Abstract
Owing to the limitations of Pythagorean fuzzy and intuitionistic fuzzy sets, scientists have developed a distinct and successive fuzzy set called the q-rung orthopair fuzzy set (q-ROFS), which eliminates restrictions encountered by decision-makers in multicriteria decision making (MCDM) methods and facilitates the representation of complex uncertain information in real-world circumstances. Given its advantages and flexibility, this study has extended two considerable MCDM methods the fuzzy-weighted zero-inconsistency (FWZIC) method and fuzzy decision by opinion score method (FDOSM) under the fuzzy environment of q-ROFS. The extensions were called q-rung orthopair fuzzy-weighted zero-inconsistency (q-ROFWZIC) method and q-rung orthopair fuzzy decision by opinion score method (q-ROFDOSM). The methodology formulated had two phases. The first phase ‘development’ presented the sequential steps of each method thoroughly.The q-ROFWZIC method was formulated and used in determining the weights of evaluation criteria and then integrated into the q-ROFDOSM for the prioritisation of alternatives on the basis of the weighted criteria. In the second phase, a case study regarding the MCDM problem of coronavirus disease 2019 (COVID-19) vaccine distribution was performed. The purpose was to provide fair allocation of COVID-19 vaccine doses. A decision matrix based on an intersection of ‘recipients list’ and ‘COVID-19 distribution criteria’ was adopted. The proposed methods were evaluated according to systematic ranking assessment and sensitivity analysis, which revealed that the ranking was subject to a systematic ranking that is supported by high correlation results over different scenarios with variations in the weights of criteria.
Keywords: COVID-19, Vaccine, Multicriteria decision-making, q-Rung orthopair fuzzy, FWZIC, FDOSM
1. Introduction
Decision-making techniques are gaining wide attention, of which the multicriteria decision-making (MCDM) is the most vital [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19]. MCDM is one of the most common real-life behaviours that can be represented as the outcomes of mental and reasoning processes for the identification of the most suitable alternatives concerning predefined attributes or criteria [20], [21], [22], [23], [24], [25], [26], [27], [28], [29], [30], [31], [32], [33], [34], [35], [36], [37], [38], [39], [40]. In several cases, decision makers (DMs) have difficulty in expressing a specific preference and precise evaluation values accurately when case studies rely on unreliable, ambiguous or incomplete information [41], [42], [43], [44], [45], [46], [47], [48], [49]. Presuming that the preferences of alternatives to qualities articulated by DMs or experts are precise is unrealistic because of the complications of objectivity and vagueness of human reasoning [50][94-101]. Hence, conducting an optimal decision process is an extremely difficult task for DMs. Hence, the principle of fuzzy sets is presented to address MCDM concerns in uncertainty and vagueness, utilising the membership degree to illustrate the level of an element involving a fuzzy set [51]. To improve accuracy in the information expression of evaluation criteria and reliability of decision-making results, researchers have developed tools using different generalisations of fuzzy sets for different application scenarios, including the intuitionistic fuzzy set (IFS) [52] and Pythagorean fuzzy set (PFS) [53]. In complex and varied practical decision-making, fuzzy sets and particular derived fuzzy numbers have potential defects[[51], [94], [95], [96], [97], [98], [99], [100], [101]].
The concept of IFSs takes into account the expression of membership (µ) and non-membership (υ) degrees, and thus the selection of support the MCDM problems are involved. However, this fuzzy set has disadvantages in the context of decision-making information description, and these disadvantages impose restrictions on the representation of membership and non-membership grades, making the sum of the two parameters lower than or equal to 1 [50]. Owing to the limitations of IFSs, researchers have developed a more comprehensive fuzzy set, called the PFS. Notably, the concept of PFSs is driven from IFSs, but more generalisation is involved [54]. PFSs are distinguished in the summation of squares of membership and non-membership grades, which are real numbers bounded by 1 (less than or equal to 1) [55]. The constraint of the PFSs is better than that of IFSs, as indicated in this example: 0.42 + 0.82 = 0.16 + 0.64 = 0.8 ≤ 1. PFSs have received considerable attraction from scientists because it can overcome higher degrees of ambiguously [56, 57]. In the reality, the DMs are obligated to the constraints of PFSs as they cannot provide values to the membership and non-membership grades clearly on the basis of their own preferences [55]. Owing to the limitations of PFSs, a distinct and successive fuzzy set is needed to address the restrictions encountered by DMs.
Yager [58] developed a novel fuzzy concept called the q-rung orthopair fuzzy set (q-ROFS) to solve the disadvantages of information expression in traditional fuzzy sets (i.e. IFSs and PFSs). In the q-ROFSs, the constraint of other fuzzy sets is removed, and the summation of the q powers of membership and non-membership grades are real numbers between the interval [0, 1]. Thus, the DMs are allowed to select any grades for µ and υ anywhere freely (µ ∈ [0, 1] and υ ∈ [0, 1]) [59]. For example, when DM is asked to give his or her preference about a specific case, he or she assigns a value of 0.9 for membership grade and a value of 0.8 for non-membership grade. In this case, the conditions of IFSs and PFSs cannot be achieved because of their constraints. However, the exampled membership and non-membership grades can be represented using a q-ROFS and raising the parameter of the q value to a value equal or greater than 4. When q = 1, the q-ROFS degrades to IFSs. When q = 2, the q-ROFS becomes PFSs (Fig. 1 concludes the relationship amongst IFSs, PFSs and q-ROFS).
Fig. 1.

Concept relationship between IFSs, PFSs and q-ROFS [50].
Owning to the structure representation, the constraint of q-ROFS is considered much better than the other constraints because it provides more space and flexibility under uncertain conditions and enables DMs to select the membership and non-membership degrees freely [60]. Since it was set up, many researchers have extensively studied and utilised it to solve ungainly and troublesome fuzzy cases from different perspectives. Some aggregation operators in the framework of q-ROFSs, such as q-rung orthopair fuzzy Einstein ordered weighted geometric, q-rung orthopair fuzzy Einstein weighted geometric, q-rung orthopair fuzzy Einstein weighted averaging and q-rung orthopair fuzzy Einstein ordered weighted averaging, were presented [41]. Another study [61] was evaluated site selection scheme of garbage disposal plant and support for garbage disposal site selection by illustrating a novel MCDM technique depending on interval q-rung orthopair fuzzy weighted power Muirhead mean operator. A study by [62] defined the conception, the operational laws, score function and accuracy function of Q-rung orthopair normal fuzzy (q-RONF) set. Furthermore, they introduced several novel aggregation operators to aggregate the q-RONF information, including the q-RONF weighted, the q-RONF hybrid operator and the q-RONF ordered weighted. Accordingly [63] measured the q-rung orthopair hesitant fuzzy sets)q-ROHFSs(and the properties related to the distance and similarity measures of q-ROHFSs, and the axiomatised definition and formula for the entropy of q-ROHFSs. Moreover, a q-rung orthopair shadowed set was suggested to represent attribute values and extends the vlsekriterijumska optimizcija i kaompromisno resenje (VIKOR) [50]. The authors in [64] introduced the hybrid concept of q-rung orthopair m-polar fuzzy set (qROmPFS) and developed a robust MCDM approach where several uncertainties are measured by the proposed concept. Additionally, a decision-making model has been developed and used for hybrid q-ROFSs with notions of covering rough sets and techniques for the order of preference by similarity to ideal solution (TOPSIS) [55]. In [56], the entropy measure and TOPSIS based on the correlation coefficient was investigated. Accordingly. the performance of green suppliers with experts’ subjective evaluations was measured with an effective and applicable MCGDM method and q-ROFSs-based TOPSIS method [65]. A systematic selection of a renewable energy source was presented using a q-ROFSs-based MCDM framework considering sustainability attributes [66].
From a different MCDM aspect, the fuzzy decision by opinion score method (FDOSM) was developed [67], which presented a comprehensive solution to resolve different challenges in MCDM. The development of the FDOSM considered the concept of an ideal solution, reduced the number of comparisons, defined fair and implicit understandable comparisons, prevented inconsistency, reduced vagueness and yielded a minimum number of mathematical operations. The first version of the FDOSM focuses exclusively on triangular fuzzy numbers (TFNs) and considers the arithmetic mean operator in the direct aggregation MCDM approach whilst neglecting the other operators. The FDOSM neglects the application of distance measurement and compromise rank MCDM approaches, presenting a serious issue that may lead to different ranking results. Consequently, the FDOSM is extended using same fuzzy set, but it focuses on other direct aggregation operators, which include geometric mean, harmonic mean and root mean square. In this version, distance measurement and compromise rank approaches are applied for the identification of the best alternative [45]. The last version of FDOSM is extended on the basis of interval type-2 trapezoidal membership [68]. However, the concept of FDOSM can assign weights for the criteria of each alternative in an implicit way. The FDOSM is limited when it explicitly computes weight for each criterion. To resolve this issue, a method explicitly assigning weights to criteria without pairwise comparison among the sets of criteria is needed. According to the literature review, the latest method was proposed in [69], namely, fuzzy-weighted zero-inconsistency (FWZIC) method, which can provide weights for criteria with zero inconstancy. The FWZIC method solves the following limitations of the best worst method and analytic hierarchy process: (i) the inability of the procedure to offer decision maker instant feedback on the consistency of pairwise comparisons, (ii) absence of accounting for ordinary consistency and (iii) shortage of consistency threshold value for evaluating the reliability of results [69]. However, FWZIC was developed according to TFNs. However, it is limited when used in solving uncertainty and vagueness issues. Owing to the advantages of the interval type-2 trapezoidal membership in the definition of the exact membership function, a new version of FWZIC was developed [70].
In summary, taking the advantages of q-ROFS in dealing with the uncertain conditions by providing a more space in the data representation and structuring effectively, the authors of this study extended the FWZIC and FDOSM under the fuzzy environment of q-ROFS. The extensions were called q-rung orthopair fuzzy-weighted zero-inconsistency (q-ROFWZIC) method and q-rung orthopair fuzzy decision by opinion score method (q-ROFDOSM). The detailed description and steps of each and corresponding case studies are illustrated in the following section.
2. Methodology
Two sequential phases are presented in the proposed methodology, which are development and case study phases. In the development phase, the proposed MCDM methods are formulated and integrated. The first method (q-ROFWZIC) is developed and used in determining the weights of the evaluation criteria, and the second method (q-ROFDOSM) is developed for the prioritisation of the alternatives on the basis of the weighted criteria. The second phase presents the description of a distribution case study of coronavirus disease 2019 (COVID-19) vaccine doses as a proof of concept. The summarised methodology is illustrated in Fig. 2 .
Fig. 2.
Methodology flowchart.
2.1. Phase I: Development of MCDM Methods
In this methodology phase, the mechanism of two MCDM methods based on the q-ROFSs environment was developed. The weighting process for the evaluation criteria is achieved by using q-ROFWZIC, while q-ROFDOSM is used for the ranking of alternatives. The q-ROFWZIC method has five steps, and the q-ROFDOSM is formulated on the basis of two stages: data transformation and data processing as seen (Fig. 2). The following subsections describe each method separately and provide relevant mathematical expressions.
2.1.1. Formulation of q-ROFWZIC method
In this section, the details of the five steps of q-ROFWZIC method are explained for the purpose of weight determination for the evaluation criteria used.
Step 1: Definition of the set of evaluation criteria
This step has two processes. The first process is the exploration and presentation of a predefined set of evaluation criteria, and the second process is the classification and categorisation of all the collected criteria. The defined and selected criteria must be evaluated by a panel of experts, as explained in the next step.
Step 2: Structured expert judgement
To evaluate and define the level of importance for the evaluation criteria, a panel of three experts must be identified and utilised. After exploration and identification of the list of prospective experts, selection and nomination commence, and the structured expert judgement (SEJ) panel is established. Lastly, an evaluation form is developed and used in obtaining the consensus of all the SEJ panelists for each criterion, the linguistic scale is converted into its equivalent numerical scale.
-
a)
Identify experts: Anyone who has knowledge about a subject cannot be considered an expert. Instead, an ‘expert for a given subject’ is used here to designate a person whose present or past field involves the subject in question and who is regarded by others as knowledgeable about the subject. Such individual is occasionally designated in the literature as a ‘domain’ or ‘substantive’ expert. This process distinguishes the individual from ‘normative experts’, that is, experts in statistics and subjective probability.
-
b)
Select experts: After the identification of the set of experts, the experts who will be involved in the study must be selected. In general, the largest number of experts consistent with the level of resources should be used. All potential experts named during expert identification can be contacted through email, and whether they are interested and whether they consider themselves potential experts for the panel are determined.
-
c)
Develop the evaluation form: The development of an evaluation form is a crucial step because this instrument is used in obtaining expert consensus. Before the finalisation of the evaluation form, the questionnaire undergoes reliability and validity testing, and the potential experts can review it.
-
d)
Define the level of importance scale: In this step, the selected group of experts can define the level of importance or significance of each criterion with a five-point Likert scale. No theoretical reason exists to rule out different lengths of a response scale [69]. The options reflect an underlying continuum rather than a finite number of possible attitudes. Various lengths ranging from 2 points to 11 points or higher are used in surveys. Five has become the norm in Likert scales probably because it strikes a balance between the conflicting goals of offering sufficient choices (because providing only two or three options means measuring only the direction rather than the strength of opinion) and makes things manageable for respondents (few people have a clear idea of the difference between the 8th and 9th points in an 11‐point agree–disagree scale). Research confirms that data from Likert items (and those from similar rating scales) becomes significantly less accurate when the number of scale points decreases to values below five or increases to values above seven. However, these studies provide no reasons for preferring five-point scales to seven‐point scales.
-
e)
Convert linguistic scale to equivalent numerical scale: As mentioned, all preference values are identified in a subjective form, which cannot be used for further analysis unless the values are converted into numerical values. Thus, in this step, the level of importance or significance of each criterion recorded by each expert on the linguistic Likert scale is converted into an equivalent numerical scale, as shown in Table 1 .
Table 1.
Five-point Likert scale and equivalent numerical scale.
| Numerical scoring scale | Linguistic scoring scale |
|---|---|
| 1 | Not important |
| 2 | Moderately Slight important |
| 3 | Moderately important |
| 4 | Important |
| 5 | Very important |
A Likert scale assumes that the evaluation criteria have different important levels that should be assigned by an expert. The importance level is assigned with a linguistic scale that facilitates the process of the evaluation criteria. The importance levels range from ‘not important’ level to ‘very important’. However, when an additional analysis needs to be conducted on the scores obtained by experts, it is difficult to extract any useful information from linguistic scores unless it is converted into numerical values. Thus, an equivalent numerical value has been provided along with each linguistic term where measuring the importance level of the evaluation criteria.
Step 3: Building an expert decision matrix
The previous step clarifies how the experts can be selected and how their preferences must indicate. In this step, an expert decision matrix (EDM) is constructed. The main parts of the EDM are the evaluation criteria used and alternatives, as shown in Table 2 .
Table 2.
