363 216
VR85 0.056912 109 0.025905 110 0.050663 112
VR86 0.08347 91 0.051134 84 0.028997 135
VR87 0.06757 100 0.04111 91 0.063525 92
VR88 0.099484 61 0.095292 36 0.095292 51
VR89 0.040108 118 0.013566 129 0.051437 103
VR90 -0.009834 213 -0.05749 220 -0.031528 235
VR91 -0.029006 249 -0.093189 269 -0.059204 258
VR92 -0.041318 268 -0.05749 220 -0.158403 278
VR93 0.21123 3 0.211265 3 0.211265 4
VR94 0.198335 4 0.195927 4 0.21593 3
VR95 0.03416 128 0.013566 129 0.026354 141
VR96 0.088682 81 0.063607 57 0.066958 87
VR97 0.019841 166 0.013026 147 0.018419 160
VR98 -0.015873 231 -0.009834 186 -0.009834 199
VR99 0.094271 69 0.089909 41 0.089909 57
VR100 0.133099 33 0.129411 18 0.129411 22
VR101 0.024908 151 -0.031528 215 -0.000283 187
VR102 -0.071408 291 -0.093189 269 -0.093189 276
VR103 -0.029006 249 -0.093189 269 -0.059204 258
VR104 0.034017 138 0.00278 164 0.009962 173
VR105 0.119139 42 0.022969 119 0.051958 102
VR106 0.020552 159 0.013566 129 0.013566 167
VR107 0.039919 124 0.037974 93 0.037974 124
VR108 -0.009834 213 -0.05749 220 -0.031528 235
VR109 0.06233 106 0.026354 109 0.051437 103
VR110 0.108654 53 0.10719 30 0.10719 37
VR111 0.010113 182 -0.009763 178 0.002751 180
VR112 0.020552 159 0.013566 129 -0.030023 230
VR113 0.03416 128 0.052421 73 0.026354 141
VR114 -0.015873 231 0.02389 114 -0.009834 199
VR115 -0.071408 291 -0.009763 178 -0.093189 276
VR116 0.03416 128 0.052421 73 0.051437 103
VR117 0.108654 53 0.032174 99 0.10719 37
VR118 0.022116 157 0.019503 121 0.01584 165
VR119 0.009962 186 -0.009834 186 0.024908 149
VR120 0.088682 81 0.063607 57 0.063607 91
VR121 0.079235 93 0.009127 154 0.100877 47
VR122 0.006179 191 0.006032 162 0.028997 135
VR123 -0.016359 234 -0.093189 269 -0.024363 216
VR124 0.097431 67 0.017565 124 0.070311 84
VR125 0.183837 6 0.136471 13 0.157974 9
VR126 0.177751 9 0.046647 86 0.050784 111
VR127 0.109707 52 0.061867 63 0.05829 99
VR128 0.019503 170 -0.009763 178 0.019539 156
VR129 -0.029006 249 -0.009763 178 -0.059204 258
VR130 0.154199 21 0.028221 107 0.105514 44
VR131 -0.0046 207 -0.029006 212 0.00956 176
VR132 0.02389 152 0.009127 154 0.019136 157
VR133 0.000287 199 -0.05749 220 -0.000283 187
VR134 0.000287 199 -0.05749 220 -0.000283 187
VR135 0.155903 17 0.074786 53 0.072568 82
VR136 -0.057723 280 -0.075758 250 -0.075758 272
VR137 -0.008944 212 -0.022612 203 -0.011633 204
VR138 -0.057723 280 -0.075758 250 -0.188303 287
VR139 -0.057723 280 -0.075758 250 -0.075758 272
VR140 -0.015873 231 -0.009834 186 -0.009834 199
VR141 0.120326 41 0.116817 24 0.11953 30
VR142 -0.005624 211 -0.011608 189 -0.011608 203
VR143 0.16413 15 0.043322 88 0.116585 31
VR144 0.10372 59 0.099484 35 0.099484 49
VR145 0.046173 116 0.018419 123 0.040884 119
VR146 -0.016359 234 -0.093189 269 -0.024363 216
VR147 -0.029006 249 -0.024363 207 -0.059204 258
VR148 -0.011633 222 -0.075758 250 -0.014532 207
VR149 0.000287 199 -0.05749 220 -0.000283 187
VR150 -0.057723 280 -0.075758 250 -0.188303 287
VR151 -0.013292 230 -0.029006 212 -0.016359 215
VR152 0.131659 35 0.127677 19 0.128478 23
VR153 0.145244 26 0.145379 10 0.145379 15
VR154 0.076949 95 0.013026 147 0.040884 119
VR155 0.046324 115 0.03416 96 0.06233 97
VR156 0.088206 84 0.082568 49 0.082568 71
VR157 0.088206 84 -0.024363 207 0.082568 71
VR158 0.146537 24 0.145955 9 0.145955 13
VR159 0.010113 182 -0.009763 178 0.002751 180
VR160 0.006032 192 -0.011608 189 -0.00016 185
VR161 0.010113 182 -0.009763 178 0.002751 180
VR162 0.099115 65 0.120896 23 0.100842 48
VR163 -0.057723 280 -0.075758 250 -0.188303 287
VR164 -0.029006 249 -0.093189 269 -0.059204 258
VR165 0.019841 166 0.013026 147 0.018419 160
VR166 -0.071408 291 -0.093189 269 -0.229116 293
VR167 0.000287 199 -0.05749 220 -0.000283 187
VR168 0.089649 80 0.087621 46 0.091297 56
VR169 0.013026 180 0.032174 99 0.007424 179
VR170 0.009962 186 0.024908 111 0.024908 149
VR171 0.112837 46 0.060506 64 0.03929 122
VR172 0.092751 75 0.088206 44 0.088206 61
VR173 0.062519 105 0.030352 104 0.056219 100
VR174 0.020552 159 0.013566 129 -0.030023 230
VR175 0.146537 24 0.080104 52 0.145955 13
VR176 0.1126 48 0.052421 73 0.080104 75
VR177 0.062565 103 0.052421 73 0.080104 75
VR178 0.089909 78 0.085236 48 0.085236 66
VR179 0.108654 53 0.10719 30 0.10719 37
VR180 0.03416 128 0.013566 129 0.051437 103
VR181 0.021294 158 0.016702 126 0.021816 155
VR182 0.113437 44 0.058811 65 0.062565 93
VR183 0.061096 107 0.058811 65 0.062565 93
VR184 0.033584 141 0.03416 96 0.03416 127
VR185 0.040108 118 0.013566 129 0.051437 103
VR186 0.03416 128 0.013566 129 0.026354 141
VR187 -0.057723 280 -0.075758 250 -0.188303 287
VR188 -0.041318 268 -0.05749 220 -0.158403 278
VR189 0.148651 23 0.14531 11 0.166602 8
VR190 -0.071408 291 -0.093189 269 -0.229116 293
VR191 -0.009834 213 -0.05749 220 -0.031528 235
VR192 -0.029006 249 -0.093189 269 -0.059204 258
VR193 -0.057723 280 -0.075758 250 -0.075758 272
VR194 0.013391 177 0.013026 147 0.002148 184
VR195 -0.016359 234 -0.093189 269 -0.024363 216
VR196 0.078898 94 0.048448 85 0.072784 81
VR197 0.15541 19 0.032174 99 0.10719 37
VR198 -0.029006 249 -0.093189 269 -0.059204 258
VR199 -0.009834 213 -0.05749 220 -0.031528 235
VR200 0.058753 108 0.030352 104 0.034543 126
VR201 0.088193 88 0.085749 47 0.08963 59
VR202 0.1126 48 0.052421 73 0.080104 75
VR203 -0.011633 222 -0.014532 194 0.085236 66
VR204 0.020552 159 0.013566 129 0.013566 167
VR205 -0.071408 291 -0.093189 269 -0.229116 293
VR206 0.172705 13 0.148651 8 0.148538 12
VR207 -0.009834 213 -0.05749 220 -0.031528 235
VR208 -0.022612 242 -0.075758 250 -0.047112 247
VR209 -0.071408 291 -0.093189 269 -0.229116 293
VR210 -0.029006 249 -0.093189 269 -0.059204 258
VR211 -0.022612 242 -0.014532 194 -0.047112 247
VR212 0.03416 128 0.013566 129 0.026354 141
VR213 -0.041318 268 -0.05749 220 -0.158403 278
VR214 0.040006 123 0.00278 164 0.033276 129
VR215 0.157779 16 0.133099 17 0.133099 20
VR216 0.094271 69 0.089909 41 0.013559 169
VR217 0.097417 68 0.090971 39 0.113746 33
VR218 0.054586 110 0.052421 73 0.038921 123
VR219 0.180188 8 0.13525 16 0.135075 19
VR220 -0.041318 268 -0.05749 220 -0.158403 278
VR221 0.221723 2 0.219395 2 0.238801 2
VR222 -0.022612 242 -0.075758 250 -0.047112 247
VR223 0.13119 36 0.127677 19 0.149862 11
VR224 0.098906 66 0.017565 124 0.022246 154
VR225 -0.041318 268 -0.05749 220 -0.158403 278
VR226 0.01309 178 -0.008393 177 0.011622 172
VR227 -0.029006 249 -0.093189 269 -0.059204 258
VR228 0.145244 26 0.142645 12 0.145244 16
VR229 -0.071408 291 -0.093189 269 -0.229116 293
VR230 0.108654 53 0.10719 30 0.10719 37
VR231 0.074209 97 0.041651 90 0.067936 86
VR232 0.19103 5 0.056219 72 0.121539 29
VR233 -0.016359 234 -0.093189 269 -0.024363 216
VR234 0.034017 138 0.00278 164 0.009962 173
VR235 0.172794 11 0.170326 7 0.172794 7
VR236 -0.041318 268 -0.05749 220 -0.05749 255
VR237 0.131837 34 0.046647 86 0.04089 118
VR238 -0.022612 242 -0.075758 250 -0.047112 247
VR239 0.030352 144 0.02389 114 0.028997 135
VR240 -0.041318 268 -0.05749 220 -0.05749 255
VR241 0.063607 102 0.058811 65 0.062565 93
VR242 0.170128 14 0.090542 40 0.088682 60
VR243 -0.057723 280 -0.075758 250 -0.188303 287
VR244 0.02389 152 0.009127 154 0.019136 157
VR245 0.129411 37 0.127586 21 0.127586 24
VR246 0.138177 30 0.063607 57 0.061096 98
VR247 0.02902 146 -0.016359 201 0.02353 153
VR248 0.002148 194 -0.003436 171 -0.038267 245
VR249 -0.029745 266 -0.022612 203 -0.057723 257
VR250 -0.041318 268 -0.05749 220 -0.158403 278
VR251 0.090542 77 0.063607 57 0.066958 87
VR252 -0.029006 249 -0.093189 269 -0.024363 216
VR253 -0.016359 234 -0.093189 269 -0.024363 216
VR254 0.030352 144 0.02389 114 0.028997 135
VR255 0.141285 29 0.067597 56 0.070531 83
VR256 0.020552 159 0.013566 129 -0.030023 230
VR257 0.040108 118 0.013566 129 0.051437 103
VR258 -0.005155 210 -0.024825 211 0.013399 171
VR259 -0.029006 249 -0.093189 269 -0.059204 258
VR260 0.129411 37 0.051437 80 0.127586 24
VR261 -0.041318 268 -0.05749 220 -0.158403 278
VR262 0.019841 166 0.040884 92 0.018419 160
VR263 -0.029006 249 -0.024363 207 -0.059204 258
VR264 0.03416 128 0.013566 129 0.026354 141
VR265 0.034434 127 0.031572 103 0.031572 133
VR266 0.08347 91 0.02389 114 0.028997 135
VR267 -0.011633 222 -0.075758 250 -0.014532 207
VR268 0.018419 171 -0.003436 171 0.032174 131
VR269 -0.071408 291 -0.093189 269 -0.229116 293
VR270 0.020552 159 0.013566 129 -0.030023 230
VR271 -0.03841 267 -0.029006 212 -0.071408 271
VR272 0.040108 118 0.051437 80 0.051437 103
VR273 0.02279 155 -0.032144 216 -0.009462 198
VR274 0.172862 10 0.172862 5 0.175337 5
VR275 0.028997 147 0.009127 154 0.043322 114
VR276 0.15541 19 0.032174 99 0.10719 37
VR277 0.10372 59 0.024908 111 0.099484 49
VR278 0.002148 194 -0.003436 171 -0.038267 245
VR279 -0.029006 249 -0.093189 269 -0.059204 258
VR280 0.054474 111 0.030352 104 0.024567 152
VR281 0.244441 1 0.244465 1 0.244441 1
VR282 0.155903 17 0.074786 53 0.074786 80
VR283 0.093666 72 0.063607 57 0.087644 64
VR284 0.093666 72 0.063607 57 0.087644 64
VR285 -0.071408 291 -0.093189 269 -0.229116 293
VR286 0.124014 40 0.125373 22 0.124014 28
VR287 0.03416 128 0.013566 129 0.026354 141
VR288 0.093666 72 0.087644 45 0.149931 10
VR289 -0.012047 229 -0.017059 202 -0.006966 197
VR290 -0.029006 249 -0.093189 269 -0.059204 258
VR291 -0.057723 280 -0.075758 250 -0.188303 287
VR292 0.1179 43 0.116585 25 0.116585 31
VR293 -0.016359 234 -0.093189 269 -0.024363 216
VR294 -0.011633 222 -0.075758 250 -0.014532 207
VR295 -0.016359 234 -0.093189 269 -0.024363 216
VR296 -0.009834 213 -0.05749 220 -0.031528 235
VR297 0.142645 28 0.058753 69 0.062519 96
VR298 0.000287 199 -0.000283 169 -0.000283 187
VR299 0.03416 128 0.013566 129 0.026354 141
VR300 0.03416 128 0.013566 129 0.026354 141

Table A2.

Group results of q-ROFDOSM.

Alternatives q = 1 q = 3 q = 5 q = 7 q = 10
Score Final rank Score Final rank Score Final rank Score Final rank Score Final rank
VR1 -0.2879969 234 -0.2298837 234 -0.1262594 228 -0.0662891 226 -0.02466931 217
VR2 0.1861822 53 0.2183817 68 0.1475219 86 0.0894377 101 0.04069889 114
VR3 -0.0807016 166 0.0355225 141 0.0920117 118 0.100076 91 0.0844476 63
VR4 -0.2056802 210 -0.1557731 210 -0.0836673 210 -0.0435386 212 -0.01602858 206
VR5 -0.2013731 209 -0.1306485 198 -0.0583542 198 -0.0217009 196 -0.00273792 194
VR6 0.0247994 116 0.1111214 108 0.0991704 114 0.0723318 116 0.03988728 115
VR7 -0.3478996 258 -0.2922598 258 -0.1726611 249 -0.0995332 245 -0.04463694 243
VR8 -0.2605366 228 -0.214181 228 -0.1267636 230 -0.0739335 231 -0.03397462 232
VR9 0.0669532 95 0.1643745 84 0.1518465 82 0.1170806 80 0.07304372 80
VR10 -0.379279 270 -0.3206686 266 -0.1901438 257 -0.1096338 257 -0.04885261 256
VR11 0.3095055 19 0.3632172 22 0.2745458 22 0.1932362 25 0.1119145 31
VR12 0.1592543 65 0.2351317 60 0.1836005 67 0.1249318 74 0.06502967 87
VR13 -0.0142952 131 0.0441067 136 0.0501061 139 0.0362134 149 0.01738409 155
VR14 -0.0540078 147 0.0003042 158 0.023225 160 0.0225692 167 0.01392129 169
VR15 0.1277663 73 0.1903929 76 0.159286 76 0.1170176 81 0.07111569 82
VR16 -0.2879969 234 -0.2298837 234 -0.1262594 228 -0.0662891 226 -0.02466931 217
VR17 -0.2056802 210 -0.1557731 210 -0.0836673 210 -0.0435386 212 -0.01602858 206
VR18 0.1801295 54 0.2634994 51 0.2287674 39 0.1796898 30 0.12233021 25
VR19 -0.0097874 128 0.0805052 125 0.0986898 115 0.0878914 103 0.064831 89
VR20 0.1935764 51 0.2707227 47 0.2084137 51 0.1414337 61 0.07396224 76
VR21 -0.0613609 153 0.0013317 157 0.0244658 159 0.02151 168 0.01079629 172
VR22 -0.5104426 293 -0.4683455 293 -0.3195247 293 -0.2187072 293 -0.1312375 293
VR23 -0.379279 270 -0.3206686 266 -0.1901438 257 -0.1096338 257 -0.04885261 256
VR24 0.3776349 10 0.4033188 12 0.3072183 12 0.2280596 12 0.15231181 11
VR25 -0.3285027 246 -0.2825857 246 -0.1576862 241 -0.0853794 238 -0.03520271 237
VR26 0.0938197 86 0.1506887 90 0.1101942 104 0.0686886 119 0.03044413 131
VR27 -0.1466017 186 -0.0872613 191 -0.0285181 188 -0.0065496 186 0.0010339 184
VR28 0.0626389 99 0.1101696 110 0.0946709 117 0.0676875 120 0.0381323 117
VR29 -0.2582641 225 -0.2105812 224 -0.1213712 225 -0.0677453 228 -0.02808577 219
VR30 -0.1271966 180 -0.0626527 182 0.0042316 171 0.0279059 159 0.03105537 130
VR31 0.024852 113 0.0864484 120 0.0793915 125 0.0551694 133 0.02714879 134
VR32 0.0849529 89 0.1677712 83 0.1351936 89 0.094129 97 0.05032737 101
VR33 0.0503824 106 0.1209599 101 0.1158347 102 0.0946649 96 0.06710367 84
VR34 -0.0765703 164 -0.0318228 170 -0.0075344 180 -0.0023691 184 -0.00191194 191
VR35 0.2891864 24 0.3433579 24 0.2653159 27 0.1917715 28 0.12077062 26
VR36 -0.1083775 172 -0.0580868 180 -0.0032653 177 0.0143767 171 0.01505685 167
VR37 0.1016574 83 0.1484004 91 0.1173866 99 0.0769138 112 0.03652234 120
VR38 -0.2381774 214 -0.1869896 214 -0.1095815 216 -0.0656824 217 -0.03295054 223
VR39 -0.1462024 184 -0.0781582 187 -0.0175812 183 0.0086315 174 0.0196903 151
VR40 0.1171402 78 0.1432547 95 0.096491 116 0.0569181 129 0.02402952 146
VR41 0.024852 113 0.0864484 120 0.0793915 125 0.0551694 133 0.02714879 134
VR42 -0.1882942 198 -0.1338241 199 -0.0714821 200 -0.0400495 204 -0.0191617 209
VR43 -0.0807016 166 0.0355225 141 0.0920117 118 0.100076 91 0.0844476 63
VR44 0.1652573 61 0.2376996 59 0.1905496 64 0.1399364 64 0.08749786 61
VR45 0.2335792 34 0.2984121 38 0.2230174 41 0.1486684 52 0.0764755 73
VR46 0.115932 79 0.2095353 70 0.1933667 63 0.1548639 47 0.10610197 38
VR47 0.4405608 4 0.4768894 5 0.3639994 5 0.2681267 6 0.17283946 6
VR48 -0.2381774 214 -0.1869896 214 -0.1095815 216 -0.0656824 217 -0.03295054 223
VR49 -0.1882942 198 -0.1338241 199 -0.0714821 200 -0.0400495 204 -0.0191617 209
VR50 -0.0306289 140 0.0492368 131 0.0680755 132 0.0566049 130 0.0339679 126
VR51 0.0271573 112 0.0608647 130 0.0542948 136 0.0358036 152 0.01603962 160
VR52 -0.2381774 214 -0.1869896 214 -0.1095815 216 -0.0656824 217 -0.03295054 223
VR53 -0.3094664 240 -0.2680909 241 -0.1615178 242 -0.0944206 242 -0.04248275 241
VR54 -0.2677166 233 -0.2182454 233 -0.1338982 236 -0.0834807 237 -0.04344517 242
VR55 -0.1132338 174 -0.0613461 181 -0.0113574 182 0.0035872 182 0.00534742 178
VR56 -0.2605366 228 -0.214181 228 -0.1267636 230 -0.0739335 231 -0.03397462 232
VR57 -0.1991949 207 -0.1277636 197 -0.0548218 197 -0.0185101 194 -0.00076298 190
VR58 -0.2056802 210 -0.1557731 210 -0.0836673 210 -0.0435386 212 -0.01602858 206
VR59 -0.1106886 173 -0.0681929 183 -0.0176059 185 0.0021362 183 0.00814256 176
VR60 -0.0861884 169 -0.0045604 159 0.0461466 152 0.0577649 128 0.05219797 100
VR61 -0.3771719 266 -0.3343531 271 -0.2150157 272 -0.1358989 282 -0.06974667 273