Expert decision matrix.
| Criteria Experts | C1 | C2 | … | Cn |
|---|---|---|---|---|
| E1 | Imp (E1/C1) | Imp (E1/C2) | … | Imp (E1/Cn) |
| E2 | Imp (E2/C1) | Imp (E2/C2) | … | Imp (E2/Cn) |
| E3 | Imp (E3/C1) | Imp (E3/C2) | … | Imp (E3/Cn) |
| ... | … | … | … | … |
| Em | Imp (En/C1) | Imp (En/C2) | … | Imp (Em/Cn) |
**Imp represents the importance level.
According to Table 2, a crossover is made between the evaluation criteria and the SEJ panel. Each criterion (Cj) in the attribute intersects with each selective expert (Ei), where the expert has scored the suitable level of importance for each criterion. The EDM is the base for further analysis steps in the proposed method, which are illustrated in the next steps.
Step 4: Application of q-ROFS membership function
In this step, the q-ROFS membership function and subsequent defuzzification process are applied to the EDM data, and the data are transformed to a q‐ROF-EDM to increase their precision and ease of use in further analysis. However, in MCDM, the problem is uncertain and imprecise because assigning a precise preference rate to any criterion is difficult. The advantage of using the fuzzy method is the use of vague numbers instead of crisp numbers in the determination of the relative values of attributes (criteria); this approach addresses the issue of imprecise and uncertain problems. The q-ROFS is an objective having the form of [71] and defined in Eqs. (1) and (2).
| (1) |
where μd: M → [0, 1] is the membership function, while vd: M → [0, 1] is non-membership function of element m ∈ M to p, and it must fulfil the restriction seen in Eq. (2).
| (2) |
The degree of hesitancy is presented in Eq. (3) as following:
| (3) |
The applied q-rung orthopair fuzzy arithmetic mean (q-ROFA) aggregation operation is shown in Eq. (4) as follows:
| (4) |
Eq. (5) shows the q-ROFS division operation as follows:
| (5) |
Eq. (6) shows the equation of q-ROFS division on a crisp value. The value of each linguistic term with q-ROFS is shown in Table 3 .
| (6) |
Table 3.
Linguistic terms and their equivalent q-ROFS.
| Linguistic scale | q-ROFS |
|---|---|
| Not important | (0.20, 0.90) |
| Slight important | (0.40, 0.60) |
| Moderately important | (0.65, 0.50) |
| Important | (0.80, 0.45) |
| Very important | (0.90, 0.20) |
Table 3 indicates that all linguistic variables are converted into q-ROFS. The fuzzy number is assumed to be the variable for each criterion for Expert K. In other words, Expert K must ask to identify the importance level of the evaluation criteria within variables measured using a linguistic scale.
Step 5: Computation of the final values of the weight coefficients of the evaluation criteria
Based on the fuzzification data for the criteria in the previous step, the final values of the weight coefficients of the evaluation criteria (w1, w2, ..., wn)T are calculated as follows:
-
a)
The ratio of fuzzification data is computed using Eqs. (3), (4) and (5). The preceding equations are used with q-ROFS, as shown in Table 4 .
- b)
-
c)Defuzzification is performed for the determination of the final weight. Eq. (8) is used as the defuzzification method for scoring each criterion. For the calculation of the final values of the weight coefficients, the weight for the importance of each criterion should be assigned given the sum of the weights of all the criteria for the rescaling purpose applied in this stage.
(8)
Table 4.
q‐ROF-EDM.
| Criteria/Experts | … | |||
|---|---|---|---|---|
| E1 | … | |||
| E2 | … | |||
| ... | … | … | … | … |
| Em | … |
where represent the fuzzy number of Imp (E1/C1).
2.1.2. Formulation of the q-ROFDOSM
The q-ROFDOSM is the extended version of different FDOSM versions [72], [73], [74]. The following description provides information about the first stage of the q-ROFDOSM, which is the data transformation unit. The second stage of the q-ROFDOSM is explained, which is data processing.
Stage One: Data transformation unit
According to [74], the transformation of the decision matrix into an opinion matrix is achieved with the following steps.
Step 1
The ideal solution of each sub evaluation criterion in the decision matrix used is selected. Therefore, the ideal solution is defined in Eq. (9).
| (9) |
where max is the ideal value for benefit criteria, min is the ideal solution for cost criteria and Opijis the ideal value for critical criteria when the ideal value lies between the max and min. The critical value is determined by the decision maker.
Step 2
In this step, the ideal solution value must be selected for each evaluation criterion. Then, a five-point Likert scale is used to perform the reference comparison between the selected ideal solution of each evaluation criterion and other values within same criterion, as shown in Eq. (10).
| (10) |
where ⊗ represents the reference comparison between the ideal solution and value of alternatives in the same criterion. The final output of this block indicating the linguistic term is the opinion matrix that is ready to be transformed into a fuzzy opinion matrix by using q-ROFSs, as expressed in Eq. (11).
| (11) |
Stage Two: Data-processing unit
The opinion matrix of each Likert scale refers to the output of the transformation unit. The final block begins by transferring the opinion matrix into a q‐ROF opinion matrix by converting the linguistic terms of the opinion matrix into q-ROFSs using Table 5 .
Table 5.
q‐ROF opinion matrix.
| Linguistic scale | q-ROFSs |
|---|---|
| No Difference | (0.90, 0.20) |
| Slight Difference | (0.80, 0.45) |
| Difference | (0.65, 0.50) |
| Big Difference | (0.40, 0.60) |
| Huge Difference | (0.20, 0.90) |
In the q-ROFDOSM, two different contexts of can be used for ranking the alternatives, which are individual and group decision making (GDM).
2.1.2.1. Individual q-ROFDOSM
q-ROFS is applied with the proposed method in this stage. The obtained explicit weights of each criterion are introduced to q-ROFDOSM for the prioritisation of the alternatives. The fuzzy opinion matrices resulting from the previous stage are aggregated using the equation of the q-rung orthopair fuzzy weighted arithmetic mean (q-ROFWA) aggregation operation (12).
| (12) |
Then, the defuzzification process of each alternative is computed using Eq. (8). After the calculations are performed with the mentioned equations in the individual context of q-ROFDOSM, alternatives can be ranked and prioritised. A value will be assigned to each alternative will be assigned a value, and they will be ordered based on the best value. The vaccine recipient with the highest score will have the highest priority.
2.1.2.2. Group q-ROFDOSM
Owing to the variations that might be found in the ranking of alternatives among decision makers, aggregated decisions obtained from various evaluators are necessary to unify alternative ranking. Thus, this study utilises a GDM with q-ROFDOSM to unify all the variations in the ranking of the decision makers. Furthermore, arithmetic mean is used, and a final score of GDM is obtained. The highest score value is the best alternative. In this case, the decision makers’ opinions are combined after the final alternatives ranking.
2.2. Phase II: MCDM case study
The current phase discusses a case study of COVID-19 vaccine distribution. Countries worldwide faced the greatest challenge last year brought by the coronavirus disease 2019 (COVID-19) pandemic, and the need for a vaccine has become more important than ever [75], [76], [77], [78], [79], [80], [81], [82]. The fair allocation of COVID-19 vaccine distribution is encouraged by the World Health Organisation, and public health benefits must be maximized in order that health products are available and accessible to those in need [83]. However, the distribution mechanism of COVID-19 vaccine doses considered a MCDM problem because of the following issues: required inclusion of different distribution criteria, criteria that are different in significance and increase in problem complexity because of data variation amongst the included criteria. To end this problem complexity, an MCDM-based solution must be used. A comprehensive decision matrix of COVID-19 vaccine distribution is constructed on the basis of the intersection of vaccine recipients (VRs) and distribution criteria, as presented in Table 6 [84].
Table 6.
Constructed decision matrix.
| VR | C1 | C2 | C3 | C4 | C5 | VR | C1 | C2 | C3 | C4 | C5 |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | Pharmacist | Hypertension, diabetes | 31 | Green | NA | 151 | - | NA | 53 | Green | NA |
| 2 | Pharmacist | NA | 59 | Yellow | Hearing difficulty | 152 | - | NA | 59 | Red | Epilepsy |
| 3 | Doctor | Diabetes | 37 | Green | NA | 153 | - | Cardiovascular | 83 | Orange | Hearing difficulty |
| 4 | Pharmacist | Obesity | 47 | yellow | NA | 154 | Health worker | Respiratory | 59 | Yellow | NA |
| 5 | Health Worker | NA | 29 | Green | Vision impairment | 155 | Health worker | NA | 59 | Red | NA |
| 6 | Electricity supplier | NA | 29 | Red | Hearing difficulty | 156 | Doctor | NA | 41 | Green | NA |
| 7 | Teacher | NA | 31 | Green | NA | 157 | Nurse | NA | 29 | Green | NA |
| 8 | Teacher | NA | 31 | Yellow | NA | 158 | Doctor | Diabetes | 43 | Red | NA |
| 9 | Police officer | NA | 47 | Red | NA | 159 | Medical goods seller | Diabetes | 43 | Green | NA |
| 10 | Teacher | NA | 37 | Green | NA | 160 | Medical goods seller | Obesity | 37 | Orange | NA |
| 11 | - | Respiratory | 59 | Red | NA | 161 | Medical goods seller | Diabetes | 37 | Green | NA |
| 12 | - | Cardiovascular | 7 | Red | NA | 162 | Fire service employee | NA | 41 | Orange | Epilepsy |
| 13 | - | Diabetes | 3 | Orange | NA | 163 | - | NA | 17 | Yellow | NA |
| 14 | - | Diabetes | 43 | Yellow | NA | 164 | - | NA | 23 | Green | NA |
| 15 | - | Respiratory | 37 | Yellow | NA | 165 | - | Hypertension | 59 | Yellow | NA |
| 16 | Pharmacist | NA | 43 | Green | NA | 166 | - | NA | 43 | Green | NA |
| 17 | Pharmacist | NA | 41 | Yellow | NA | 167 | - | NA | 19 | Orange | NA |
| 18 | Doctor | Respiratory | 41 | Green | NA | 168 | Medical goods seller | NA | 41 | Yellow | Epilepsy |
| 19 | Nurse | NA | 29 | Orange | NA | 169 | Fire service employee | Diabetes | 47 | Yellow | NA |
| 20 | Pharmacist | Cardiovascular | 37 | Red | NA | 170 | Fire service employee | NA | 59 | Orange | NA |
| 21 | - | Cardiovascular | 41 | Orange | NA | 171 | Fire service employee | Respiratory | 61 | Orange | Vision impairment |
| 22 | - | NA | 13 | Green | NA | 172 | Doctor | NA | 59 | Green | NA |
| 23 | - | NA | 11 | Green | NA | 173 | Health worker | Cardiovascular | 61 | Orange | NA |
| 24 | - | Respiratory | 89 | Yellow | Vision impairment | 174 | Midwife | NA | 23 | Red | NA |
| 25 | - | NA | 61 | Green | NA | 175 | Nurse | Hypertension | 43 | Red | NA |
| 26 | Medical goods seller | Hypertension | 43 | Orange | Hearing difficulty | 176 | Health worker | Respiratory | 43 | Red | NA |
| 27 | Medical goods seller | Diabetes | 47 | Green | NA | 177 | Health worker | Diabetes | 41 | Red | NA |
| 28 | Teacher | Respiratory | 59 | Yellow | NA | 178 | Doctor | NA | 41 | Yellow | NA |
| 29 | Police officer | NA | 47 | Yellow | NA | 179 | Doctor | Hypertension | 29 | Yellow | NA |
| 30 | police officer | NA | 53 | Green | NA | 180 | Postal employee | NA | 29 | Red | NA |
| 31 | midwife | Diabetes | 31 | Orange | NA | 181 | Medical goods seller | Cardiovascular | 43 | Yellow | Vision impairment |
| 32 | Health Worker | NA | 47 | Red | Hearing difficulty | 182 | Religious staff | Respiratory | 59 | Red | NA |
| 33 | Nurse | Hypertension, cardiovascular | 43 | Yellow | NA | 183 | Journalist | Hypertension | 53 | Red | NA |
| 34 | Midwife | Obesity | 23 | Orange | NA | 184 | Electricity supplier | NA | 53 | Red | NA |
| 35 | Doctor | Obesity, hypertension | 61 | Yellow | NA | 185 | Education specialist | NA | 23 | Red | NA |
| 36 | Pharmacist | NA | 59 | Green | NA | 186 | Medical goods seller | NA | 23 | Red | NA |
| 37 | Specialist education professional | Cardiovascular, hypertension | 59 | Orange | NA | 187 | - | NA | 1 | Yellow | NA |
| 38 | Electricity supplier | NA | 41 | Orange | NA | 188 | - | NA | 29 | Orange | NA |
| 39 | Police officer | NA | 31 | Yellow | NA | 189 | - | Diabetes | 59 | Red | Epilepsy |
| 40 | Religious staff | Cardiovascular | 59 | Yellow | Hearing difficulty | 190 | - | NA | 7 | Green | NA |
| 41 | Teacher | Hypertension | 47 | Orange | NA | 191 | - | NA | 41 | Orange | NA |
| 42 | Health Worker | NA | 37 | Orange | NA | 192 | - | NA | 31 | Green | NA |
| 43 | Doctor | NA | 37 | Green | NA | 193 | Midwife | NA | 31 | Yellow | NA |
| 44 | Nurse | Diabetes | 41 | Green | Hearing difficulty | 194 | Midwife | Hypertension | 53 | Yellow | NA |
| 45 | Pharmacist | Diabetes | 53 | Red | NA | 195 | Health worker | NA | 43 | Green | NA |
| 46 | Doctor | Obesity | 41 | Green | NA | 196 | Health worker | NA | 61 | Red | Vision impairment |
| 47 | - | Cardiovascular | 97 | Red | Vision impairment | 197 | Nurse | Respiratory | 23 | Yellow | NA |
| 48 | - | NA | 31 | Orange | NA | 198 | Delivery worker | NA | 31 | Green | NA |
| 49 | - | NA | 29 | Orange | NA | 199 | Medical goods seller | NA | 47 | Orange | NA |
| 50 | - | NA | 53 | Red | NA | 200 | Medical goods seller | Cardiovascular, Hypertension | 61 | Orange | NA |
| 51 | - | Obesity | 53 | Orange | NA | 201 | Medical goods sales | NA | 37 | Green | Epilepsy |
| 52 | - | NA | 47 | Orange | NA | 202 | Education specialist | Respiratory | 23 | Red | NA |
| 53 | Journalist | NA | 31 | Yellow | NA | 203 | Police officer | NA | 43 | Yellow | NA |
| 54 | Journalist | NA | 31 | Orange | NA | 204 | - | NA | 2 | Red | NA |
| 55 | Journalist | Diabetes | 59 | Green | NA | 205 | - | NA | 2 | Green | NA |
| 56 | Teacher | NA | 41 | Yellow | NA | 206 | - | Diabetes | 67 | Red | Epilepsy |
| 57 | Probation staff | NA | 31 | Green | Hearing difficulty | 207 | - | NA | 2 | Orange | NA |
| 58 | Pharmacist | NA | 43 | Yellow | NA | 208 | - | NA | 2 | Yellow | NA |
| 59 | Pharmacist | NA | 53 | Yellow | NA | 209 | - | NA | 5 | Green | NA |
| 60 | Nurse | NA | 59 | Green | NA | 210 | Medical goods seller | NA | 29 | Green | NA |
| 61 | Midwife | NA | 23 | Yellow | NA | 211 | Fire service employee | NA | 29 | Yellow | NA |
| 62 | Health Worker | NA | 61 | Green | Hearing difficulty | 212 | Medical goods seller | NA | 41 | Red | NA |
| 63 | - | NA | 47 | Red | NA | 213 | Midwife | NA | 23 | Orange | NA |
| 64 | - | NA | 19 | Orange | NA | 214 | Health worker | NA | 61 | Orange | NA |
| 65 | - | Hypertension | 83 | Yellow | Vision impairment | 215 | Doctor | NA | 61 | Red | NA |
| 66 | - | NA | 5 | Orange | NA | 216 | Doctor | NA | 59 | Yellow | NA |
| 67 | Doctor | NA | 29 | Orange | NA | 217 | Health worker | Obesity | 59 | Green | Epilepsy |
| 68 | Nurse | NA | 31 | Yellow | NA | 218 | Midwife | Diabetes | 41 | Red | NA |
| 69 | Fire service Employee | NA | 29 | Yellow | NA | 219 | - | Respiratory | 89 | Green | Hearing difficulty |
| 70 | Postal employee | Respiratory | 53 | Green | NA | 220 | - | NA | 7 | Orange | NA |
| 71 | Journalist | Hypertension | 61 | Red | NA | 221 | - | Cardiovascular | 83 | Orange | Epilepsy |
| 72 | - | NA | 19 | Orange | NA | 222 | Medical goods seller | NA | 47 | Yellow | NA |
| 73 | - | NA | 61 | Orange | NA | 223 | Education specialist | NA | 41 | Red | Epilepsy |
| 74 | - | NA | 61 | Green | NA | 224 | Medical goods seller | Respiratory | 61 | Green | NA |
| 75 | Pharmacist | Obesity | 41 | Orange | NA | 225 | - | NA | 43 | Orange | NA |
| 76 | Midwife | Respiratory | 37 | Yellow | NA | 226 | - | Obesity | 59 | Orange | NA |
| 77 | Doctor | NA | 23 | Orange | NA | 227 | - | NA | 3 | Green | NA |
| 78 | Midwife | Respiratory | 59 | Red | NA | 228 | - | Hypertension | 89 | Orange | Hearing difficulty |
| 79 | Health worker | Hypertension | 41 | Yellow | Epilepsy | 229 | - | NA | 17 | Green | NA |
| 80 | Doctor | NA | 59 | Yellow | NA | 230 | Doctor | Hypertension | 41 | Yellow | NA |
| 81 | Nurse | NA | 37 | Red | NA | 231 | Health worker | NA | 61 | Red | NA |
| 82 | Religious staff | Hypertension | 53 | Green | NA | 232 | Nurse | Respiratory | 61 | Orange | NA |
| 83 | Delivery worker | NA | 23 | Yellow | NA | 233 | Health worker | NA | 47 | Green | NA |
| 84 | Postal employee | NA | 23 | Green | NA | 234 | Midwife | NA | 61 | Orange | NA |
| 85 | Specialist education professional | Obesity, diabetes | 61 | Yellow | Vision impairment | 235 | - | Hypertension | 89 | Red | Hearing difficulty |
| 86 | Fire service employee | Respiratory | 59 | Orange | NA | 236 | - | NA | 1 | Orange | NA |
| 87 | Pharmacist | Obesity | 23 | Red | NA | 237 | - | Hypertension | 79 | Green | NA |
| 88 | Doctor | NA | 41 | Orange | NA | 238 | Probation staff | NA | 23 | Yellow | NA |
| 89 | Health worker | NA | 47 | Red | NA | 239 | Religious staff | Diabetes | 53 | Orange | NA |
| 90 | - | NA | 13 | Orange | NA | 240 | Electricity supplier | NA | 41 | Orange | NA |
| 91 | - | NA | 7 | Green | NA | 241 | Religious staff | Hypertension | 59 | Red | NA |
| 92 | - | NA | 11 | Orange | NA | 242 | - | Hypertension | 71 | Red | NA |
| 93 | - | Diabetes, hypertension | 97 | Yellow | Epilepsy | 243 | - | NA | 2 | Yellow | NA |
| 94 | - | NA | 89 | Yellow | Epilepsy | 244 | - | Cardiovascular | 47 | Orange | NA |
| 95 | Probation staff | NA | 41 | Red | NA | 245 | Doctor | NA | 43 | Red | NA |
| 96 | Journalist | Cardiovascular, hypertension | 61 | Red | NA | 246 | Midwife | Respiratory | 61 | Red | NA |
| 97 | Medical goods seller | Obesity | 59 | Yellow | NA | 247 | Pharmacist | NA | 53 | Green | Hearing difficulty |
| 98 | Charity staff | NA | 59 | Orange | NA | 248 | Midwife | Diabetes, hypertension | 31 | Yellow | NA |
| 99 | Doctor | NA | 53 | Yellow | NA | 249 | Midwife | NA | 59 | Yellow | NA |
| 100 | Doctor | NA | 53 | Red | NA | 250 | Midwife | NA | 47 | Orange | NA |
| 101 | Pharmacist | NA | 37 | Orange | NA | 251 | Probation staff | Cardiovascular, hypertension | 61 | Red | NA |
| 102 | - | NA | 47 | Green | NA | 252 | Postal employee | NA | 41 | Green | NA |
| 103 | - | NA | 47 | Green | NA | 253 | Education specialist | NA | 43 | Green | NA |
| 104 | - | NA | 61 | Orange | NA | 254 | Delivery worker | Hypertension | 59 | Orange | NA |
| 105 | - | NA | 71 | Yellow | NA | 255 | Journalist | Respiratory | 61 | Red | Vision impairment |
| 106 | Electricity supplier | NA | 43 | Red | NA | 256 | - | NA | 1 | Red | NA |
| 107 | Charity staff | NA | 37 | Red | Hearing difficulty | 257 | - | NA | 1 | Red | NA |
| 108 | Religious staff | NA | 47 | Orange | NA | 258 | - | Obesity | 31 | Yellow | NA |
| 109 | Pharmacist | NA | 43 | Red | NA | 259 | - | NA | 11 | Green | NA |
| 110 | Doctor | Cardiovascular, hypertension | 47 | Yellow | NA | 260 | Nurse | NA | 23 | Red | NA |
| 111 | - | Obesity | 29 | Green | NA | 261 | Pharmacist | NA | 47 | Orange | NA |
| 112 | - | NA | 5 | Red | NA | 262 | Pharmacist | Hypertension | 53 | Yellow | NA |
| 113 | - | NA | 41 | Red | NA | 263 | Fire service employee | NA | 23 | Green | NA |
| 114 | - | NA | 59 | Orange | NA | 264 | Religious staff | NA | 23 | Red | NA |
| 115 | - | NA | 3 | Green | NA | 265 | Electricity supplier | Cardiovascular | 53 | Orange | Hearing difficulty |
| 116 | Midwife | NA | 29 | Red | NA | 266 | Religious staff | Respiratory | 53 | Orange | NA |
| 117 | Nurse | Obesity, diabetes | 29 | Yellow | NA | 267 | Teacher | NA | 31 | Yellow | NA |
| 118 | Midwife | Diabetes | 58 | Green | Hearing difficulty | 268 | Education specialist | Hypertension | 41 | Yellow | NA |
| 119 | Health worker | NA | 53 | Orange | NA | 269 | - | NA | 5 | Green | NA |
| 120 | Electricity supplier | Cardiovascular | 61 | Red | NA | 270 | - | NA | 2 | Red | NA |
| 121 | Postal employee | Respiratory | 31 | Orange | NA | 271 | - | NA | 59 | Green | NA |
| 122 | Journalist | Obesity | 53 | Orange | NA | 272 | - | NA | 37 | Red | NA |
| 123 | Teacher | NA | 37 | Green | NA | 273 | - | Obesity | 61 | Green | NA |
| 124 | - | Diabetes | 61 | Green | NA | 274 | - | Hypertension | 97 | Red | Hearing difficulty |
| 125 | - | Respiratory | 97 | Yellow | Hearing difficulty | 275 | Health worker | Diabetes | 41 | Orange | NA |
| 126 | - | Respiratory | 79 | Green | NA | 276 | Nurse | Respiratory | 31 | Yellow | NA |
| 127 | Religious staff | Respiratory | 43 | Red | NA | 277 | Nurse | NA | 59 | Orange | NA |
| 128 | Religious staff | Obesity, diabetes | 43 | Green | Hearing difficulty | 278 | - | Hypertension | 37 | Yellow | NA |
| 129 | Religious staff | NA | 29 | Green | NA | 279 | - | NA | 1 | Green | NA |
| 130 | Nurse | Respiratory | 29 | Green | NA | 280 | - | Cardiovascular | 61 | Orange | NA |
| 131 | Health worker | NA | 53 | Green | NA | 281 | - | Diabetes | 83 | Red | Epilepsy |
| 132 | Midwife | Obesity, diabetes | 29 | Orange | NA | 282 | - | Obesity | 73 | Red | NA |
| 133 | Health worker | NA | 37 | Orange | NA | 283 | Teacher | Cardiovascular, hypertension | 61 | Red | NA |
| 134 | Health worker | NA | 47 | Orange | NA | 284 | Education specialist | Obesity, diabetes | 61 | Red | NA |
| 135 | - | Obesity | 73 | Red | NA | 285 | - | NA | 5 | Green | NA |
| 136 | - | NA | 13 | Yellow | NA | 286 | - | NA | 97 | Orange | NA |
| 137 | - | NA | 59 | Yellow | NA | 287 | Religious staff | NA | 29 | Red | NA |
| 138 | - | NA | 2 | Yellow | NA | 288 | Police officer | Diabetes | 61 | Red | NA |
| 139 | Charity staff | NA | 37 | Yellow | NA | 289 | Journalist | NA | 47 | Yellow | Vision impairment |
| 140 | Charity staff | NA | 53 | Orange | NA | 290 | Medical goods seller | NA | 47 | Green | NA |
| 141 | Delivery worker | Diabetes | 59 | Orange | Epilepsy | 291 | Midwife | NA | 31 | Yellow | NA |
| 142 | Electricity supplier | Obesity | 43 | Orange | NA | 292 | Doctor | Hypertension | 37 | Orange | NA |
| 143 | Nurse | Respiratory | 29 | Orange | NA | 293 | Health worker | NA | 41 | Green | NA |
| 144 | Doctor | NA | 53 | Orange | NA | 294 | Health worker | NA | 37 | Yellow | NA |
| 145 | Pharmacist | Obesity | 53 | Yellow | NA | 295 | - | NA | 5 | Green | NA |
| 146 | Teacher | NA | 37 | Green | NA | 296 | - | NA | 19 | Orange | NA |
| 147 | Fire service employee | NA | 43 | Green | NA | 297 | - | Hypertension | 73 | Orange | NA |
| 148 | Teacher | NA | 47 | Yellow | NA | 298 | - | NA | 7 | Orange | NA |
| 149 | Education specialist | NA | 31 | Orange | NA | 299 | Medical goods seller | NA | 47 | Red | NA |
| 150 | - | NA | 37 | Yellow | NA | 300 | Religious staff | NA | 31 | Red | NA |
This adopted decision matrix feeds by a dataset who represent the alternatives considering five criteria: C1=vaccine recipient memberships, C2=chronic disease conditions, C3=age, C4=geographic locations severity; and, C5=disabilities [84]. In this adopted dataset, 300 cases of vaccine recipients were created. Although the generalisation and inclusion of more than 300 cases are possible, the insights from the generated cases usually can satisfy the concepts of the presented work, from which the results can then meet the desired goals. A coding scheme using the exception-handling model was developed in Python to generate the augmented dataset of the 300 cases based on the five discussed criteria [84]. The most suitable probabilities and certain assumptions about COVID-19 vaccine alternatives were generated. In that date set, the rule-based control scheme was based on expert opinions with precise descriptions for the criteria. After generating the dataset, a panel of three experts subjectively validated it to increase the veracity of the data to the best extent possible and cover most recipients’ situations. The three expert panellists were identified and selected from related study areas (i.e. molecular biology, immunology, biomedical engineering, medical biotechnology and clinical microbiology). Finally, according to the same expert panel, C3 and C4 have ranges of measures and are considered benefit criteria (that is, a larger value is more important), whereas other criteria are fitted to categorical data, which can be considered critical criteria [84]. Lastly, this decision matrix is introduced to start with the distribution process.Thus, a COVID-19 vaccine distribution can be achieved accordingly
3. Discussion results
This section presents the result to the aforementioned case study, which is the vaccine distribution mechanism achieved after prioritising the COVID-19 vaccine recipients. In this regard, Section 3.1 provides the results of the q-ROFWZIC method and the constructed criteria weights. In particular, the judgement of the three experts is converted using mathematical calculations. The purpose is to show the overall weights within this section. Section 3.2 displays the distribution results of the COVID-19 recipients. The distribution is based on the individual decision-making and GDM contexts of q-ROFDOSM.
3.1. Criteria weighting results
This section provides the weight determination results of the COVID-19 vaccine distribution criteria with the q-ROFWZIC method developed in Section 2.2.1. After the involved steps, the distribution criteria are weighted according to the three experts’ preferences without any inconsistency after the method philosophy. Based on q values (i.e. q = 1, 3, 5, 7, 10) used in q-ROFS, the final weight results of the five criteria for vaccine distribution are obtained (Table 7 ).
Table 7.
Weight determination.
| Criteria/q | C1 | C2 | C3 | C4 | C5 |
|---|---|---|---|---|---|
| q = 1 | 0.202 | 0.202 | 0.236 | 0.194 | 0.164 |
| q = 3 | 0.203 | 0.202 | 0.220 | 0.183 | 0.190 |
| q = 5 | 0.206 | 0.197 | 0.241 | 0.160 | 0.194 |
| q = 7 | 0.211 | 0.187 | 0.261 | 0.136 | 0.203 |
| q = 10 | 0.221 | 0.169 | 0.287 | 0.103 | 0.217 |
According to step 4, the process of q-ROFS membership function is used in transforming crisp values to equivalent fuzzy numbers. The process of transformation and the fuzzification of the experts’ opinions on the significance of the five criteria are achieved. The ratio values of the criteria are computed according to Eqs. (3), (4) and (5), then the mean of the experts’ preference for each criterion is calculated and used in determining the fuzzy weight. Then, Eqs. (7) and (8) are used in determining the final weight for each of the five criteria, as explained in step 5. For all q-ROFWZIC values of 1, 3, 5, 7 and 10, age (C3) received the highest weight as the first important criterion, followed by vaccine recipient memberships (C1). For q-ROFWZIC values (q = 1, 3, 5), Chronic Disease Conditions (C2) received the third important criteria. For q-ROFWZIC values of 7 and 10, Disabilities (C5) received the third important criteria. For q-ROFWZIC value of 1, Geographic Locations Severity (C4) received the fourth important criteria. For q-ROFWZIC values of 3 and 5, Disabilities (C5) received the fourth important criteria. For q-ROFWZIC values of 7 and 10, Chronic Disease Conditions (C2) received the fourth important criteria. Finally, for q-ROFWZIC values of 3, 5, 7 and 10, Geographic Locations Severity (C4) received the lowest weight as the fifth important criteria. For q-ROFWZIC value of 1, Disabilities (C5) received the lowest weight as the fifth important criteria. Practically, these calculated weight values are integrated to the q-ROFDOSM for the computation of the distribution results of the 300 vaccine recipients.