VR62 -0.0234308 135 0.0225604 153 0.0428211 154 0.037884 147 0.02220829 147
VR63 -0.1466854 190 -0.0459123 172 0.0009616 172 0.0083296 176 0.00136486 179
VR64 -0.1882942 198 -0.1338241 199 -0.0714821 200 -0.0400495 204 -0.0191617 209
VR65 0.3457063 14 0.3727912 17 0.2830491 19 0.2079147 18 0.13733836 17
VR66 -0.328521 247 -0.2862959 247 -0.1931369 261 -0.1347237 273 -0.08573704 277
VR67 0.0448562 107 0.151357 86 0.1580434 78 0.1343327 67 0.09668906 47
VR68 -0.0694526 162 0.0147157 155 0.054218 137 0.061164 125 0.05353772 99
VR69 -0.2582641 225 -0.2105812 224 -0.1213712 225 -0.0677453 228 -0.02808577 219
VR70 0.0594526 101 0.1200148 102 0.1180089 97 0.0929053 99 0.05812843 96
VR71 0.2703296 29 0.3246309 31 0.2447984 31 0.1666109 37 0.08969236 56
VR72 -0.328521 247 -0.2862959 247 -0.1931369 261 -0.1347237 273 -0.08573704 277
VR73 -0.0563894 149 -0.0158369 164 0.0186987 165 0.0230447 164 0.01558651 164
VR74 -0.253127 224 -0.2122483 227 -0.1003893 215 -0.0419008 211 -0.0085704 198
VR75 0.0643743 98 0.1297094 98 0.1099081 105 0.0753262 113 0.03786374 118
VR76 -0.0711672 163 -0.0056604 160 0.024971 158 0.0274317 160 0.01994193 148
VR77 0.0448562 107 0.151357 86 0.1580434 78 0.1343327 67 0.09668906 47
VR78 0.1756524 56 0.245901 57 0.1957804 61 0.1369865 66 0.07539432 75
VR79 0.2253908 39 0.3162352 33 0.2440498 32 0.1792855 31 0.11561329 30
VR80 0.0681459 92 0.1482657 92 0.1494853 83 0.1259269 72 0.09136294 53
VR81 0.1290753 71 0.2326073 65 0.2051695 54 0.1586914 44 0.10281123 39
VR82 -0.0557352 148 -0.0122723 163 0.0203616 164 0.0230937 163 0.01456795 168
VR83 -0.3149314 241 -0.2710774 242 -0.1671839 245 -0.1010289 253 -0.04849439 252
VR84 -0.379279 270 -0.3206686 266 -0.1901438 257 -0.1096338 257 -0.04885261 256
VR85 0.2113865 44 0.2378351 58 0.1610836 74 0.0976928 95 0.04449319 111
VR86 0.146903 68 0.1983288 74 0.1545932 81 0.1043944 89 0.05453393 98
VR87 0.1456796 69 0.212038 69 0.1623577 73 0.1095229 87 0.05740182 97
VR88 0.0448562 107 0.151357 86 0.1580434 78 0.1343327 67 0.09668906 47
VR89 -0.0253101 136 0.0663172 127 0.077499 128 0.0612279 122 0.03503686 123
VR90 -0.2381774 214 -0.1869896 214 -0.1095815 216 -0.0656824 217 -0.03295054 223
VR91 -0.4073165 276 -0.3529597 276 -0.2159625 276 -0.1288497 263 -0.06046627 263
VR92 -0.328521 247 -0.2862959 247 -0.1931369 261 -0.1347237 273 -0.08573704 277
VR93 0.4233344 5 0.4809144 4 0.3811576 3 0.2972496 3 0.21125332 3
VR94 0.3570667 11 0.4292712 9 0.3513243 8 0.2796798 4 0.20339749 4
VR95 -0.0686621 155 0.0231444 146 0.0479946 143 0.0418742 140 0.02469324 139
VR96 0.233045 35 0.2868943 40 0.2153947 43 0.143195 59 0.07308227 79
VR97 0.0110561 122 0.0445113 134 0.0469313 150 0.0338767 153 0.01709534 158
VR98 -0.1940662 205 -0.1482508 208 -0.0727083 207 -0.0347216 200 -0.01184713 200
VR99 0.0681459 92 0.1482657 92 0.1494853 83 0.1259269 72 0.09136294 53
VR100 0.2411547 32 0.3247047 30 0.2662041 26 0.2010262 21 0.13064019 19
VR101 -0.1379673 182 -0.079231 190 -0.0309244 192 -0.011433 192 -0.00230075 193
VR102 -0.4743332 292 -0.4218022 292 -0.2701798 292 -0.1697055 286 -0.08592856 286
VR103 -0.4073165 276 -0.3529597 276 -0.2159625 276 -0.1288497 263 -0.06046627 263
VR104 -0.0563894 149 -0.0158369 164 0.0186987 165 0.0230447 164 0.01558651 164
VR105 0.0310923 111 0.0796892 126 0.1016602 112 0.0907045 100 0.06468865 90
VR106 -0.1189583 175 -0.0195184 168 0.021731 162 0.0255659 161 0.01589445 161
VR107 0.0020294 126 0.095505 115 0.0916072 121 0.0686947 118 0.03862249 116
VR108 -0.2381774 214 -0.1869896 214 -0.1095815 216 -0.0656824 217 -0.03295054 223
VR109 0.0184227 119 0.110382 109 0.1082776 107 0.0819558 108 0.04670697 107
VR110 0.1703459 58 0.2526418 53 0.2125304 48 0.1622316 38 0.10767775 34
VR111 -0.1466017 186 -0.0872613 191 -0.0285181 188 -0.0065496 186 0.0010339 184
VR112 -0.1466854 190 -0.0459123 172 0.0009616 172 0.0083296 176 0.00136486 179
VR113 -0.0005581 127 0.086093 123 0.0889007 124 0.0674388 121 0.03764495 119
VR114 -0.1214242 178 -0.0763008 184 -0.026732 186 -0.0079941 190 -0.00060585 189
VR115 -0.382727 274 -0.3264067 270 -0.1988528 270 -0.1199025 262 -0.05811975 262
VR116 0.0197743 118 0.1096987 111 0.10769 108 0.0813274 109 0.04600574 109
VR117 0.1227774 76 0.1966634 75 0.1682387 72 0.1276901 71 0.08267247 66
VR118 -0.0108064 129 0.0404453 140 0.0485563 142 0.0371681 148 0.01915302 153
VR119 -0.0944292 170 -0.0463154 178 -0.0042293 179 0.0079798 181 0.00834537 175
VR120 0.2165977 41 0.2724562 46 0.2077719 52 0.1395698 65 0.07196503 81
VR121 0.0957226 85 0.1721725 81 0.1484388 85 0.1084792 88 0.06307951 91
VR122 0.0031736 125 0.0405735 139 0.0430477 153 0.0298313 157 0.0137359 170
VR123 -0.3478996 258 -0.2922598 258 -0.1726611 249 -0.0995332 245 -0.04463694 243
VR124 0.0517571 105 0.118816 103 0.1246332 95 0.0992266 94 0.06176911 92
VR125 0.4006543 8 0.4286395 10 0.3255338 10 0.2407239 10 0.15942749 8
VR126 0.1566111 67 0.204271 73 0.1833076 69 0.1423659 60 0.09172727 52
VR127 0.1981892 47 0.2694267 49 0.2056092 53 0.1411365 62 0.07662147 72
VR128 -0.0662573 154 -0.0088363 162 0.0153989 168 0.0167159 169 0.00975992 173
VR129 -0.3157103 245 -0.2575642 239 -0.1446355 237 -0.0790467 236 -0.03265746 222
VR130 0.1051172 82 0.1884248 78 0.1747773 71 0.1406521 63 0.0959783 50
VR131 -0.241074 223 -0.1907035 223 -0.0898535 214 -0.0375471 203 -0.00801525 197
VR132 -0.0142952 131 0.0441067 136 0.0501061 139 0.0362134 149 0.01738409 155
VR133 -0.1882942 198 -0.1338241 199 -0.0714821 200 -0.0400495 204 -0.0191617 209
VR134 -0.1882942 198 -0.1338241 199 -0.0714821 200 -0.0400495 204 -0.0191617 209
VR135 0.2329082 36 0.2888403 39 0.2320211 37 0.1681456 36 0.10108581 42
VR136 -0.3771719 266 -0.3343531 271 -0.2150157 272 -0.1358989 282 -0.06974667 273
VR137 -0.210547 213 -0.173821 213 -0.0898234 213 -0.0437367 215 -0.01439655 205
VR138 -0.4111057 286 -0.3766457 286 -0.2577335 286 -0.1770915 287 -0.10726158 287
VR139 -0.3771719 266 -0.3343531 271 -0.2150157 272 -0.1358989 282 -0.06974667 273
VR140 -0.1940662 205 -0.1482508 208 -0.0727083 207 -0.0347216 200 -0.01184713 200
VR141 0.2976141 20 0.3683538 19 0.2719254 25 0.1924566 27 0.11889087 27
VR142 -0.1269254 179 -0.0776959 186 -0.0355907 193 -0.0188811 195 -0.00961308 199
VR143 0.2047183 46 0.2851469 42 0.2323142 36 0.1720132 33 0.10801204 33
VR144 0.120172 77 0.2058502 72 0.1876861 65 0.1486082 53 0.10089606 43
VR145 0.0893154 88 0.1293013 99 0.1040762 111 0.0699379 117 0.03515884 122
VR146 -0.3478996 258 -0.2922598 258 -0.1726611 249 -0.0995332 245 -0.04463694 243
VR147 -0.3454372 256 -0.2882917 256 -0.1664228 243 -0.0921689 240 -0.03752439 239
VR148 -0.2605366 228 -0.214181 228 -0.1267636 230 -0.0739335 231 -0.03397462 232
VR149 -0.1882942 198 -0.1338241 199 -0.0714821 200 -0.0400495 204 -0.0191617 209
VR150 -0.4111057 286 -0.3766457 286 -0.2577335 286 -0.1770915 287 -0.10726158 287
VR151 -0.2954114 236 -0.2468403 238 -0.1278657 235 -0.0614852 216 -0.01955206 216
VR152 0.2057277 45 0.3173922 32 0.2589223 28 0.1969608 24 0.12927144 20
VR153 0.3507173 12 0.3960987 13 0.3061319 13 0.2245037 13 0.14533362 14
VR154 0.0928716 87 0.134727 97 0.1112022 103 0.0783604 111 0.04361933 112
VR155 0.0557192 102 0.1278728 100 0.1164828 101 0.0854578 106 0.04760465 106