3.2. Distribution results
The results and discussions presented in this section pertain to the distribution of the COVID-19 vaccine and are based on individual and GDM contexts. The opinion matrix and fuzzy opinion matrix used in the distribution of the COVID-19 vaccine are processed. By using the five scales, the three decision makers provided their opinions on the conversion of the decision matrix into the opinion matrix. According to Eq. (9), the decision makers determined the ideal solution value according to the COVID-19 vaccine distribution criteria. The opinion matrix was created by comparing the ideal solution with other values per criterion or each alternative with the linguistic terms and converted into a fuzzy opinion matrix. The q-ROFDOSM method was applied on the resulting fuzzy opinion matrices for determination of the COVID-19 vaccine distribition. At q values of 1, 3, 5, 7 and 10, the results of the COVID-19 vaccine distribution based on the individual decision-making context of q-ROFDOSM are presented in Table 8 along with a sample of 10 vaccine recipients. The remaining is presented in Table A1 in the Appendix.
Table 8.
Vaccine distribution results based on individual q-ROFDOSM (first 10 alternatives).
| q = 1 | ||||||
|---|---|---|---|---|---|---|
| Alternatives | Expert 1 | Expert 2 | Expert 3 | |||
| Score | Final rank | Score | Final rank | Score | Final rank | |
| VR1 | -0.190854 | 218 | -0.378625 | 248 | -0.294512 | 241 |
| VR2 | 0.241797 | 54 | 0.133978 | 60 | 0.182772 | 56 |
| VR3 | -0.021543 | 144 | -0.110281 | 145 | -0.110281 | 171 |
| VR4 | -0.115005 | 190 | -0.289401 | 209 | -0.212635 | 209 |
| VR5 | -0.13084 | 204 | -0.31839 | 244 | -0.15489 | 196 |
| VR6 | 0.078329 | 114 | -0.001965 | 106 | -0.001965 | 135 |
| VR7 | -0.269037 | 235 | -0.48015 | 269 | -0.294512 | 241 |
| VR8 | -0.186338 | 208 | -0.382637 | 250 | -0.212635 | 209 |
| VR9 | 0.035383 | 128 | 0.012109 | 96 | 0.153367 | 61 |
| VR10 | -0.363175 | 263 | -0.48015 | 269 | -0.294512 | 241 |
| q = 3 | ||||||
| Alternatives | Expert 1 | Expert 2 | Expert 3 | |||
| score | final rank | score | final rank | score | final rank | |
| VR1 | -0.130612 | 205 | -0.327956 | 248 | -0.231083 | 233 |
| VR2 | 0.27259 | 69 | 0.159673 | 71 | 0.222882 | 71 |
| VR3 | 0.078316 | 131 | 0.014126 | 118 | 0.014126 | 157 |
| VR4 | -0.064433 | 189 | -0.247035 | 214 | -0.155851 | 209 |
| VR5 | -0.079331 | 204 | -0.239367 | 213 | -0.073248 | 185 |
| VR6 | 0.145141 | 111 | 0.094111 | 93 | 0.094111 | 122 |
| VR7 | -0.22061 | 234 | -0.425087 | 269 | -0.231083 | 233 |
| VR8 | -0.149352 | 219 | -0.33734 | 250 | -0.155851 | 209 |
| VR9 | 0.105552 | 123 | 0.114789 | 86 | 0.272782 | 47 |
| VR10 | -0.305836 | 262 | -0.425087 | 269 | -0.231083 | 233 |
| q = 5 | ||||||
| Alternatives | Expert 1 | Expert 2 | Expert 3 | |||
| score | final rank | score | final rank | score | final rank | |
| VR1 | -0.045117 | 205 | -0.205559 | 248 | -0.128103 | 233 |
| VR2 | 0.18326 | 86 | 0.104189 | 91 | 0.155117 | 81 |
| VR3 | 0.116648 | 117 | 0.079693 | 100 | 0.079693 | 132 |
| VR4 | -0.011278 | 189 | -0.156481 | 214 | -0.083244 | 210 |
| VR5 | -0.028273 | 202 | -0.13111 | 213 | -0.015679 | 179 |
| VR6 | 0.117504 | 116 | 0.090003 | 97 | 0.090003 | 129 |
| VR7 | -0.113159 | 234 | -0.276722 | 269 | -0.128103 | 233 |
| VR8 | -0.076365 | 220 | -0.220682 | 250 | -0.083244 | 210 |
| VR9 | 0.098267 | 127 | 0.115263 | 80 | 0.242009 | 33 |
| VR10 | -0.165607 | 262 | -0.276722 | 269 | -0.128103 | 233 |
| q = 7 | ||||||
| Alternatives | Expert 1 | Expert 2 | Expert 3 | |||
| score | final rank | score | final rank | score | final rank | |
| VR1 | -0.006175 | 194 | -0.12517 | 248 | -0.067522 | 233 |
| VR2 | 0.110879 | 108 | 0.060162 | 101 | 0.097272 | 101 |
| VR3 | 0.112545 | 103 | 0.093842 | 79 | 0.093842 | 103 |
| VR4 | 0.008955 | 189 | -0.096914 | 217 | -0.042656 | 210 |
| VR5 | -0.006762 | 196 | -0.066428 | 208 | 0.008087 | 177 |
| VR6 | 0.082033 | 117 | 0.067481 | 94 | 0.067481 | 126 |
| VR7 | -0.053512 | 234 | -0.177565 | 269 | -0.067522 | 233 |
| VR8 | -0.036637 | 222 | -0.142507 | 250 | -0.042656 | 210 |
| VR9 | 0.072285 | 120 | 0.088602 | 82 | 0.190354 | 27 |
| VR10 | -0.083814 | 250 | -0.177565 | 269 | -0.067522 | 233 |
| q = 10 | ||||||
| Alternatives | Expert 1 | Expert 2 | Expert 3 | |||
| score | final rank | score | final rank | score | final rank | |
| VR1 | 0.00956 | 189 | -0.059204 | 248 | -0.024363 | 216 |
| VR2 | 0.050663 | 113 | 0.02489 | 113 | 0.046543 | 113 |
| VR3 | 0.088206 | 84 | 0.082568 | 49 | 0.082568 | 71 |
| VR4 | 0.013559 | 174 | -0.047112 | 217 | -0.014532 | 207 |
| VR5 | 0.000597 | 198 | -0.022901 | 206 | 0.01409 | 166 |
| VR6 | 0.043713 | 117 | 0.037974 | 93 | 0.037974 | 124 |
| VR7 | -0.016359 | 234 | -0.093189 | 269 | -0.024363 | 216 |
| VR8 | -0.011633 | 222 | -0.075758 | 250 | -0.014532 | 207 |
| VR9 | 0.040108 | 118 | 0.051437 | 80 | 0.127586 | 24 |
| VR10 | 0.43889 | 269 | 0.454543 | 274 | 0.493271 | 227 |
As mentioned in Section 2.1.2, the highest alternative must have the highest score, and the lowest alternative must have the lowest score value. However, for the analysis of the q-ROFDOSM final rank results, Table 9 shows the best four alternatives (VR) obtained from the three experts for all q values.
Table 9.
Individual ranking results of the best four alternatives for various values of q.
| Experts\q | Expert 1 | Expert 2 | Expert 3 |
|---|---|---|---|
| q = 1 | VR281>VR221> VR274>VR93 | VR281>VR221>VR125>VR274 | VR221>VR281>VR274>VR47 |
| q = 3 | VR281>VR221>VR47>VR274 | VR281>VR221>VR232>VR206 | VR221>VR281>VR274>VR189 |
| q = 5 | VR281>VR221>VR93>VR274 | VR281>VR221>VR232>VR206 | VR221>VR281>VR93>VR49 |
| q = 7 | VR281>VR221>VR93>VR274 | VR281>VR221>VR93>VR232 | VR281>VR221>VR94>VR93 |
| q = 10 | VR281>VR221>VR93>VR94 | VR281>VR221>VR93>VR94 | VR281>VR221>VR94>VR93 |
As shown in Table 9, we aimed to analyse the effect of variation in q value on the individual q-ROFDOSM ranking results. For this purpose, we presented the best four alternatives (VR) for various values of q, and the ranking results were provided the three experts. Variation in q values has an effect on ranking for the best four alternatives of each expert. For example, for the first and second experts with all q values, the best alternative was VR281, followed by VR221. For the third expert with q values of 1, 3 and 5, the best alternative is VR221, followed by VR28. For q values of 7 and 10, the best alternative is VR281, followed by VR221. Moreover, for all q values, the third and fourth ranks are relatively different. However, the effectiveness for q values on the best four alternatives presented in Table 9 did not provide a precise conclusion on the overall 300 alternatives. Therefore, to discuss the real effectiveness of q values on q-ROFDOSM individual ranking results, we calculated the overall variations that occurred in the ranking orders for the individual ranking for each expert.
The results showed that for expert 1, 277 out of 300 alternatives (92.33%) were changed and received different rank orders. A total of 23 alternatives (7.67%) received the same ranking order and did not change when the applied q values were 1, 3, 7 and 10). Moreover, for expert 2, 245 out of 300 alternatives (81.67%) were changed and received different rank orders, and 55 alternatives (18.33%) received the same ranking order and did not change. Finally, for expert 3, 284 out of 300 alternatives (94.67%) were changed and received different rank orders. A total of 16 alternatives (5.33%) received the same ranking order and did not change. Although little variance was observed for the best four ranking orders among alternatives (Table 9), the orders did not reflect the full picture of how q values affected the ranking results. Therefore, we concluded that a large variance occurred on the ranking orders and score values based on q values. This large variance indicated the existence of q values that were effective on vaccine distribution.
The ranking results changed in the three experts. This case showed the significance of variation in experts’ preferences in decision analysis. For instance, as shown in Table 9 and Table A1 (Appendix), for the first and second experts when q = 1, VR281 was the best alternative rank, and scores of 0.54033175 and 0.50524958 were obtained, respectively. For the third expert, VR221 was the first alternative rank, and a score of 0.523566903 was obtained.
After reviewing the scores and ranking orders results for the individual q-ROFDOSM, we found differences among the three experts that were been obtained for the vaccine recipients. Overall, no unique prioritisation result based on the opinions provided by the three experts was observed. Owing to this variance, GDM, is essential to final and unique prioritisation when all the experts’ opinions are considered. Furthermore, GDM is necessary to the resolution of the problem of variations in the final rank. As mentioned in Section 2.1.2, the final results of the three decision-makers were aggregated, and the final GDM raking for COVID-19 vaccine distribution was obtained. In addition, the results of the COVID-19 vaccine distribution based on the GDM-based q-ROFDOSM are presented in Table 10 for q values of 1, 3, 5, 7 and 10 in a sample of 10 vaccine recipients.
Table 10.
Vaccine distribution results based on GDM q-ROFDOSM (first 10 alternatives).
| Alternatives | q = 1 | q = 3 | q = 5 | q = 7 | q = 10 | |||||
|---|---|---|---|---|---|---|---|---|---|---|
| Score | Final rank | Score | Final rank | Score | Final rank | Score | Final rank | Score | Final rank | |
| VR1 | -0.2879969 | 234 | -0.2298837 | 234 | -0.1262594 | 228 | -0.0662891 | 226 | -0.02466931 | 217 |
| VR2 | 0.1861822 | 53 | 0.2183817 | 68 | 0.1475219 | 86 | 0.0894377 | 101 | 0.04069889 | 114 |
| VR3 | -0.0807016 | 166 | 0.0355225 | 141 | 0.0920117 | 118 | 0.100076 | 91 | 0.0844476 | 63 |
| VR4 | -0.2056802 | 210 | -0.1557731 | 210 | -0.0836673 | 210 | -0.0435386 | 212 | -0.01602858 | 206 |
| VR5 | -0.2013731 | 209 | -0.1306485 | 198 | -0.0583542 | 198 | -0.0217009 | 196 | -0.00273792 | 194 |
| VR6 | 0.0247994 | 116 | 0.1111214 | 108 | 0.0991704 | 114 | 0.0723318 | 116 | 0.03988728 | 115 |
| VR7 | -0.3478996 | 258 | -0.2922598 | 258 | -0.1726611 | 249 | -0.0995332 | 245 | -0.04463694 | 243 |
| VR8 | -0.2605366 | 228 | -0.214181 | 228 | -0.1267636 | 230 | -0.0739335 | 231 | -0.03397462 | 232 |
| VR9 | 0.0669532 | 95 | 0.1643745 | 84 | 0.1518465 | 82 | 0.1170806 | 80 | 0.07304372 | 80 |
| VR10 | -0.379279 | 270 | -0.3206686 | 266 | -0.1901438 | 257 | -0.1096338 | 257 | -0.04885261 | 256 |
As Tables 10 and A2 (Appendix) illustrate, for q values of 3, 5, 7 and 10, the highest-ranked (rank 1) recipient is VR281, who obtained the highest scores. After the profile data of this alternative were reviewed, the specifications of VR281’s criteria were related to C1, C2, C3, C4 and C5 as he is not a vaccine recipient, has diabetes, is 83 years old, is from a red geographical location and is disabled with epilepsy. Although VR281 did not belong to any recipient memberships (C1), the weight of the age criterion (See Table 7), which indicated that age weight received higher priority for all q values based on the three experts, played a major role in the decision-making process, and the alternative was considered a high priority. Hence, the remaining criteria varied somewhat in terms of importance.
VR170, who was almost located in the middle of the ranking results, ranked 144th when q = 1 (obtained a score of -0.046208476), rank 156th when q = 3 (obtained a score of 0.004883422), rank 157th when q = 5 (obtained a score of 0.031371872), rank 155th when q = 7 (obtained a score of 0.030999934) and rank 150th when q = 10 (obtained a score of 0.019926159). The criterion specifications of VR170 were related to C1, C2, C3, C4 and C5 as he has a recipient membership (fire service employee), is not affected by a chronic disease, 5is 9 years old, is from an orange geographical location and is not affected by disabilities. Clearly, a satisfactory ranking result was assigned to alternative VR170 especially the vaccine distribution criteria specifications are relatively averagely important and earned a middle priority.
The lowest-ranked recipients were the alternatives VR166, VR190, VR205, VR209, VR229 and VR285, and they obtained the same ranking order (rank 293) and same scores for all q values. They received scores (-0.510442612), (-0.468345475), (-0.31952474), (-0.218707219) and (-0.131237497) for q values of 1, 3, 5, 7 and 10, respectively. The closeness of the criterion specifications for these alternatives was the reason for their admission in the same order of priority and their identical scores. For instance, the criterion specifications of VR166 were related to C1, C2, C3, C4 and C5 as he has no vaccine recipient membership, is not affected by a chronic disease, is 43 years old, is from a green geographical location and is not affected by disabilities. The worst ranked had no vaccine recipient membership, were not affected by any chronic condition, were young, were from green or yellow geographic locations and were slightly affected by disabilities.
In line with the results of the analysis on how the q values affected the first four ranking results presented previously for individual q-ROFDOSM (See Table 9), Table 11 presents the best four alternatives based on the GDM q-ROFDOSM.
Table 11.
GDM q-ROFDOSM ranking of the best and worst four alternatives for various values of q.
| Experts\q | Best four alternatives |
|---|---|
| q = 1 | VR281>VR221>VR274>VR47 |
| q = 3 | VR281>VR221>VR274>VR93 |
| q = 5 | VR281>VR221>VR93>VR274 |
| q = 7 | VR281>VR221>VR93>VR94 |
| q = 10 | VR281>VR221>VR93>VR94 |
As shown in Table 11, for all q values, the best alternative was VR281, followed by VR221. For q values of 1 and 3, VR274 and VR93 were third in rank, whereas VR93 was third in rank when the q values were 5, 7 and 10. Finally, the fourth in rank was VR47 when q = 1, VR93 when q = 3, VR274 when q = 5 and VR94 when q = 7 and q = 10.
To discuss the effect of q values on GDM q-ROFDOSM, we calculated the variations that occurred in the ranking orders for the GDM ranking results when the q values were 1, 3, 5, 7 and 10). In these contexts, 290 out of 300 alternatives (96.67%) were changed and received different rank orders at these q values, whereas 10 alternatives (3.33%) received the same rank order and did not change. Therefore, with regard to how q values affect GDM q-ROFDOSM ranking orders, the large variance occurred. This conclusion was in line with the individual q-ROFDOSM. Thus, q values play a key role in the overall ranking for the COVID-19 vaccine distribution for individual and GDM q-ROFDOSM and should be considered. Finally, the rank of COVID-19 vaccine distribution is in line when comparing the GDM results with the opinion matrices. Thus, it is considered as the final ranking results for COVID-19 vaccine distribution, which will be evaluated in detail in the next section.
4. Evaluation
In this section, the efficiency of the proposed methods was evaluated and tested through two assessment processes. First, the systematic ranking of the vaccine recipients’ ranking results was evaluated. Second, the impact of changing the criteria weight on the ranking result was examined and analysed under nine scenarios.
4.1. Systematic ranking evaluation
In this section, the systematic ranking assessment was conducted for the assessment of the GDM results of COVID-19 vaccine distribution. In this regard, vaccine recipients were divided into different groups according to their prioritisation order. Such process is known and has been performed in previous MCDM works [85], [86], [87], [88]. Notably, neither group numbers nor the number of vaccine recipients in each group influence validation results [89], [90], [91], [92]. Subsequently, the validation of COVID-19 vaccine distribution results include several procedures as follows:
-
•
The aggregation of all opinion matrices into one unified matrix
-
•
The aggregated matrix are sorted according to GDM results of vaccine distribution per each q value
-
•
The vaccine recipients are divided into 6 equally numbered groups.
-
•The mean value () for each group is calculated thereafter based on Eq. (13)
(13)
Upon the mean calculation for each of the six groups, these results must be compared. This step ensures the validity of the systematic ranking, and certain conditions are required according to the q-ROFDOSM philosophy in the comparison process where the lowest mean value for each group indicates validity as follows:
-
•
The first group mean is assumed to be the lowest when result validity is checked
-
•
The first group's mean must be lower than the second group's mean
-
•
The second group's mean result must be higher than that of the first group
-
•
The same concept applies to the third, fourth, fifth and sixth groups
Based on the mean results obtained under previous conditions, the evaluation was consistent, and thus its results were considered valid. Table 12 presents the validation results for the group results obtained using the proposed methods.
Table 12.
Validation of group distribution results.
| Group # | q1 | q3 | q5 | q7 | q10 |
|---|---|---|---|---|---|
| Mean value | |||||
| Group 1 | 2.705333333 | 2.716 | 2.728 | 2.78 | 2.854666667 |
| Group 2 | 3.221333333 | 3.232 | 3.265333333 | 3.284 | 3.257333333 |
| Group 3 | 3.554666667 | 3.578666667 | 3.554666667 | 3.505333333 | 3.474666667 |
| Group 4 | 3.862666667 | 3.816 | 3.796 | 3.776 | 3.770666667 |
| Group 5 | 4.121333333 | 4.122666667 | 4.126666667 | 4.130666667 | 4.124 |
| Group 6 | 4.442666667 | 4.442666667 | 4.437333333 | 4.432 | 4.426666667 |
Table 12 presents the results of six groups results for each q value (q1, q3, q5, q7 and q10). The ranking results of each group in each q rank was consistent with the q-ROFDOSM philosophy comparison conditions, in which the mean value for the first group in each scenario was smaller than the mean results for group 2. The same concept was applied, and the fact that group mean is smaller than the mean of the next corresponding group in each q rank was considered. After the process was successfully achieved in all the groups, the ranking was considered valid. The mean values based on the statistical validation results indicated that the GDM-based q-ROFDOSM results of COVID-19 vaccine distribution were valid and systematically ranked.
4.2. Sensitivity analysis evaluation
In this second evaluation process, the sensitivity of the proposed methods against the changing criterion weight was analysed. Thus, the sensitivity analysis predicted the impact of changes in criterion weights on the systematic ranking results of the vaccine distribution results. First, the most important criterion was identified for each q value. In this study, out of the five criteria, C3 (age) was the most important criterion for all q values, as presented in Table 7. For the examination of the effect of changes in the weights of the criteria, nine different scenarios for each q value generated from criterion weight relativity were computed using Eq. 13 [93]. The relative change for each criterion over the most important one (age) with respect to each q values were computed using the elasticity coefficient (αc), as shown in Table 13 .
| (13a) |
Table 13.
Elasticity coefficient (αc) for changing weights.
| T value | Criteria | C1 | C2 | C3 | C4 | C5 |
|---|---|---|---|---|---|---|
| q = 1 | αc | 0.265029784 | 0.264919514 | 0.309581718 | 0.254094521 | 0.215956182 |
| q = 3 | αc | 0.261365974 | 0.259631919 | 0.282267619 | 0.235169164 | 0.243832944 |
| q = 5 | αc | 0.272378478 | 0.260122827 | 0.318655605 | 0.211350989 | 0.256147706 |
| q = 7 | αc | 0.286538268 | 0.253515984 | 0.354018201 | 0.184625748 | 0.27532 |
| q = 10 | αc | 0.311238476 | 0.237532804 | 0.403305378 | 0.145317753 | 0.305910967 |
For a q value,
-
•
ws is the higher significant contribution.
-
•
represents the original weight values computed using q-ROFWZIC method.
-
•
is the total of original weights for the changing criteria weight values.
-
•Δx is the range of change applied on the five criteria weight values, which represents the limit values of the most significant criterion in this study (age) as follows:
-
ØFor q = 1, − 0.236 ≤ ▵x ≤ 0.763
-
ØFor q = 3, − 0.220 ≤ ▵x ≤ 0.779
-
ØFor q = 5, − 0.241 ≤ ▵x ≤ 0.758
-
ØFor q = 7, − 0.261 ≤ ▵x ≤ 0.738
-
ØFor q = 10, −0.287 ≤ ▵x ≤ 0.712
-
Ø
The q value for each criterion showed changes in their weights according to Eq. 13, as shown in Table 13. For all (α_c) with respect to q values (q = 1, 3, 5,7, 10), age (C3) received the highest weight, whereas geographic location severity (C4) received the lowest weight, except when q = 1, in which Disabilities (C5) had the lowest weight. Then, the interval range of Δx for q values were used in generating nine new weighting values for each criterion. The range was split into nine equal relative values according to the number of scenarios, as shown in Table 14 .
Table 14.
New weights for each criterion for q values under nine scenarios.
| q = 1 | |||||
|---|---|---|---|---|---|
| C1 | C2 | C3 | C4 | C5 | |
| q-ROFWZIC | 0.202377431 | 0.202293228 | 0.236397404 | 0.194027236 | 0.164904701 |
| S1 | 0.202377431 | 0.202293228 | 0.236397404 | 0.194027236 | 0.164904701 |
| S2 | 0.265029784 | 0.264919514 | 0.00E+00 | 0.254094521 | 0.215956182 |
| S3 | 0.231901061 | 0.231804574 | 0.125 | 0.222332706 | 0.188961659 |
| S4 | 0.198772338 | 0.198689635 | 0.25 | 0.190570891 | 0.161967136 |
| S5 | 0.165643615 | 0.165574696 | 0.375 | 0.158809075 | 0.134972613 |
| S6 | 0.132514892 | 0.132459757 | 0.5 | 0.12704726 | 0.107978091 |
| S7 | 0.099386169 | 0.099344818 | 0.625 | 0.095285445 | 0.080983568 |
| S8 | 0.066257446 | 0.066229878 | 0.75 | 0.06352363 | 0.053989045 |
| S9 | 0.033128723 | 0.033114939 | 0.875 | 0.031761815 | 0.026994523 |
| q = 3 | |||||
| q-ROFWZIC | 0.203831065 | 0.20247873 | 0.220131597 | 0.183401 | 0.190157608 |
| S1 | 0.261365974 | 0.259631919 | 0.00E+00 | 0.235169164 | 0.243832944 |
| S2 | 0.228695227 | 0.227177929 | 0.125 | 0.205773018 | 0.213353826 |
| S3 | 0.19602448 | 0.194723939 | 0.25 | 0.176376873 | 0.182874708 |
| S4 | 0.163353734 | 0.162269949 | 0.375 | 0.146980727 | 0.15239559 |
| S5 | 0.130682987 | 0.129815959 | 0.5 | 0.117584582 | 0.121916472 |
| S6 | 0.09801224 | 0.09736197 | 0.625 | 0.088188436 | 0.091437354 |
| S7 | 0.065341493 | 0.06490798 | 0.75 | 0.058792291 | 0.060958236 |
| S8 | 0.032670747 | 0.03245399 | 0.875 | 0.029396145 | 0.030479118 |
| S9 | 1.00E-05 | 1.00E-05 | 0.99996 | 1.00E-05 | 1.00E-05 |
| q = 5 | |||||
| q-ROFWZIC | 0.206557707 | 0.197263657 | 0.241651879 | 0.160277625 | 0.194249132 |
| S1 | 0.272378478 | 0.260122827 | 0.00E+00 | 0.211350989 | 0.256147706 |
| S2 | 0.238331168 | 0.227607473 | 0.125 | 0.184932115 | 0.224129243 |
| S3 | 0.204283859 | 0.19509212 | 0.25 | 0.158513242 | 0.19211078 |
| S4 | 0.170236549 | 0.162576767 | 0.375 | 0.132094368 | 0.160092317 |
| S5 | 0.136189239 | 0.130061413 | 0.5 | 0.105675494 | 0.128073853 |
| S6 | 0.102141929 | 0.09754606 | 0.625 | 0.079256621 | 0.09605539 |
| S7 | 0.06809462 | 0.065030707 | 0.75 | 0.052837747 | 0.064036927 |
| S8 | 0.03404731 | 0.032515353 | 0.875 | 0.026418874 | 0.032018463 |
| S9 | 1.00E-05 | 1.00E-05 | 0.99996 | 1.00E-05 | 1.00E-05 |
| q = 7 | |||||
| q-ROFWZIC | 0.211620692 | 0.187232331 | 0.261457491 | 0.136353963 | 0.203335523 |
| S1 | 0.286538268 | 0.253515984 | 2.22E-16 | 0.184625748 | 0.27532 |
| S2 | 0.250720985 | 0.221826486 | 0.125 | 0.16154753 | 0.240905 |
| S3 | 0.214903701 | 0.190136988 | 0.25 | 0.138469311 | 0.20649 |
| S4 | 0.179086418 | 0.15844749 | 0.375 | 0.115391093 | 0.172075 |
| S5 | 0.143269134 | 0.126757992 | 0.5 | 0.092312874 | 0.13766 |
| S6 | 0.107451851 | 0.095068494 | 0.625 | 0.069234656 | 0.103245 |
| S7 | 0.071634567 | 0.063378996 | 0.75 | 0.046156437 | 0.06883 |
| S8 | 0.035817284 | 0.031689498 | 0.875 | 0.023078219 | 0.034415 |
| S9 | 1.00E-05 | 1.00E-05 | 0.99996 | 1.00E-05 | 1.00E-05 |
| q = 10 | |||||
| q-ROFWZIC | 0.221789555 | 0.169266653 | 0.287396731 | 0.103553906 | 0.217993155 |
| S1 | 0.311238476 | 0.237532804 | 1.11E-16 | 0.145317753 | 0.305910967 |
| S2 | 0.272333666 | 0.207841204 | 0.125 | 0.127153034 | 0.267672096 |
| S3 | 0.233428857 | 0.178149603 | 0.25 | 0.108988315 | 0.229433225 |
| S4 | 0.194524047 | 0.148458003 | 0.375 | 0.090823596 | 0.191194354 |
| S5 | 0.155619238 | 0.118766402 | 0.5 | 0.072658876 | 0.152955484 |
| S6 | 0.116714428 | 0.089074802 | 0.625 | 0.054494157 | 0.114716613 |
| S7 | 0.077809619 | 0.059383201 | 0.75 | 0.036329438 | 0.076477742 |
| S8 | 0.038904809 | 0.029691601 | 0.875 | 0.018164719 | 0.038238871 |
| S9 | 1.00E-05 | 1.00E-05 | 0.99996 | 1.00E-05 | 1.00E-05 |
The ninth new weight value for each q value was used in assessing the sensitivity of the 300 vaccine recipients’ prioritisation at changing criterion weights. The aim was to determine how target q-ROFWZIC weights are affected according to changes under the scenarios for each q value. Fig. 3 illustrates the influences of changes in the criterion weight in the first 10 ranks when q = 1. Figs. A1, A2, A3 and A4 in the Appendix illustrate the influences of changes in criterion weight in the first ten ranks at q values of 3, 5, 7 and 10, respectively. The criterion weights played a vital role in the change in the priority of each vaccine recipient. These scenario results for the nine values supported the research assertion about the significant contribution of the five criteria. Notably, although this change was logical and likely, the unchanged results in most scenarios indicated the efficiency of the proposed integration methods in handling the sensitive cases, which had large datasets, and produced supportive results for the outcomes of systematic ranking.
Fig. 3.