VR156 -0.0807016 166 0.0355225 141 0.0920117 118 0.100076 91 0.0844476 63
VR157 -0.1421119 183 -0.0462136 177 0.0227464 161 0.046288 137 0.04880374 103
VR158 0.3229666 16 0.4054703 11 0.3177518 11 0.2330187 11 0.1461488 13
VR159 -0.1466017 186 -0.0872613 191 -0.0285181 188 -0.0065496 186 0.0010339 184
VR160 -0.0765703 164 -0.0318228 170 -0.0075344 180 -0.0023691 184 -0.00191194 191
VR161 -0.1466017 186 -0.0872613 191 -0.0285181 188 -0.0065496 186 0.0010339 184
VR162 0.110109 80 0.2323717 67 0.2020184 56 0.1585098 46 0.10695105 37
VR163 -0.4111057 286 -0.3766457 286 -0.2577335 286 -0.1770915 287 -0.10726158 287
VR164 -0.4073165 276 -0.3529597 276 -0.2159625 276 -0.1288497 263 -0.06046627 263
VR165 0.0110561 122 0.0445113 134 0.0469313 150 0.0338767 153 0.01709534 158
VR166 -0.5104426 293 -0.4683455 293 -0.3195247 293 -0.2187072 293 -0.1312375 293
VR167 -0.1882942 198 -0.1338241 199 -0.0714821 200 -0.0400495 204 -0.0191617 209
VR168 0.0167621 120 0.13729 96 0.138736 88 0.1201695 77 0.08952236 57
VR169 -0.0295136 139 0.0233399 145 0.0371873 155 0.0305721 156 0.01754104 154
VR170 -0.0462085 144 0.0048834 156 0.0313719 157 0.0309999 155 0.01992616 150
VR171 0.2900877 22 0.3283303 29 0.2276724 40 0.1438692 58 0.07087789 83
VR172 0.0048013 124 0.0985727 114 0.1277301 93 0.1177873 79 0.08972116 55
VR173 0.1641334 62 0.2089482 71 0.1595619 75 0.1036663 90 0.04969693 102
VR174 -0.1466854 190 -0.0459123 172 0.0009616 172 0.0083296 176 0.00136486 179
VR175 0.2840436 25 0.3655561 21 0.2855491 18 0.2058245 19 0.12419847 23
VR176 0.1969388 48 0.2730942 44 0.2132723 46 0.148523 54 0.08170802 67
VR177 0.1592543 65 0.2351317 60 0.1836005 67 0.1249318 74 0.06502967 87
VR178 -0.0117858 130 0.0902424 116 0.1175877 98 0.1104453 85 0.08679403 62
VR179 0.1703459 58 0.2526418 53 0.2125304 48 0.1622316 38 0.10767775 34
VR180 -0.0483298 145 0.0467501 133 0.066784 135 0.0557627 132 0.03305403 128
VR181 0.0413663 110 0.0891898 117 0.0680552 134 0.0434685 138 0.01993715 149
VR182 0.2316395 37 0.2843318 43 0.2134966 44 0.1452118 57 0.07827078 71
VR183 0.1747426 57 0.2337294 62 0.1785537 70 0.1193414 78 0.0608239 95
VR184 -0.0306289 140 0.0492368 131 0.0680755 132 0.0566049 130 0.0339679 126
VR185 -0.0253101 136 0.0663172 127 0.077499 128 0.0612279 122 0.03503686 123
VR186 -0.0686621 155 0.0231444 146 0.0479946 143 0.0418742 140 0.02469324 139
VR187 -0.4111057 286 -0.3766457 286 -0.2577335 286 -0.1770915 287 -0.10726158 287
VR188 -0.328521 247 -0.2862959 247 -0.1931369 261 -0.1347237 273 -0.08573704 277
VR189 0.4052603 6 0.4663732 7 0.345414 9 0.2479027 9 0.15352137 10
VR190 -0.5104426 293 -0.4683455 293 -0.3195247 293 -0.2187072 293 -0.1312375 293
VR191 -0.2381774 214 -0.1869896 214 -0.1095815 216 -0.0656824 217 -0.03295054 223
VR192 -0.4073165 276 -0.3529597 276 -0.2159625 276 -0.1288497 263 -0.06046627 263
VR193 -0.3771719 266 -0.3343531 271 -0.2150157 272 -0.1358989 282 -0.06974667 273
VR194 -0.0612813 152 -0.0188205 167 0.0110396 169 0.0146201 170 0.00952151 174
VR195 -0.3478996 258 -0.2922598 258 -0.1726611 249 -0.0995332 245 -0.04463694 243
VR196 0.217943 40 0.2705482 48 0.1982053 58 0.1306788 70 0.06670969 85
VR197 0.1601359 63 0.2333674 63 0.1960184 59 0.1495629 50 0.09825803 45
VR198 -0.4073165 276 -0.3529597 276 -0.2159625 276 -0.1288497 263 -0.06046627 263
VR199 -0.2381774 214 -0.1869896 214 -0.1095815 216 -0.0656824 217 -0.03295054 223
VR200 0.131677 70 0.1721987 80 0.1341097 90 0.0872122 104 0.0412162 113
VR201 -0.0506052 146 0.0870749 119 0.1166227 100 0.1119071 84 0.08785746 59
VR202 0.1969388 48 0.2730942 44 0.2132723 46 0.148523 54 0.08170802 67
VR203 -0.1462024 184 -0.0781582 187 -0.0175812 183 0.0086315 174 0.0196903 151
VR204 -0.1189583 175 -0.0195184 168 0.021731 162 0.0255659 161 0.01589445 161
VR205 -0.5104426 293 -0.4683455 293 -0.3195247 293 -0.2187072 293 -0.1312375 293
VR206 0.3954212 9 0.4673405 6 0.35182 7 0.2534343 8 0.15663151 9
VR207 -0.2381774 214 -0.1869896 214 -0.1095815 216 -0.0656824 217 -0.03295054 223
VR208 -0.3149314 241 -0.2710774 242 -0.1671839 245 -0.1010289 253 -0.04849439 252
VR209 -0.5104426 293 -0.4683455 293 -0.3195247 293 -0.2187072 293 -0.1312375 293
VR210 -0.4073165 276 -0.3529597 276 -0.2159625 276 -0.1288497 263 -0.06046627 263
VR211 -0.2582641 225 -0.2105812 224 -0.1213712 225 -0.0677453 228 -0.02808577 219
VR212 -0.0686621 155 0.0231444 146 0.0479946 143 0.0418742 140 0.02469324 139
VR213 -0.328521 247 -0.2862959 247 -0.1931369 261 -0.1347237 273 -0.08573704 277
VR214 -0.0151882 134 0.0298711 144 0.0501457 138 0.0429604 139 0.02535404 138
VR215 0.2954219 21 0.3711464 18 0.2977938 14 0.2214806 14 0.14132555 16
VR216 0.0151738 121 0.0836982 124 0.0993819 113 0.0885918 102 0.06591292 86
VR217 0.1933379 52 0.2601921 52 0.2009126 57 0.1501309 49 0.10071106 44
VR218 0.0616297 100 0.1507676 89 0.132389 91 0.0936137 98 0.04864283 104
VR219 0.2893776 23 0.3420734 25 0.2828279 20 0.2189195 16 0.1501708 12
VR220 -0.328521 247 -0.2862959 247 -0.1931369 261 -0.1347237
-0.08573704 277
VR221 0.4961161 2 0.5512576 2 0.4291956 2 0.3284237 2 0.22663972 2
VR222 -0.3149314 241 -0.2710774 242 -0.1671839 245 -0.1010289 253 -0.04849439 252
VR223 0.2312318 38 0.3452173 23 0.2774794 21 0.209389 17 0.13624296 18
VR224 0.0676133 94 0.111301 107 0.1062291 109 0.0799321 110 0.04623898 108
VR225 -0.328521 247 -0.2862959 247 -0.1931369 261 -0.1347237 273 -0.08573704 277
VR226 -0.0386765 143 -0.0080683 161 0.0105703 170 0.0105627 173 0.00543976 177
VR227 -0.4073165 276 -0.3529597 276 -0.2159625 276 -0.1288497 263 -0.06046627 263
VR228 0.3097341 18 0.3679051 20 0.2957312 15 0.220696 15 0.14437743 15
VR229 -0.5104426 293 -0.4683455 293 -0.3195247 293 -0.2187072 293 -0.1312375 293
VR230 0.1703459 58 0.2526418 53 0.2125304 48 0.1622316 38 0.10767775 34
VR231 0.1245348 75 0.1895822 77 0.158954 77 0.1126414 83 0.06126535 94
VR232 0.3181049 17 0.3755051 16 0.2878437 17 0.2045408 20 0.1229294 24
VR233 -0.3478996 258 -0.2922598 258 -0.1726611 249 -0.0995332 245 -0.04463694 243
VR234 -0.0563894 149 -0.0158369 164 0.0186987 165 0.0230447 164 0.01558651 164
VR235 0.4052289 7 0.4555222 8 0.3561761 6 0.2650467 7 0.17197117 7
VR236 -0.2963358 237 -0.246436 236 -0.1538522 239 -0.097464 243 -0.05209909 260
VR237 0.054694 103 0.114049 105 0.1303758 92 0.1095927 86 0.07312497 78
VR238 -0.3149314 241 -0.2710774 242 -0.1671839 245 -0.1010289 253 -0.04849439 252
VR239 0.0657862 96 0.1088623 112 0.0903379 122 0.0596355 126 0.02774644 132
VR240 -0.2963358 237 -0.246436 236 -0.1538522 239 -0.097464 243 -0.05209909 260
VR241 0.1943549 50 0.2465952 56 0.1840929 66 0.121796 76 0.06166069 93
VR242 0.2751449 28 0.3420028 26 0.2737251 23 0.1973128 23 0.11645062 29
VR243 -0.4111057 286 -0.3766457 286 -0.2577335 286 -0.1770915 287 -0.10726158 287
VR244 -0.0142952 131 0.0441067 136 0.0501061 139 0.0362134 149 0.01738409 155
VR245 0.1761613 55 0.2852717 41 0.2474179 30 0.1926088 26 0.12819438 21
VR246 0.234684 33 0.2984314 37 0.2319335 38 0.1604633 41 0.08762653 60
VR247 -0.1041331 171 -0.050566 179 -0.0035034 178 0.011652 172 0.01206393 171
VR248 -0.1521565 195 -0.0985187 195 -0.0458803 195 -0.0243561 197 -0.01318493 203
VR249 -0.2994327 239 -0.2631217 240 -0.1535827 238 -0.0865401 239 -0.03669348 238
VR250 -0.328521 247 -0.2862959 247 -0.1931369 261 -0.1347237 273 -0.08573704 277
VR251 0.2515532 31 0.2988548 36 0.2203014 42 0.1452317 56 0.07370213 77
VR252 -0.379279 270 -0.3206686 266 -0.1901438 257 -0.1096338 257 -0.04885261 256
VR253 -0.3478996 258 -0.2922598 258 -0.1726611 249 -0.0995332 245 -0.04463694 243
VR254 0.0657862 96 0.1088623 112 0.0903379 122 0.0596355 126 0.02774644 132
VR255 0.3480105 13 0.3866998 15 0.2725407 24 0.1786514 32 0.09313753 51
VR256 -0.1466854 190 -0.0459123 172 0.0009616 172 0.0083296 176 0.00136486 179
VR257 -0.0253101 136 0.0663172 127 0.077499 128 0.0612279 122 0.03503686 123
VR258 -0.1202467 177 -0.0791378 189 -0.0361542 194 -0.0167303 193 -0.00552676 195
VR259 -0.4073165 276 -0.3529597 276 -0.2159625 276 -0.1288497 263 -0.06046627 263
VR260 0.1290753 71 0.2326073 65 0.2051695 54 0.1586914 44 0.10281123 39
VR261 -0.328521 247 -0.2862959 247 -0.1931369 261 -0.1347237 273 -0.08573704 277
VR262 0.0522216 104 0.0884319 118 0.0764502 131 0.0524752 136 0.02638147 137
VR263 -0.3454372 256 -0.2882917 256 -0.1664228 243 -0.0921689 240 -0.03752439 239
VR264 -0.0686621 155 0.0231444 146 0.0479946 143 0.0418742 140 0.02469324 139
VR265 0.1263586 74 0.1706169 82 0.1219857 96 0.0748184 114 0.03252617 129
VR266 0.1090627 81 0.1573344 85 0.1265857 94 0.0864945 105 0.04545245 110
VR267 -0.2605366 228 -0.214181 228 -0.1267636 230 -0.0739335 231 -0.03397462 232
VR268 -0.0313232 142 0.0209355 154 0.0344578 156 0.0280765 158 0.01571927 163
VR269 -0.5104426 293 -0.4683455 293 -0.3195247
293
-0.2187072 293 -0.1312375 293
VR270 -0.1466854 190 -0.0459123 172 0.0009616 172 0.0083296 176 0.00136486 179
VR271 -0.3907092 275 -0.3442674 275 -0.2004282 271 -0.1117621 261 -0.04627449 251
VR272 0.0198672 117 0.1117101 106 0.1095981 106 0.0831632 107 0.04766056 105
VR273 -0.1805969 197 -0.1372569 206 -0.0603184 199 -0.0249444 199 -0.00627211 196
VR274 0.4655178 3 0.4923461 3 0.3705159 4 0.2709503 5 0.17368736 5
VR275 0.024852 113 0.0864484 120 0.0793915 125 0.0551694 133 0.02714879 134
VR276 0.1601359 63 0.2333674 63 0.1960184 59 0.1495629 50 0.09825803 45
VR277 0.070006 90 0.145335 94 0.1405273 87 0.112971 82 0.07603746 74
VR278 -0.1521565 195 -0.0985187 195 -0.0458803 195 -0.0243561 197 -0.01318493 203
VR279 -0.4073165 276 -0.3529597 276 -0.2159625 276 -0.1288497 263 -0.06046627 263
VR280 0.0684069 91 0.1177157 104 0.1053339 110 0.0731 115 0.03646415 121
VR281 0.5169436 1 0.5734171 1 0.4543916 1 0.3526536 1 0.24444907 1
VR282 0.2523543 30 0.301631 35 0.2374382 35 0.1704733 34 0.10182544 41
VR283 0.2797245 26 0.3295549 27 0.2420588 33 0.1598632 42 0.08163873 69
VR284 0.2797245 26 0.3295549 27 0.2420588 33 0.1598632 42 0.08163873 69
VR285 -0.5104426 293 -0.4683455 293 -0.3195247 293 -0.2187072 293 -0.1312375 293
VR286 0.0962651 84 0.1771154 79 0.1956424 62 0.1698115 35 0.12446706 22
VR287 -0.0686621 155 0.0231444 146 0.0479946 143 0.0418742 140 0.02469324 139
VR288 0.3426099 15 0.3941029 14 0.2917013 16 0.1991179 22 0.11041363 32
VR289 -0.2000514 208 -0.1392801 207 -0.0736538 209 -0.0362187 202 -0.01202402 202
VR290 -0.4073165 276 -0.3529597 276 -0.2159625 276 -0.1288497 263 -0.06046627 263
VR291 -0.4111057 286 -0.3766457 286 -0.2577335 286 -0.1770915 287 -0.10726158 287
VR292 0.2144575 43 0.3032885 34 0.2476315 29 0.1838035 29 0.11702324 28
VR293 -0.3478996 258 -0.2922598 258 -0.1726611 249 -0.0995332 245 -0.04463694 243
VR294 -0.2605366 228 -0.214181 228 -0.1267636 230 -0.0739335 231 -0.03397462 232
VR295 -0.3478996 258 -0.2922598 258 -0.1726611 249 -0.0995332 245 -0.04463694 243
VR296 -0.2381774 214 -0.1869896 214 -0.1095815 216 -0.0656824 217 -0.03295054 223
VR297 0.2154906 42 0.2654438 50 0.2133195 45 0.1516096 48 0.08797222 58
VR298 -0.1363048 181 -0.0772643 185 -0.0284263 187 -0.0088203 191 -9.2697E-05 188
VR299 -0.0686621 155 0.0231444 146 0.0479946 143 0.0418742 140 0.02469324 139
VR300 -0.0686621 155 0.0231444 146 0.0479946 143 0.0418742 140 0.02469324 139

References

  • 1.Ibrahim N.K., Hammed H., Zaidan A.A., Zaidan B.B., Albahri O.S., Alsalem M.A., Alaa M. Multi-criteria evaluation and benchmarking for young learners’ English language mobile applications in terms of LSRW skills. IEEE Access. 2019;7:146620–146651.Chicago. [Google Scholar]
  • 2.Jumaah F.M., Zadain A.A., Zaidan B.B., Hamzah A.K., Bahbibi R. Decision-making solution based multi-measurement design parameter for optimization of GPS receiver tracking channels in static and dynamic real-time positioning multipath environment. Measurement. 2018;118:83–95. [Google Scholar]
  • 3.Zughoul O., et al. Comprehensive insights into the criteria of student performance in various educational domains. IEEE Access. 2018;6(4):73245–73264. [Google Scholar]
  • 4.Salih M.M., Zaidan B., Zaidan A., Ahmed M.A. Survey on fuzzy TOPSIS state-of-the-art between 2007 and 2017. Comput. Oper. Res. 2019;104:207–227. [Google Scholar]
  • 5.Albahri A., et al. Based multiple heterogeneous wearable sensors: A smart real-time health monitoring structured for hospitals distributor. IEEE Access. 2019;7:37269–37323. [Google Scholar]
  • 6.Albahri O., et al. Fault-tolerant mHealth framework in the context of IoT-based real-time wearable health data sensors. IEEE Access. 2019;7:50052–50080. [Google Scholar]
  • 7.Almahdi E., Zaidan A., Zaidan B., Alsalem M., Albahri O., Albahri A. Mobile patient monitoring systems from a benchmarking aspect: Challenges, open issues and recommended solutions. J. Med. Syst. 2019;43(7):207. doi: 10.1007/s10916-019-1336-z. [DOI] [PubMed] [Google Scholar]
  • 8.Alsalem M., et al. Multiclass benchmarking framework for automated acute Leukaemia detection and classification based on BWM and group-VIKOR. J. Med. Syst. 2019;43(7):212. doi: 10.1007/s10916-019-1338-x. [DOI] [PubMed] [Google Scholar]
  • 9.Almahdi E., Zaidan A., Zaidan B., Alsalem M., Albahri O., Albahri A.S.J.J. Mobile-based patient monitoring systems: A prioritisation framework using multi-criteria decision-making techniques. J. Med. Syst. 2019;43(7):219. doi: 10.1007/s10916-019-1339-9. [DOI] [PubMed] [Google Scholar]
  • 10.Tariq I., et al. MOGSABAT: a metaheuristic hybrid algorithm for solving multi-objective optimisation problems. Neural Comput. Appl. 2018;32(2020) [Google Scholar]
  • 11.Zaidan A.A., Zaidan B.B., Albahri O.S., Alsalem M.A., Albahri A.S., Yas Q.M., Hashim M. A review on smartphone skin cancer diagnosis apps in evaluation and benchmarking: coherent taxonomy, open issues and recommendation pathway solution. Health Technol. 2018;8(4):223–238. [Google Scholar]
  • 12.Alsalem M.A., Zaidan A.A., Zaidan B.B., Hashim M., Albahri O.S., Albahri A.S., Mohammed K.I. Systematic review of an automated multiclass detection and classification system for acute Leukaemia in terms of evaluation and benchmarking, open challenges, issues and methodological aspects. J. Med. Syst. 2018;42(11):1–36. doi: 10.1007/s10916-018-1064-9. [DOI] [PubMed] [Google Scholar]
  • 13.Kalid N., Zaidan A., Zaidan B., Salman O.H., Hashim M., Muzammil H.J.J. Based real time remote health monitoring systems: a review on patients prioritization and related“ big data” using body sensors information and communication technology. J. Med. Syst. 2018;42(2):30. doi: 10.1007/s10916-017-0883-4. [DOI] [PubMed] [Google Scholar]