Sensitivity analysis of first 10 vaccine receipts ranks in nine scenarios (q = 1).
Fig. A1.
Sensitivity analysis of first 10 vaccine receipts ranks in 9 scenarios (q = 3).
Fig. A2.
Sensitivity analysis of first 10 vaccine receipts ranks in 9 scenarios (q = 5).
Fig. A3.
Sensitivity analysis of first 10 vaccine receipts ranks in 9 scenarios (q = 7).
Fig. A4.
Sensitivity analysis of first 10 vaccine receipts ranks in 9 scenarios (q = 10).
Based on sensitively analyses results visualised in Figs. 3, A1, A2, A3 and A4, the new ranking results obtained based on the ninth scenario weights for all q values needed to be compared with previous ranking results obtained based on q-ROFWZIC weights (the weights presented in Table 7). The sensitively analysis comparisons can be discussed from two points of view as follows:
First three ranks effectiveness: the comparison with respect to the first three ranking alternatives needed to be discussed because of the vaccine recipients received important orders. When q = 1, the scenarios S3, S4, S5, S6, S7, S8 and S9 had the same ranking results as q-ROFWZIC. The results were obtained by the first three alternatives (V48, V98 and V155), and other scenarios (S1 and S2) were relatively different.
When q = 3, scenarios S3, S4, S5, S6, S7, S8 and S9 had the same ranking results as q-ROFWZIC, which were obtained by the first three alternatives (V271, V289 and V115). THe other scenarios (S1 and S2) were relatively different. When q = 5, 3 and 10, scenarios S3, S4, S5, S6, S7 and S8 had the same ranking results as q-ROFWZIC, which were obtained by the first three alternatives (V271, V289 and V77). The other scenarios (S1, S2 and S9) were relatively different. When the above new results were compared with the first three ranks obtained from q-ROFWZIC weights, no large differences among the first three ranking results for the sensitively of q values were observed. However, the first three ranks cannot provide the full sensitive analyses for the overall changing occurred in the ranking results. Therefore, the overall effect should be discussed.
Overall rank effectiveness: after the overall ranking results were obtained, we found the changing behaviour of the nine scenarios with respect to each q value. How exactly the overall new ranking results affected the previous ranking results obtained from q-ROFWZIC weights must be determined. We measured the effectiveness by calculating the changes that occurred in the orders among the ranks, then we calculated the changes in percentages in the ranking orders. In other words, for q = 1, the number of changes that occurred in the ranking orders obtained from q-ROFWZIC weights after S1 weights were applied was 295 (98.33%), and only five orders did not change and had the same order. Table 15 explains the overall effectiveness on the ranking results among the ninth scenario's weights and q-ROFWZIC weights.
Table 15.
Overall effectiveness (percentages %) between ranks of ninth scenarios weights and q-ROFWZIC weights.
| Scenarios | q = 1 | q = 3 | q = 5 | q = 7 | q = 10 | |
|---|---|---|---|---|---|---|
| Changing percentage (%) in rank towards q-ROFWZIC | S1 | 98.33 | 98.33 | 99.33 | 98.67 | 98.67 |
| S2 | 95.67 | 92.67 | 92.67 | 89.00 | 85.33 | |
| S3 | 45.00 | 62.67 | 52.67 | 51.67 | 68.33 | |
| S4 | 88.33 | 90.67 | 92.00 | 87.67 | 91.33 | |
| S5 | 89.67 | 92.33 | 92.00 | 92.33 | 92.00 | |
| S6 | 89.67 | 92.33 | 92.00 | 92.00 | 92.67 | |
| S7 | 90.00 | 91.67 | 91.33 | 91.67 | 92.67 | |
| S8 | 89.67 | 91.67 | 91.33 | 91.67 | 93.33 | |
| S9 | 95.00 | 91.67 | 92.00 | 90.00 | 93.33 | |
| mean | 86.81 | 89.33 | 88.37 | 87.19 | 89.74 |
Table 15 presents the final sensitive analyses for all scenarios with respect to all q values. The highest mean value was obtained when q = 10 (89.74%). The lowest mean value was obtained when q = 1 (86.81%). These interesting results indicated that the rank stability was almost highly sensitive and similar to each other with respect to all q values, and then ranking obtained by q-ROFWZIC weight was affected by the nine scenarios. Surely, these widely changing results in the weights’ numbers changed the overall ranking results. This concept was already reported and considered one of the other MCDM issues and an ‘important criteria’. If we review these issues concepts, we can realise that the ‘important criteria’ have been sensitively recognised and proven here and is a vaccine distribution. At this step, sensitivity analysis was perform for the investigation of the priority ranking stability. However, the sensitivity of the priority ranks of the q values for the nine scenarios were influenced by changes in the criterion weights, and the overall ranks for all vaccine recipients also changed, except some priority ranks (the first three ranks). This fact was probably because of some important issues of criterion importance and has been demonstrated for q-ROFWZIC weights. Finally, the Spearman correlation coefficient (SCC) was used in statistically evaluating the relationships among the results of the 15 scenarios [93]. Fig. 4 shows the high-level correlation among the nine scenarios for all 300 vaccine recipients when q = 1. The remaining correlations for other q values are shown in Figs. A5 , A6 , Fig. A7, Fig. A8 .
Fig. 4.
Correlation of ranks among nine scenarios for all 300 vaccine recipients for q of 1.
Fig. A5.
Correlation of ranks among 9 scenarios for all 300 vaccine recipients for q = 3.
Fig. A6.
Correlation of ranks among 9 scenarios for all 300 vaccine recipients for q = 5.
Fig. A7.
Correlation of ranks among 9 scenarios for all 300 vaccine recipients for q = 7.
Fig. A8.
Correlation of ranks among 9 scenarios for all 300 vaccine recipients for q = 10.
Fig. 4 illustrates the correlation analysis results for the vaccine recipients’ ranking under nine scenarios according to the obtained correlation values for a q value of 1. A high correlation of ranks was observed in all scenarios. For the scenarios S2, S3 and S4, the high SCC values were 0.9872, 0.9998 and 0.9866, respectively, whereas the S9 had the lowest SCC value (0.8658). In the same context, the other correlation results were summarised as follows. For q = 3, the scenarios (S2, S3 and S4) obtained height correlation, where the SCC values were 0.991068166, 0.999110381 and 0.983735559, respectively. S9 had the lowest SCC value of 0.843518692. When q = 5, the scenarios (S2, S3 and S4) obtained height correlation, where the SCC values were 0.987873209, 0.99981133 and 0.988569992, respectively, whereas S9 had the lowest SCC value (0.842974338). When q = 7, scenarios S2, S3 and S4 had height correlation, where the SCC values were 0.983886001, 0.999838187 and 0.992322563, respectively, whereas S9 had the lowest SCC value (0.835992688). When q = 10, scenarios S1, S2, S3, S4, S5 and S6 had the highest correlation results. The SCC values were 0.93096899, 0.981698586, 0.999229063, 0.995156505, 0.976486891 and 0.936642031, respectively. S9 had the lowest SCC value (0.820391763).
In conclusion, for all q values, the highest correlation SCC value corresponded to a q value of 10, in which all the scenarios obtained high correlation analysis results. Accordingly, these high correlation values indicated a significant correlation of the rank outcomes, which in turn supported the systematic ranking results for the q values.
5. Conclusion
The main contribution of this study is a novel extension of FWZIC and FDOSM under the fuzzy environment of q-ROFS. The study methodology was presented on the basis of two phases (Fig. 2), which formulated the steps of the q-ROFWZIC method for criterion weighting and its integration with q-ROFDOSM for alternative ranking. The proposed extension of the methods was applied to the interesting case study of COVID-19 vaccine dose distribution. The robustness of the proposed methods was tested and evaluated with two systematic ranking assessment methods and sensitivity analysis. However, the proposed methods had three main limitations that might be solved in the future works. First, q-ROFWZIC and q-ROFDOSM methods were formulated with one aggregation operator. Second, both methods utilised only one defuzzification technique to produce the final weighting and ranking results. Third, the importance measurement reflected on each decision maker preferences involved in both methods was not considered. Several future directions are recommended: (1) presenting and processing a huge dataset of COVID-19 vaccine recipients by considering all probabilities for each alternative and distribution criteria; (2), performing the proposed MCDM method should be based on two levels: firstly, each vaccine recipient membership (i.e. frontline health workers, key workers and frontline staff employees and none or both children and homemakers will be prioritised, and secondly each alternative within each membership will be prioritised, followed by accumulating them effectively. This direction might investigate other distribution criteria and their effectiveness including the family income and nutritional habits.
CRediT authorship contribution statement
A.S. Albahri: Data curation, Writing – original draft, Visualization. O.S. Albahri: Software, Supervision. A.A. Zaidan: Software, Supervision. Alhamzah Alnoor: Data curation, Writing – original draft, Visualization. H.A. Alsattar: Conceptualization, Methodology. Rawia Mohammed: Data curation, Writing – original draft, Visualization. A.H. Alamoodi: Investigation, Software, Validation, Writing – review & editing. B.B. Zaidan: Investigation, Software, Validation, Writing – review & editing. Uwe Aickelin: Software, Supervision. Mamoun Alazab: Software, Supervision. Salem Garfan: Conceptualization, Methodology. Ibraheem Y.Y. Ahmaro: Conceptualization, Methodology. M.A. Ahmed: Conceptualization, Methodology.
Declaration of competing interest
The authors declares no conflict of interest
Acknowledgement
The authors are grateful to the Universiti Pendidikan Sultan Idris, Malaysia for funding this study under Grant No. 2020-0296-109-11 .
Appendix
Table A1.
Results of individual q-ROFDOSM.
| q = 1 | ||||||
|---|---|---|---|---|---|---|
| Alternatives | Expert 1 | Expert 2 | Expert 3 | |||
| Score | Final rank | Score | Final rank | Score | Final rank | |
| VR1 | -0.190854 | 218 | -0.378625 | 248 | -0.294512 | 241 |
| VR2 | 0.241797 | 54 | 0.133978 | 60 | 0.182772 | 56 |
| VR3 | -0.021543 | 144 | -0.110281 | 145 | -0.110281 | 171 |
| VR4 | -0.115005 | 190 | -0.289401 | 209 | -0.212635 | 209 |
| VR5 | -0.13084 | 204 | -0.31839 | 244 | -0.15489 | 196 |
| VR6 | 0.078329 | 114 | -0.001965 | 106 | -0.001965 | 135 |
| VR7 | -0.269037 | 235 | -0.48015 | 269 | -0.294512 | 241 |
| VR8 | -0.186338 | 208 | -0.382637 | 250 | -0.212635 | 209 |
| VR9 | 0.035383 | 128 | 0.012109 | 96 | 0.153367 | 61 |
| VR10 | -0.363175 | 263 | -0.48015 | 269 | -0.294512 | 241 |
| VR11 | 0.330179 | 21 | 0.27567 | 22 | 0.322667 | 16 |
| VR12 | 0.209614 | 74 | 0.080889 | 70 | 0.18726 | 51 |
| VR13 | 0.020571 | 136 | -0.065652 | 129 | 0.002195 | 132 |
| VR14 | -0.037938 | 169 | -0.128636 | 167 | 0.00455 | 130 |
| VR15 | 0.109813 | 99 | 0.17791 | 39 | 0.095576 | 83 |
| VR16 | -0.190854 | 218 | -0.378625 | 248 | -0.294512 | 241 |
| VR17 | -0.115005 | 190 | -0.289401 | 209 | -0.212635 | 209 |
| VR18 | 0.284053 | 41 | 0.164875 | 40 | 0.09146 | 86 |
| VR19 | 0.097806 | 102 | -0.14555 | 176 | 0.018381 | 118 |
| VR20 | 0.253721 | 52 | 0.139748 | 55 | 0.18726 | 51 |
| VR21 | -0.052779 | 174 | -0.065652 | 129 | -0.065652 | 170 |
| VR22 | -0.4627 | 291 | -0.48015 | 269 | -0.588478 | 293 |
| VR23 | -0.363175 | 263 | -0.48015 | 269 | -0.294512 | 241 |
| VR24 | 0.427625 | 6 | 0.331839 | 10 | 0.373441 | 11 |
| VR25 | -0.251335 | 231 | -0.48015 | 269 | -0.254023 | 230 |
| VR26 | 0.125322 | 93 | 0.048068 | 80 | 0.108069 | 79 |
| VR27 | -0.108997 | 179 | -0.205331 | 186 | -0.125477 | 180 |
| VR28 | 0.230994 | 57 | -0.128636 | 167 | 0.085559 | 90 |
| VR29 | -0.272756 | 243 | -0.212635 | 194 | -0.289401 | 233 |
| VR30 | -0.169193 | 205 | -0.190854 | 181 | -0.021543 | 138 |
| VR31 | 0.083372 | 111 | -0.065652 | 129 | 0.056836 | 102 |
| VR32 | 0.139302 | 90 | -0.001965 | 106 | 0.117522 | 78 |
| VR33 | 0.216527 | 65 | -0.212635 | 194 | 0.147256 | 66 |
| VR34 | -0.040551 | 171 | -0.131448 | 173 | -0.057712 | 166 |
| VR35 | 0.319497 | 29 | 0.274031 | 23 | 0.274031 | 25 |
| VR36 | -0.099267 | 176 | -0.035011 | 117 | -0.190854 | 199 |
| VR37 | 0.150309 | 86 | 0.020571 | 88 | 0.134092 | 75 |
| VR38 | -0.197354 | 220 | -0.301518 | 216 | -0.21566 | 219 |
| VR39 | -0.186338 | 208 | -0.212635 | 194 | -0.039635 | 150 |
| VR40 | 0.143588 | 89 | 0.073855 | 77 | 0.133978 | 76 |
| VR41 | 0.083372 | 111 | -0.065652 | 129 | 0.056836 | 102 |
| VR42 | -0.117815 | 195 | -0.301518 | 216 | -0.14555 | 186 |
| VR43 | -0.021543 | 144 | -0.110281 | 145 | -0.110281 | 171 |
| VR44 | 0.254314 | 51 | 0.052912 | 79 | 0.188546 | 50 |
| VR45 | 0.307268 | 37 | 0.139748 | 55 | 0.253721 | 30 |
| VR46 | 0.164875 | 81 | 0.09146 | 67 | 0.09146 | 86 |
| VR47 | 0.412919 | 7 | 0.454382 | 3 | 0.454382 | 4 |
| VR48 | -0.197354 | 220 | -0.301518 | 216 | -0.21566 | 219 |
| VR49 | -0.117815 | 195 | -0.301518 | 216 | -0.14555 | 186 |
| VR50 | -0.024535 | 149 | -0.033676 | 114 | -0.033676 | 146 |
| VR51 | 0.03865 | 126 | -0.040551 | 123 | 0.083372 | 93 |
| VR52 | -0.197354 | 220 | -0.301518 | 216 | -0.21566 | 219 |
| VR53 | -0.366242 | 280 | -0.272756 | 205 | -0.289401 | 233 |
| VR54 | -0.285972 | 250 | -0.301518 | 216 | -0.21566 | 219 |
| VR55 | -0.099359 | 177 | -0.205331 | 186 | -0.035011 | 148 |
| VR56 | -0.186338 | 208 | -0.382637 | 250 | -0.212635 | 209 |
| VR57 | -0.213866 | 229 | -0.15489 | 178 | -0.228829 | 229 |
| VR58 | -0.115005 | 190 | -0.289401 | 209 | -0.212635 | 209 |
| VR59 | -0.030723 | 151 | -0.186338 | 180 | -0.115005 | 175 |
| VR60 | 0.05749 | 117 | -0.294512 | 212 | -0.021543 | 138 |
| VR61 | -0.366242 | 280 | -0.382637 | 250 | -0.382637 | 271 |
| VR62 | 0.02854 | 135 | -0.117594 | 148 | 0.018762 | 117 |
| VR63 | -0.110029 | 183 | -0.123423 | 149 | -0.206604 | 204 |
| VR64 | -0.117815 | 195 | -0.301518 | 216 | -0.14555 | 186 |
| VR65 | 0.331839 | 20 | 0.331839 | 10 | 0.373441 | 11 |
| VR66 | -0.285972 | 250 | -0.301518 | 216 | -0.398073 | 275 |
| VR67 | 0.097806 | 102 | 0.018381 | 93 | 0.018381 | 118 |
| VR68 | 0.043912 | 120 | -0.212635 | 194 | -0.039635 | 150 |
| VR69 | -0.272756 | 243 | -0.212635 | 194 | -0.289401 | 233 |
| VR70 | 0.122533 | 94 | -0.108997 | 143 | 0.164822 | 58 |
| VR71 | 0.213142 | 70 | 0.330179 | 13 | 0.267667 | 26 |
| VR72 | -0.285972 | 250 | -0.301518 | 216 | -0.398073 | 275 |
| VR73 | -0.030815 | 153 | -0.105112 | 139 | -0.033241 | 143 |
| VR74 | -0.251335 | 231 | -0.254023 | 203 | -0.254023 | 230 |
| VR75 | 0.134092 | 91 | 0.002195 | 105 | 0.056836 | 102 |
| VR76 | 0.04377 | 122 | -0.128636 | 167 | -0.128636 | 184 |
| VR77 | 0.097806 | 102 | 0.018381 | 93 | 0.018381 | 118 |
| VR78 | 0.27986 | 44 | 0.155125 | 43 | 0.091972 | 85 |
| VR79 | 0.271902 | 47 | 0.15359 | 47 | 0.250681 | 31 |
| VR80 | 0.116614 | 96 | 0.043912 | 84 | 0.043912 | 106 |
| VR81 | 0.22175 | 61 | 0.012109 | 96 | 0.153367 | 61 |
| VR82 | -0.023197 | 148 | -0.108997 | 143 | -0.035011 | 148 |
| VR83 | -0.272756 | 243 | -0.382637 | 250 | -0.289401 | 233 |
| VR84 | -0.363175 | 263 | -0.48015 | 269 | -0.294512 | 241 |
| VR85 | 0.248774 | 53 | 0.143588 | 54 | 0.241797 | 33 |
| VR86 | 0.223245 | 59 | 0.134092 | 59 | 0.083372 | 93 |
| VR87 | 0.209633 | 73 | 0.087637 | 68 | 0.139768 | 73 |
| VR88 | 0.097806 | 102 | 0.018381 | 93 | 0.018381 | 118 |
| VR89 | 0.035383 | 128 | -0.123423 | 149 | 0.012109 | 122 |
| VR90 | -0.197354 | 220 | -0.301518 | 216 | -0.21566 | 219 |
| VR91 | -0.363175 | 263 | -0.48015 | 269 | -0.378625 | 258 |
| VR92 | -0.285972 | 250 | -0.301518 | 216 | -0.398073 | 275 |
| VR93 | 0.394863 | 12 | 0.43757 | 5 | 0.43757 | 6 |
| VR94 | 0.359892 | 16 | 0.316397 | 14 | 0.394912 | 10 |
| VR95 | -0.033676 | 159 | -0.123423 | 149 | -0.048888 | 154 |
| VR96 | 0.213142 | 70 | 0.218326 | 29 | 0.267667 | 26 |
| VR97 | 0.04099 | 123 | -0.037938 | 118 | 0.030116 | 111 |
| VR98 | -0.18749 | 215 | -0.197354 | 182 | -0.197354 | 201 |
| VR99 | 0.116614 | 96 | 0.043912 | 84 | 0.043912 | 106 |
| VR100 | 0.279965 | 43 | 0.22175 | 28 | 0.22175 | 39 |
| VR101 | -0.052692 | 173 | -0.21566 | 201 | -0.14555 | 186 |
| VR102 | -0.4627 | 291 | -0.48015 | 269 | -0.48015 | 285 |
| VR103 | -0.363175 | 263 | -0.48015 | 269 | -0.378625 | 258 |
| VR104 | -0.030815 | 153 | -0.105112 | 139 | -0.033241 | 143 |
| VR105 | 0.147786 | 87 | -0.091187 | 137 | 0.036678 | 109 |
| VR106 | -0.110029 | 183 | -0.123423 | 149 | -0.123423 | 178 |
| VR107 | 0.010019 | 142 | -0.001965 | 106 | -0.001965 | 135 |
| VR108 | -0.197354 | 220 | -0.301518 | 216 | -0.21566 | 219 |
| VR109 | 0.092047 | 108 | -0.048888 | 125 | 0.012109 | 122 |
| VR110 | 0.216527 | 65 | 0.147256 | 51 | 0.147256 | 66 |
| VR111 | -0.108997 | 179 | -0.205331 | 186 | -0.125477 | 180 |
| VR112 | -0.110029 | 183 | -0.123423 | 149 | -0.206604 | 204 |
| VR113 | -0.033676 | 159 | 0.080889 | 70 | -0.048888 | 154 |
| VR114 | -0.18749 | 215 | 0.020571 | 88 | -0.197354 | 201 |
| VR115 | -0.4627 | 291 | -0.205331 | 186 | -0.48015 | 285 |
| VR116 | -0.033676 | 159 | 0.080889 | 70 | 0.012109 | 122 |
| VR117 | 0.216527 | 65 | 0.00455 | 101 | 0.147256 | 66 |
| VR118 | 0.018681 | 140 | 0.011114 | 100 | -0.062214 | 169 |
| VR119 | -0.033241 | 156 | -0.197354 | 182 | -0.052692 | 162 |
| VR120 | 0.213142 | 70 | 0.218326 | 29 | 0.218326 | 40 |
| VR121 | 0.160425 | 82 | -0.065652 | 129 | 0.192395 | 49 |
| VR122 | -0.033301 | 158 | -0.040551 | 123 | 0.083372 | 93 |
| VR123 | -0.269037 | 235 | -0.48015 | 269 | -0.294512 | 241 |
| VR124 | 0.121118 | 95 | -0.023197 | 111 | 0.05735 | 101 |
| VR125 | 0.463481 | 3 | 0.331839 | 10 | 0.406643 | 9 |
| VR126 | 0.317158 | 33 | 0.04602 | 82 | 0.106656 | 80 |
| VR127 | 0.27567 | 46 | 0.17915 | 38 | 0.139748 | 74 |
| VR128 | 0.011114 | 141 | -0.205331 | 186 | -0.004554 | 137 |
| VR129 | -0.363175 | 263 | -0.205331 | 186 | -0.378625 | 258 |
| VR130 | 0.284053 | 41 | -0.060162 | 128 | 0.09146 | 86 |
| VR131 | -0.169193 | 205 | -0.363175 | 245 | -0.190854 | 199 |
| VR132 | 0.020571 | 136 | -0.065652 | 129 | 0.002195 | 132 |
| VR133 | -0.117815 | 195 | -0.301518 | 216 | -0.14555 | 186 |
| VR134 | -0.117815 | 195 | -0.301518 | 216 | -0.14555 | 186 |
| VR135 | 0.305207 | 38 | 0.225928 | 26 | 0.167589 | 57 |
| VR136 | -0.366242 | 280 | -0.382637 | 250 | -0.382637 | 271 |
| VR137 | -0.172547 | 207 | -0.272756 | 205 | -0.186338 | 198 |
| VR138 | -0.366242 | 280 | -0.382637 | 250 | -0.484438 | 287 |
| VR139 | -0.366242 | 280 | -0.382637 | 250 | -0.382637 | 271 |
| VR140 | -0.18749 | 215 | -0.197354 | 182 | -0.197354 | 201 |
| VR141 | 0.317871 | 32 | 0.264468 | 25 | 0.310503 | 19 |
| VR142 | -0.11788 | 203 | -0.131448 | 173 | -0.131448 | 185 |
| VR143 | 0.364872 | 13 | 0.056836 | 78 | 0.192447 | 47 |
| VR144 | 0.164904 | 79 | 0.097806 | 63 | 0.097806 | 81 |
| VR145 | 0.152271 | 84 | 0.030116 | 87 | 0.085559 | 90 |
| VR146 | -0.269037 | 235 | -0.48015 | 269 | -0.294512 | 241 |
| VR147 | -0.363175 | 263 | -0.294512 | 212 | -0.378625 | 258 |
| VR148 | -0.186338 | 208 | -0.382637 | 250 | -0.212635 | 209 |
| VR149 | -0.117815 | 195 | -0.301518 | 216 | -0.14555 | 186 |
| VR150 | -0.366242 | 280 | -0.382637 | 250 | -0.484438 | 287 |
| VR151 | -0.254023 | 233 | -0.363175 | 245 | -0.269037 | 232 |
| VR152 | 0.231564 | 56 | 0.158964 | 41 | 0.226656 | 36 |
| VR153 | 0.318581 | 30 | 0.366786 | 8 | 0.366786 | 14 |
| VR154 | 0.230994 | 57 | -0.037938 | 118 | 0.085559 | 90 |
| VR155 | 0.108786 | 100 | -0.033676 | 114 | 0.092047 | 84 |
| VR156 | -0.021543 | 144 | -0.110281 | 145 | -0.110281 | 171 |
| VR157 | -0.021543 | 144 | -0.294512 | 212 | -0.110281 | 171 |
| VR158 | 0.360842 | 14 | 0.304029 | 16 | 0.304029 | 22 |
| VR159 | -0.108997 | 179 | -0.205331 | 186 | -0.125477 | 180 |
| VR160 | -0.040551 | 171 | -0.131448 | 173 | -0.057712 | 166 |
| VR161 | -0.108997 | 179 | -0.205331 | 186 | -0.125477 | 180 |
| VR162 | 0.10372 | 101 | 0.138703 | 58 | 0.087904 | 89 |
| VR163 | -0.366242 | 280 | -0.382637 | 250 | -0.484438 | 287 |
| VR164 | -0.363175 | 263 | -0.48015 | 269 | -0.378625 | 258 |
| VR165 | 0.04099 | 123 | -0.037938 | 118 | 0.030116 | 111 |
| VR166 | -0.4627 | 291 | -0.48015 | 269 | -0.588478 | 293 |
| VR167 | -0.117815 | 195 | -0.301518 | 216 | -0.14555 | 186 |
| VR168 | 0.049247 | 119 | -0.033512 | 113 | 0.034551 | 110 |
| VR169 | -0.037938 | 169 | 0.00455 | 101 | -0.055153 | 165 |
| VR170 | -0.033241 | 156 | -0.052692 | 126 | -0.052692 | 162 |
| VR171 | 0.349987 | 17 | 0.280207 | 20 | 0.240068 | 34 |
| VR172 | 0.05749 | 117 | -0.021543 | 110 | -0.021543 | 138 |
| VR173 | 0.203123 | 76 | 0.093415 | 64 | 0.195862 | 46 |
| VR174 | -0.110029 | 183 | -0.123423 | 149 | -0.206604 | 204 |
| VR175 | 0.360842 | 14 | 0.18726 | 37 | 0.304029 | 22 |
| VR176 | 0.322667 | 27 | 0.080889 | 70 | 0.18726 | 51 |
| VR177 | 0.209614 | 74 | 0.080889 | 70 | 0.18726 | 51 |
| VR178 | 0.043912 | 120 | -0.039635 | 122 | -0.039635 | 150 |
| VR179 | 0.216527 | 65 | 0.147256 | 51 | 0.147256 | 66 |
| VR180 | -0.033676 | 159 | -0.123423 | 149 | 0.012109 | 122 |
| VR181 | 0.073855 | 116 | -0.007345 | 109 | 0.057589 | 100 |
| VR182 | 0.330179 | 21 | 0.155125 | 43 | 0.209614 | 42 |
| VR183 | 0.159489 | 83 | 0.155125 | 43 | 0.209614 | 42 |