  • 14.Almahdi E., Zaidan A., Zaidan B., Alsalem M., Albahri O., Albahri A. Mobile-based patient monitoring systems: A prioritisation framework using multi-criteria decision-making techniques. J. Med. Syst. 2019;43(7):219. doi: 10.1007/s10916-019-1339-9. [DOI] [PubMed] [Google Scholar]
  • 15.Mohammed K., et al. Real-time remote-health monitoring systems: a review on patients prioritisation for multiple-chronic diseases, taxonomy analysis, concerns and solution procedure. J. Med. Syst. 2019;43(7):223. doi: 10.1007/s10916-019-1362-x. [DOI] [PubMed] [Google Scholar]
  • 16.Khatari M., Zaidan A., Zaidan B., Albahri O., Alsalem M. Multi-criteria evaluation and benchmarking for active queue management methods: Open issues, challenges and recommended pathway solutions. Int. J. Inf. Technol. Decis. Mak. 2019;18(04):1187–1242. [Google Scholar]
  • 17.Alaa M., et al. Assessment and ranking framework for the English skills of pre-service teachers based on fuzzy Delphi and TOPSIS methods. IEEE Access. 2019;7:126201–126223. [Google Scholar]
  • 18.Talal M., et al. Comprehensive review and analysis of anti-malware apps for smartphones. Telecommun. Syst. 2019;72(2):285–337. [Google Scholar]
  • 19.Albahri A.S., et al. Development of IoT-based mhealth framework for various cases of heart disease patients. Health Technol. 2021 2021/07/24. [Google Scholar]
  • 20.He P., Yang Z., Hou B. A multi-attribute decision-making algorithm using q-rung orthopair power bonferroni mean operator and its application. Mathematics. 2020;8(8):1240. [Google Scholar]
  • 21.Zaidan A.A., Zaidan B.B., Al-Haiqi A., Kiah M.L.M., Hussain M., Abdulnabi M. Evaluation and selection of open-source EMR software packages based on integrated AHP and TOPSIS. J. Biomed. Inform. 2015;53(8):390–404. doi: 10.1016/j.jbi.2014.11.012. [DOI] [PubMed] [Google Scholar]
  • 22.Zaidan A., Zaidan B., Hussain M., Haiqi A., Kiah M.M., Abdulnabi M. Multi-criteria analysis for OS-EMR software selection problem: a comparative study. Decis. Support Syst. 2015;78(4):15–27. [Google Scholar]
  • 23.Abdullateef B.N., Elias N.F., Mohamed H., Zaidan A., Zaidan B. An evaluation and selection problems of OSS-LMS packages. SpringerPlus. 2016;5(1):248–255. doi: 10.1186/s40064-016-1828-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Yas Q.M., Zadain A., Zaidan B., Lakulu M., Rahmatullah B. Towards on develop a framework for the evaluation and benchmarking of skin detectors based on artificial intelligent models using multi-criteria decision-making techniques. Int. J. Pattern Recognit. Artif. Intell. 2017;31(03) [Google Scholar]
  • 25.Zaidan B., Zaidan A. Software and hardware FPGA-based digital watermarking and steganography approaches: toward new methodology for evaluation and benchmarking using multi-criteria decision-making techniques. J. Circ. Syst. Comput. 2017;26(07) [Google Scholar]
  • 26.Zaidan B.B., Zaidan A.A., Karim H.A., Ahmad N.N. A new approach based on multi-dimensional evaluation and benchmarking for data hiding techniques. Int. J. Inf. Technol. Decis. Making. 2021;0(0):1–42. [Google Scholar]
  • 27.Qader M., Zaidan B., Zaidan A., Ali S., Kamaluddin M. A methodology for football players selection problem based on multi-measurements criteria analysis. Measurement. 2017;111:38–50. [Google Scholar]
  • 28.Jumaah F., Zaidan A., Zaidan B., Bahbibi R., Qahtan M., Sali A.J.T.S. Technique for order performance by similarity to ideal solution for solving complex situations in multi-criteria optimization of the tracking channels of GPS baseband telecommunication receivers. Telecommun. Syst. 2018;68(3):425–443. [Google Scholar]
  • 29.Salman O.H., Zaidan A., Zaidan B., Naserkalid, Hashim M., Making D. Novel methodology for triage and prioritizing using “big data” patients with chronic heart diseases through telemedicine environmental. Int. J. Inf. Technol. Decis. Mak. 2017;16(05):1211–1245. [Google Scholar]
  • 30.Zaidan B., Zaidan A. Comparative study on the evaluation and benchmarking information hiding approaches based multi-measurement analysis using TOPSIS method with different normalisation, separation and context techniques. Measurement. 2018;117:277–294. [Google Scholar]
  • 31.Alamoodi A., et al. A systematic review into the assessment of medical apps: motivations, challenges, recommendations and methodological aspect. Health Technol. 2020:1–17. [Google Scholar]
  • 32.Zughoul O., Zaidan A., Zaidan B., Faiez M.J.I.J.o.I.T., Making D. Novel triplex procedure for ranking the ability of software engineering students based on two levels of AHP and group TOPSIS techniques. Int. J. Inf. Technol. Decis. Mak. 2020 [Google Scholar]
  • 33.Albahri A., Hamid R.A., Albahri O., Zaidan A. Detection-based prioritisation: framework of multi-laboratory characteristics for asymptomatic COVID-19 carriers based on integrated Entropy–TOPSIS methods. Artif. Intell. Med. 2021;111 doi: 10.1016/j.artmed.2020.101983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Albahri A., Zaidan A., Albahri O., Zaidan B., Alsalem M. Real-time fault-tolerant mHealth system: Comprehensive review of healthcare services, opens issues, challenges and methodological aspects. J. Med. Syst. 2018;42(8):1–56. doi: 10.1007/s10916-018-0983-9. [DOI] [PubMed] [Google Scholar]
  • 35.Albahri O., et al. Systematic review of real-time remote health monitoring system in triage and priority-based sensor technology: Taxonomy, open challenges, motivation and recommendations. J. Med. Syst. 2018;42(5):1–27. doi: 10.1007/s10916-018-0943-4. [DOI] [PubMed] [Google Scholar]
  • 36.Albahri A.S., et al. IoT-based telemedicine for disease prevention and health promotion: state-of-the-art. J. Netw. Comput. Appl. 2021;173 [Google Scholar]
  • 37.Malik R., et al. Novel roadside unit positioning framework in the context of the vehicle-to-infrastructure communication system based on AHP—Entropy for weighting and borda—VIKOR for uniform ranking. Int. J. Inf. Technol. Decis. Mak. 2021:1–34. [Google Scholar]
  • 38.Dawood K.A. Novel Multi-Perspective Usability Evaluation Framework for Selection of Open Source Software Based on BWM and Group VIKOR Techniques. Int. J. Inf. Technol. Decis. Mak. 2020 [Google Scholar]
  • 39.Hamid R.A., Albahri A., Albahri O., Zaidan A. Dempster–Shafer theory for classification and hybridised models of multi-criteria decision analysis for prioritisation: a telemedicine framework for patients with heart diseases. J. Amb. Intell. Hum. Comput. 2021:1–35. [Google Scholar]
  • 40.Alamoodi A., et al. Machine learning-based imputation soft computing approach for large missing scale and non-reference data imputation. Chaos Solitons Fract. 2021;151 [Google Scholar]
  • 41.Riaz M., Sałabun W., Farid H.M.A., Ali N., Wątróbski J. A robust q-rung orthopair fuzzy information aggregation using Einstein operations with application to sustainable energy planning decision management. Energies. 2020;13(9):2155. [Google Scholar]
  • 42.Abdulkareem K.H., Arbaiy N., Zaidan A.A., Zaidan B.B., Albahri O.S., Alsalem M.A., Salih M.M. A novel multi-perspective benchmarking framework for selecting image dehazing intelligent algorithms based on BWM and group VIKOR techniques. Int. J. Inf. Technol. Decis. Mak. 2020;19(03):909–957. [Google Scholar]
  • 43.Albahri O., et al. New mHealth hospital selection framework supporting decentralised telemedicine architecture for outpatient cardiovascular disease-based integrated techniques: Haversine-GPS and AHP-VIKOR. J. Amb. Intell. Hum. Comput. 2021:1–21. [Google Scholar]
  • 44.Albahri O., Zaidan A., Zaidan B., Hashim M., Albahri A., Alsalem M. Real-time remote health-monitoring Systems in a Medical Centre: a review of the provision of healthcare services-based body sensor information, open challenges and methodological aspects. J. Med. Syst. 2018;42(9):1–47. doi: 10.1007/s10916-018-1006-6. [DOI] [PubMed] [Google Scholar]
  • 45.Albahri O.S., et al. Multidimensional benchmarking of the active queue management methods of network congestion control based on extension of fuzzy decision by opinion score method. Int. J. Intell. Syst. 2021;36(2):796–831. [Google Scholar]
  • 46.Napi N.M., Zaidan A.A., Zaidan B.B., Albahri O.S., Alsalem M.A., Albahri A.S. Medical emergency triage and patient prioritisation in a telemedicine environment: a systematic review. Health Technol. 2019;9(5):679–700. 2019/11/01. [Google Scholar]
  • 47.Enaizan O., et al. Electronic medical record systems: Decision support examination framework for individual, security and privacy concerns using multi-perspective analysis. Health Technol. 2020;10(3):795–822. [Google Scholar]
  • 48.Zaidan A., Zaidan B., Alsalem M., Albahri O., Albahri A., Qahtan M. Multi-agent learning neural network and Bayesian model for real-time IoT skin detectors: a new evaluation and benchmarking methodology. Neural Comput. Appl. 2020;32(12):8315–8366. [Google Scholar]
  • 49.Zaidan A., Zaidan B., Alsalem M., Momani F., Zughoul O. Novel multiperspective hiring framework for the selection of software programmer applicants based on AHP and group TOPSIS techniques. Int. J. Inf. Technol. Decis. Mak. 2020;18(4):1–73. [Google Scholar]
  • 50.Wang H., Zhang Y., Yao J. An extended VIKOR method based on q-rung orthopair shadowed set and its application to multi-attribute decision making. Symmetry. 2020;12(9):1508. [Google Scholar]
  • 51.Liu P., Zhu B., Wang P., Shen M. An approach based on linguistic spherical fuzzy sets for public evaluation of shared bicycles in China. Eng. Appl. Artif. Intell. 2020;87 [Google Scholar]
  • 52.Yang Z., Li J., Huang L., Shi Y. Developing dynamic intuitionistic normal fuzzy aggregation operators for multi-attribute decision-making with time sequence preference. Expert Syst. Appl. 2017;82:344–356. [Google Scholar]
  • 53.Hussian Z., Yang M.S. Distance and similarity measures of Pythagorean fuzzy sets based on the Hausdorff metric with application to fuzzy TOPSIS. Int. J. Intell. Syst. 2019;34(10):2633–2654. [Google Scholar]
  • 54.Wan S.-P., Li S.-Q., Dong J.-Y. A three-phase method for Pythagorean fuzzy multi-attribute group decision making and application to haze management. Comput. Ind. Eng. 2018;123:348–363. [Google Scholar]
  • 55.Hussain A., Ali M.Irfan, Mahmood T. Covering based q-rung orthopair fuzzy rough set model hybrid with TOPSIS for multi-attribute decision making. J. Intell. Fuzzy Syst. 2019:1–13. Preprint. [Google Scholar]
  • 56.Mahmood T., Ali Z. Entropy measure and TOPSIS method based on correlation coefficient using complex q-rung orthopair fuzzy information and its application to multi-attribute decision making. Soft Comput. 2021;25(2):1249–1275. [Google Scholar]
  • 57.Chen K., Luo Y. Generalized orthopair linguistic Muirhead mean operators and their application in multi-criteria decision making. J. Intell. Fuzzy Syst. 2019;37(1):797–809. [Google Scholar]
  • 58.Yager R.R. Generalized orthopair fuzzy sets. IEEE Trans. Fuzzy Syst. 2016;25(5):1222–1230. [Google Scholar]
  • 59.Hussain A., Ali M., Mahmood T. Hesitant q-rung orthopair fuzzy aggregation operators with their applications in multi-criteria decision making. Iran. J. Fuzzy Syst. 2020;17(3):117–134. [Google Scholar]
  • 60.Liu Z., Li L., Li J. q-Rung orthopair uncertain linguistic partitioned Bonferroni mean operators and its application to multiple attribute decision-making method. Int. J. Intell. Syst. 2019;34(10):2490–2520. [Google Scholar]
  • 61.Yang Z., Chang J. A multi-attribute decision-making-based site selection assessment algorithm for garbage disposal plant using interval q-rung orthopair fuzzy power Muirhead mean operator. Environ. Res. 2021;193 doi: 10.1016/j.envres.2020.110385. [DOI] [PubMed] [Google Scholar]
  • 62.Yang Z., Li X., Cao Z., Li J. Q-rung orthopair normal fuzzy aggregation operators and their application in multi-attribute decision-making. Mathematics. 2019;7(12):1142. [Google Scholar]
  • 63.Wang Y., Shan Z., Huang L. The extension of TOPSIS method for multi-attribute decision-making with q-Rung orthopair hesitant fuzzy sets. IEEE Access. 2020;8:165151–165167. [Google Scholar]
  • 64.Riaz M., Hamid M.T., Afzal D., Pamucar D., Chu Y.-M. Multi-criteria decision making in robotic agri-farming with q-rung orthopair m-polar fuzzy sets. PLoS One. 2021;16(2) doi: 10.1371/journal.pone.0246485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65.Pınar A., Babak Daneshvar R., Özdemir Y.S. q-Rung orthopair fuzzy TOPSIS method for green supplier selection problem. Sustainability. 2021;13(2):985. [Google Scholar]
  • 66.Krishankumar R., Nimmagadda S.S., Rani P., Mishra A.R., Ravichandran K., Gandomi A.H. Solving renewable energy source selection problems using a q-rung orthopair fuzzy-based integrated decision-making approach. J. Cleaner Prod. 2021;279 [Google Scholar]
  • 67.Salih M.M., Zaidan B., Zaidan A. Fuzzy decision by opinion score method. Appl. Soft Comput. 2020;96 [Google Scholar]
  • 68.Salih M.M., Albahri O., Zaidan A., Zaidan B., Jumaah F., Albahri A. Benchmarking of AQM methods of network congestion control based on extension of interval type-2 trapezoidal fuzzy decision by opinion score method. Telecommun. Syst. 2021;77(3):493–522. [Google Scholar]
  • 69.Mohammed R.T., et al. Determining importance of many-objective optimisation competitive algorithms evaluation criteria based on a novel fuzzy-weighted zero-inconsistency method. Int. J. Inf. Technol. Decis. Mak. 2021;0(0):1–47. [Google Scholar]
  • 70.Krishnan E., et al. Interval type 2 trapezoidal-fuzzy weighted with zero inconsistency combined with VIKOR for evaluating smart e-tourism applications. Int. J. Intell. Syst. 2021 [Google Scholar]
  • 71.Liu P., Wang P. Some q-rung orthopair fuzzy aggregation operators and their applications to multiple-attribute decision making. Int. J. Intell. Syst. 2018;33(2):259–280. [Google Scholar]
  • 72.Salih M.M., Albahri O., Zaidan A., Zaidan B., Jumaah F., Albahri A. Benchmarking of AQM methods of network congestion control based on extension of interval type-2 trapezoidal fuzzy decision by opinion score method. Telecommun. Syst. 2021:1–30. [Google Scholar]
  • 73.Albahri O.S., et al. Multidimensional benchmarking of the active queue management methods of network congestion control based on extension of fuzzy decision by opinion score method. Int. J. Intell. Syst. 2021 [Google Scholar]
  • 74.Salih M.M., Zaidan B., Zaidan A. Fuzzy decision by opinion score method. Appl. Soft Comput. 2020 [Google Scholar]
  • 75.Albahri A., Hamid R.A. Role of biological data mining and machine learning techniques in detecting and diagnosing the novel coronavirus (COVID-19): a systematic review. J. Med. Syst. 2020;44(7):122. doi: 10.1007/s10916-020-01582-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 76.Albahri O., et al. Systematic review of artificial intelligence techniques in the detection and classification of COVID-19 medical images in terms of evaluation and benchmarking: Taxonomy analysis, challenges, future solutions and methodological aspects. J. Infect. Public Health. 2020;13(10):1381–1396. doi: 10.1016/j.jiph.2020.06.028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 77.Albahri A., et al. Multi-biological laboratory examination framework for the prioritization of patients with COVID-19 based on integrated AHP and group VIKOR methods. Int. J. Inf. Technol. Decis. Mak. 2020;19(05):1247–1269. [Google Scholar]
  • 78.Albahri O., et al. Helping doctors hasten COVID-19 treatment: Towards a rescue framework for the transfusion of best convalescent plasma to the most critical patients based on biological requirements via ml and novel MCDM methods. Comput. Methods Programs Biomed. 2020;196 doi: 10.1016/j.cmpb.2020.105617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 79.Alamoodi A., et al. Sentiment analysis and its applications in fighting COVID-19 and infectious diseases: a systematic review. Expert Syst. Appl. 2020 doi: 10.1016/j.eswa.2020.114155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 80.Albahri A., Hamid R.A. Detection-based prioritisation: framework of multi-laboratory characteristics for asymptomatic COVID-19 carriers based on integrated entropy–TOPSIS methods. Artif. Intell. Med. 2020 doi: 10.1016/j.artmed.2020.101983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 81.Mohsin A., et al. PSO–Blockchain-based image steganography: towards a new method to secure updating and sharing COVID-19 data in decentralised hospitals intelligence architecture. Multimed. Tools Appl. 2021;80(9):14137–14161. doi: 10.1007/s11042-020-10284-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82.Mohammed T.J., et al. Convalescent-plasma-transfusion intelligent framework for rescuing COVID-19 patients across centralised/decentralised telemedicine hospitals based on AHP-group TOPSIS and matching component. Appl. Intell. 2021:1–32. doi: 10.1007/s10489-020-02169-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 83.del Carmen Munguía-López A., Ponce-Ortega J.M. Fair Allocation of Potential COVID-19 Vaccines Using an Optimization-Based Strategy. Process. Integr. Optim. Sustain. 2021;5(1):3–12. [Google Scholar]
  • 84.Albahri A.S. Novel dynamic fuzzy decision-making framework for COVID-19 vaccine dose recipients. J. Adv. Res. 2021 doi: 10.1016/j.jare.2021.08.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 85.Kalid N., Zaidan A.A., Zaidan B.B., Salman O.H., Hashim M., Albahri O.S., Albahri A.S. Based on real time remote health monitoring systems: a new approach for prioritization “large scales data” patients with chronic heart diseases using body sensors and communication technology. J. Med. Syst. 2018;42(4):1–37. doi: 10.1007/s10916-018-0916-7. [DOI] [PubMed] [Google Scholar]
  • 86.Abdulkareem K.H., et al. A novel multi-perspective benchmarking framework for selecting image dehazing intelligent algorithms based on BWM and group VIKOR techniques. Int. J. Inf. Technol. Decis. Mak. 2020:1–49. [Google Scholar]
  • 87.Albahri O.S., et al. Multidimensional benchmarking of the active queue management methods of network congestion control based on extension of fuzzy decision by opinion score method. Int. J. Intell. Syst. 2021;n/a(n/a) [Google Scholar]
  • 88.Abdulkareem K.H., Arbaiy N., Zaidan A.A., Zaidan B.B., Albahri O.S., Alsalem M.A., Salih M.M. A new standardisation and selection framework for real-time image dehazing algorithms from multi-foggy scenes based on fuzzy Delphi and hybrid multi-criteria decision analysis methods. Neural Comput. Appl. 2021;33:1029–1054. [Google Scholar]
  • 89.Abdulkareem K.H., et al. A new standardisation and selection framework for real-time image dehazing algorithms from multi-foggy scenes based on fuzzy Delphi and hybrid multi-criteria decision analysis methods. Neural Comput. Appl. 2020 2020/05/26. [Google Scholar]
  • 90.K. Mohammed et al., "Novel technique for reorganisation of opinion order to interval levels for solving several instances representing prioritisation in patients with multiple chronic diseases," vol. 185, p. 105151, 2020. [DOI] [PubMed]
  • 91.Mohammed K.I., Jaafar J., Zaidan A.A., Albahri O.S., Zaidan B.B., Abdulkareem K.H., Alamoodi A.H. A uniform intelligent prioritisation for solving diverse and big data generated from multiple chronic diseases patients based on hybrid decision-making and voting method. IEEE Access. 2020;8:91521–91530. [Google Scholar]
  • 92.Abdulkareem K.H. A novel multi-perspective benchmarking framework for selecting image dehazing intelligent algorithms based on BWM and group VIKOR techniques. Int. J. Inf. Technol. Decis. Mak. 2020 [Google Scholar]
  • 93.Pamucar D., Yazdani M., Obradovic R., Kumar A., Torres-Jiménez M. A novel fuzzy hybrid neutrosophic decision-making approach for the resilient supplier selection problem. Int. J. Intell. Syst. 2020;35(12):1934–1986. [Google Scholar]
  • 94.Ali Z., Mahmood T., Ullah K., Khan Q. Einstein geometric aggregation operators using a novel complex interval-valued pythagorean fuzzy setting with application in green supplier chain management. Rep. Mech. Eng. 2021;2(1):105–134. doi: 10.31181/rme2001020105t. [DOI] [Google Scholar]
  • 95.Kushwaha D.K., Panchal D., Sachdeva A. Risk analysis of cutting system under intuitionistic fuzzy environment. Rep. Mech. Eng. 2020;1(1):162–173. doi: 10.31181/rme200101162k. [DOI] [Google Scholar]
  • 96.Pamucar D.S., Savin L.M. Multiple-criteria model for optimal off-road vehicle selection for passenger transportation: BWM-COPRAS model. Milit. Tech. Courier. 2020;68(1):28–64. [Google Scholar]
  • 97.Milosevic T., Pamucar D., Chatterjee P. Model for selecting a route for the transport of hazardous materials using a fuzzy logic system. Milit. Tech. Courier. 2021;69(2):355–390. [Google Scholar]
  • 98.Žižović M., Pamucar D., Miljković B., Karan A. Multiple-criteria evaluation model for medical professionals assigned to temporary SARS-CoV-2 hospitals. Decis. Making. 2021;4(1):153–173. [Google Scholar]
  • 99.Badi I., Pamucar D. Supplier selection for steelmaking company by using combined Grey-MARCOS methods. Decis. Making. 2020;3(2):37–48. doi: 10.31181/dmame2003037b. [DOI] [Google Scholar]
  • 100.Biswas S. Measuring performance of healthcare supply chains in India: A comparative analysis of multi-criteria decision making methods. Decis. Making. 2020;3(2):162–189. doi: 10.31181/dmame2003162b. [DOI] [Google Scholar]
  • 101.Pamucar D. Normalized weighted Geometric Dombi Bonferoni Mean Operator with interval grey numbers: application in multicriteria decision making. Rep. Mech. Eng. 2020;1(1):44–52. [Google Scholar]

Articles from Computer Standards & Interfaces are provided here courtesy of Elsevier

RESOURCES