| VR184 | -0.024535 | 149 | -0.033676 | 114 | -0.033676 | 146 |
| VR185 | 0.035383 | 128 | -0.123423 | 149 | 0.012109 | 122 |
| VR186 | -0.033676 | 159 | -0.123423 | 149 | -0.048888 | 154 |
| VR187 | -0.366242 | 280 | -0.382637 | 250 | -0.484438 | 287 |
| VR188 | -0.285972 | 250 | -0.301518 | 216 | -0.398073 | 275 |
| VR189 | 0.412158 | 9 | 0.365848 | 9 | 0.437775 | 5 |
| VR190 | -0.4627 | 291 | -0.48015 | 269 | -0.588478 | 293 |
| VR191 | -0.197354 | 220 | -0.301518 | 216 | -0.21566 | 219 |
| VR192 | -0.363175 | 263 | -0.48015 | 269 | -0.378625 | 258 |
| VR193 | -0.366242 | 280 | -0.382637 | 250 | -0.382637 | 271 |
| VR194 | -0.030808 | 152 | -0.037938 | 118 | -0.115098 | 177 |
| VR195 | -0.269037 | 235 | -0.48015 | 269 | -0.294512 | 241 |
| VR196 | 0.255951 | 50 | 0.149041 | 50 | 0.248837 | 32 |
| VR197 | 0.328602 | 23 | 0.00455 | 101 | 0.147256 | 66 |
| VR198 | -0.363175 | 263 | -0.48015 | 269 | -0.378625 | 258 |
| VR199 | -0.197354 | 220 | -0.301518 | 216 | -0.21566 | 219 |
| VR200 | 0.151307 | 85 | 0.093415 | 64 | 0.150309 | 65 |
| VR201 | -0.016633 | 143 | -0.104598 | 138 | -0.030584 | 142 |
| VR202 | 0.322667 | 27 | 0.080889 | 70 | 0.18726 | 51 |
| VR203 | -0.186338 | 208 | -0.212635 | 194 | -0.039635 | 150 |
| VR204 | -0.110029 | 183 | -0.123423 | 149 | -0.123423 | 178 |
| VR205 | -0.4627 | 291 | -0.48015 | 269 | -0.588478 | 293 |
| VR206 | 0.406533 | 10 | 0.412158 | 6 | 0.367572 | 13 |
| VR207 | -0.197354 | 220 | -0.301518 | 216 | -0.21566 | 219 |
| VR208 | -0.272756 | 243 | -0.382637 | 250 | -0.289401 | 233 |
| VR209 | -0.4627 | 291 | -0.48015 | 269 | -0.588478 | 293 |
| VR210 | -0.363175 | 263 | -0.48015 | 269 | -0.378625 | 258 |
| VR211 | -0.272756 | 243 | -0.212635 | 194 | -0.289401 | 233 |
| VR212 | -0.033676 | 159 | -0.123423 | 149 | -0.048888 | 154 |
| VR213 | -0.285972 | 250 | -0.301518 | 216 | -0.398073 | 275 |
| VR214 | 0.03442 | 133 | -0.105112 | 139 | 0.025128 | 115 |
| VR215 | 0.326335 | 25 | 0.279965 | 21 | 0.279965 | 24 |
| VR216 | 0.116614 | 96 | 0.043912 | 84 | -0.115005 | 175 |
| VR217 | 0.238582 | 55 | 0.117164 | 62 | 0.224268 | 38 |
| VR218 | 0.091972 | 109 | 0.080889 | 70 | 0.012028 | 129 |
| VR219 | 0.344544 | 18 | 0.288536 | 19 | 0.235052 | 35 |
| VR220 | -0.285972 | 250 | -0.301518 | 216 | -0.398073 | 275 |
| VR221 | 0.498403 | 2 | 0.466378 | 2 | 0.523567 | 1 |
| VR222 | -0.272756 | 243 | -0.382637 | 250 | -0.289401 | 233 |
| VR223 | 0.277107 | 45 | 0.158964 | 41 | 0.257625 | 29 |
| VR224 | 0.182402 | 77 | -0.023197 | 111 | 0.043635 | 108 |
| VR225 | -0.285972 | 250 | -0.301518 | 216 | -0.398073 | 275 |
| VR226 | 0.03865 | 126 | -0.182419 | 179 | 0.027739 | 114 |
| VR227 | -0.363175 | 263 | -0.48015 | 269 | -0.378625 | 258 |
| VR228 | 0.318581 | 30 | 0.292041 | 18 | 0.318581 | 17 |
| VR229 | -0.4627 | 291 | -0.48015 | 269 | -0.588478 | 293 |
| VR230 | 0.216527 | 65 | 0.147256 | 51 | 0.147256 | 66 |
| VR231 | 0.167637 | 78 | 0.04641 | 81 | 0.159557 | 59 |
| VR232 | 0.446754 | 5 | 0.195862 | 35 | 0.311698 | 18 |
| VR233 | -0.269037 | 235 | -0.48015 | 269 | -0.294512 | 241 |
| VR234 | -0.030815 | 153 | -0.105112 | 139 | -0.033241 | 143 |
| VR235 | 0.412919 | 7 | 0.389848 | 7 | 0.412919 | 7 |
| VR236 | -0.285972 | 250 | -0.301518 | 216 | -0.301518 | 255 |
| VR237 | 0.14369 | 88 | 0.04602 | 82 | -0.025628 | 141 |
| VR238 | -0.272756 | 243 | -0.382637 | 250 | -0.289401 | 233 |
| VR239 | 0.093415 | 106 | 0.020571 | 88 | 0.083372 | 93 |
| VR240 | -0.285972 | 250 | -0.301518 | 216 | -0.301518 | 255 |
| VR241 | 0.218326 | 64 | 0.155125 | 43 | 0.209614 | 42 |
| VR242 | 0.343626 | 19 | 0.268667 | 24 | 0.213142 | 41 |
| VR243 | -0.366242 | 280 | -0.382637 | 250 | -0.484438 | 287 |
| VR244 | 0.020571 | 136 | -0.065652 | 129 | 0.002195 | 132 |
| VR245 | 0.22175 | 61 | 0.153367 | 48 | 0.153367 | 61 |
| VR246 | 0.326238 | 26 | 0.218326 | 29 | 0.159489 | 60 |
| VR247 | 0.018762 | 139 | -0.269037 | 204 | -0.062125 | 168 |
| VR248 | -0.115098 | 193 | -0.128636 | 167 | -0.212736 | 217 |
| VR249 | -0.2593 | 234 | -0.272756 | 205 | -0.366242 | 257 |
| VR250 | -0.285972 | 250 | -0.301518 | 216 | -0.398073 | 275 |
| VR251 | 0.268667 | 48 | 0.218326 | 29 | 0.267667 | 26 |
| VR252 | -0.363175 | 263 | -0.48015 | 269 | -0.294512 | 241 |
| VR253 | -0.269037 | 235 | -0.48015 | 269 | -0.294512 | 241 |
| VR254 | 0.093415 | 106 | 0.020571 | 88 | 0.083372 | 93 |
| VR255 | 0.397344 | 11 | 0.301519 | 17 | 0.345168 | 15 |
| VR256 | -0.110029 | 183 | -0.123423 | 149 | -0.206604 | 204 |
| VR257 | 0.035383 | 128 | -0.123423 | 149 | 0.012109 | 122 |
| VR258 | -0.104911 | 178 | -0.200702 | 185 | -0.055127 | 164 |
| VR259 | -0.363175 | 263 | -0.48015 | 269 | -0.378625 | 258 |
| VR260 | 0.22175 | 61 | 0.012109 | 96 | 0.153367 | 61 |
| VR261 | -0.285972 | 250 | -0.301518 | 216 | -0.398073 | 275 |
| VR262 | 0.04099 | 123 | 0.085559 | 69 | 0.030116 | 111 |
| VR263 | -0.363175 | 263 | -0.294512 | 212 | -0.378625 | 258 |
| VR264 | -0.033676 | 159 | -0.123423 | 149 | -0.048888 | 154 |
| VR265 | 0.128432 | 92 | 0.125322 | 61 | 0.125322 | 77 |
| VR266 | 0.223245 | 59 | 0.020571 | 88 | 0.083372 | 93 |
| VR267 | -0.186338 | 208 | -0.382637 | 250 | -0.212635 | 209 |
| VR268 | 0.030116 | 134 | -0.128636 | 167 | 0.00455 | 130 |
| VR269 | -0.4627 | 291 | -0.48015 | 269 | -0.588478 | 293 |
| VR270 | -0.110029 | 183 | -0.123423 | 149 | -0.206604 | 204 |
| VR271 | -0.346253 | 262 | -0.363175 | 245 | -0.4627 | 284 |
| VR272 | 0.035383 | 128 | 0.012109 | 96 | 0.012109 | 122 |
| VR273 | -0.088215 | 175 | -0.284314 | 208 | -0.169261 | 197 |
| VR274 | 0.454382 | 4 | 0.454382 | 3 | 0.48779 | 3 |
| VR275 | 0.083372 | 111 | -0.065652 | 129 | 0.056836 | 102 |
| VR276 | 0.328602 | 23 | 0.00455 | 101 | 0.147256 | 66 |
| VR277 | 0.164904 | 79 | -0.052692 | 126 | 0.097806 | 81 |
| VR278 | -0.115098 | 193 | -0.128636 | 167 | -0.212736 | 217 |
| VR279 | -0.363175 | 263 | -0.48015 | 269 | -0.378625 | 258 |
| VR280 | 0.086757 | 110 | 0.093415 | 64 | 0.025049 | 116 |
| VR281 | 0.50525 | 1 | 0.540332 | 1 | 0.50525 | 2 |
| VR282 | 0.305207 | 38 | 0.225928 | 26 | 0.225928 | 37 |
| VR283 | 0.313579 | 34 | 0.218326 | 29 | 0.307268 | 20 |
| VR284 | 0.313579 | 34 | 0.218326 | 29 | 0.307268 | 20 |
| VR285 | -0.4627 | 291 | -0.48015 | 269 | -0.588478 | 293 |
| VR286 | 0.074737 | 115 | 0.13932 | 57 | 0.074737 | 99 |
| VR287 | -0.033676 | 159 | -0.123423 | 149 | -0.048888 | 154 |
| VR288 | 0.313579 | 34 | 0.307268 | 15 | 0.406982 | 8 |
| VR289 | -0.217709 | 230 | -0.23237 | 202 | -0.150076 | 195 |
| VR290 | -0.363175 | 263 | -0.48015 | 269 | -0.378625 | 258 |
| VR291 | -0.366242 | 280 | -0.382637 | 250 | -0.484438 | 287 |
| VR292 | 0.258479 | 49 | 0.192447 | 36 | 0.192447 | 47 |
| VR293 | -0.269037 | 235 | -0.48015 | 269 | -0.294512 | 241 |
| VR294 | -0.186338 | 208 | -0.382637 | 250 | -0.212635 | 209 |
| VR295 | -0.269037 | 235 | -0.48015 | 269 | -0.294512 | 241 |
| VR296 | -0.197354 | 220 | -0.301518 | 216 | -0.21566 | 219 |
| VR297 | 0.292041 | 40 | 0.151307 | 49 | 0.203123 | 45 |
| VR298 | -0.117815 | 195 | -0.14555 | 176 | -0.14555 | 186 |
| VR299 | -0.033676 | 159 | -0.123423 | 149 | -0.048888 | 154 |
| VR300 | -0.033676 | 159 | -0.123423 | 149 | -0.048888 | 154 |
| q = 3 | ||||||
| Alternatives | Expert 1 | Expert 2 | Expert 3 | |||
| Score | final rank | Score | final rank | Score | final rank | |
| VR1 | -0.130612 | 205 | -0.327956 | 248 | -0.231083 | 233 |
| VR2 | 0.27259 | 69 | 0.159673 | 71 | 0.222882 | 71 |
| VR3 | 0.078316 | 131 | 0.014126 | 118 | 0.014126 | 157 |
| VR4 | -0.064433 | 189 | -0.247035 | 214 | -0.155851 | 209 |
| VR5 | -0.079331 | 204 | -0.239367 | 213 | -0.073248 | 185 |
| VR6 | 0.145141 | 111 | 0.094111 | 93 | 0.094111 | 122 |
| VR7 | -0.22061 | 234 | -0.425087 | 269 | -0.231083 | 233 |
| VR8 | -0.149352 | 219 | -0.33734 | 250 | -0.155851 | 209 |
| VR9 | 0.105552 | 123 | 0.114789 | 86 | 0.272782 | 47 |
| VR10 | -0.305836 | 262 | -0.425087 | 269 | -0.231083 | 233 |
| VR11 | 0.377745 | 28 | 0.337076 | 20 | 0.37483 | 20 |
| VR12 | 0.260942 | 74 | 0.167456 | 62 | 0.276996 | 41 |
| VR13 | 0.06881 | 136 | -0.000572 | 131 | 0.064082 | 138 |
| VR14 | 0.001663 | 168 | -0.07201 | 166 | 0.071259 | 131 |
| VR15 | 0.170959 | 104 | 0.223638 | 48 | 0.176582 | 83 |
| VR16 | -0.130612 | 205 | -0.327956 | 248 | -0.231083 | 233 |
| VR17 | -0.064433 | 189 | -0.247035 | 214 | -0.155851 | 209 |
| VR18 | 0.356714 | 41 | 0.238963 | 47 | 0.194821 | 76 |
| VR19 | 0.188102 | 92 | -0.079571 | 174 | 0.132984 | 100 |
| VR20 | 0.316605 | 51 | 0.218567 | 49 | 0.276996 | 41 |
| VR21 | 0.00514 | 167 | -0.000572 | 131 | -0.000572 | 170 |
| VR22 | -0.415233 | 291 | -0.425087 | 269 | -0.564717 | 293 |
| VR23 | -0.305836 | 262 | -0.425087 | 269 | -0.231083 | 233 |
| VR24 | 0.452275 | 12 | 0.360692 | 13 | 0.39699 | 13 |
| VR25 | -0.208595 | 231 | -0.425087 | 269 | -0.214075 | 230 |
| VR26 | 0.166931 | 105 | 0.115163 | 85 | 0.169972 | 86 |
| VR27 | -0.058042 | 185 | -0.1389 | 180 | -0.064842 | 179 |
| VR28 | 0.269094 | 70 | -0.07201 | 166 | 0.133424 | 93 |
| VR29 | -0.228857 | 242 | -0.155851 | 193 | -0.247035 | 247 |
| VR30 | -0.135662 | 207 | -0.130612 | 179 | 0.078316 | 125 |
| VR31 | 0.126665 | 119 | -0.000572 | 131 | 0.133252 | 96 |
| VR32 | 0.195892 | 89 | 0.094111 | 93 | 0.21331 | 75 |
| VR33 | 0.279536 | 61 | -0.155851 | 193 | 0.239195 | 60 |
| VR34 | -0.005596 | 173 | -0.07973 | 176 | -0.010142 | 173 |
| VR35 | 0.379934 | 25 | 0.32507 | 23 | 0.32507 | 27 |
| VR36 | -0.05172 | 183 | 0.008072 | 124 | -0.130612 | 202 |
| VR37 | 0.184598 | 99 | 0.06881 | 104 | 0.191793 | 79 |
| VR38 | -0.14704 | 210 | -0.24925 | 217 | -0.164679 | 220 |
| VR39 | -0.149352 | 219 | -0.155851 | 193 | 0.070729 | 133 |
| VR40 | 0.163783 | 107 | 0.106309 | 91 | 0.159673 | 89 |
| VR41 | 0.126665 | 119 | -0.000572 | 131 | 0.133252 | 96 |
| VR42 | -0.072651 | 194 | -0.24925 | 217 | -0.079571 | 186 |
| VR43 | 0.078316 | 131 | 0.014126 | 118 | 0.014126 | 157 |
| VR44 | 0.309457 | 55 | 0.127636 | 84 | 0.276007 | 46 |
| VR45 | 0.360064 | 40 | 0.218567 | 49 | 0.316605 | 29 |
| VR46 | 0.238963 | 80 | 0.194821 | 58 | 0.194821 | 76 |
| VR47 | 0.465015 | 8 | 0.482826 | 4 | 0.482826 | 6 |
| VR48 | -0.14704 | 210 | -0.24925 | 217 | -0.164679 | 220 |
| VR49 | -0.072651 | 194 | -0.24925 | 217 | -0.079571 | 186 |
| VR50 | 0.054009 | 148 | 0.046851 | 114 | 0.046851 | 146 |
| VR51 | 0.061525 | 145 | -0.005596 | 139 | 0.126665 | 106 |
| VR52 | -0.14704 | 210 | -0.24925 | 217 | -0.164679 | 220 |
| VR53 | -0.32838 | 280 | -0.228857 | 206 | -0.247035 | 247 |
| VR54 | -0.240808 | 250 | -0.24925 | 217 | -0.164679 | 220 |
| VR55 | -0.05321 | 184 | -0.1389 | 180 | 0.008072 | 161 |
| VR56 | -0.149352 | 219 | -0.33734 | 250 | -0.155851 | 209 |
| VR57 | -0.151289 | 229 | -0.073248 | 172 | -0.158754 | 219 |
| VR58 | -0.064433 | 189 | -0.247035 | 214 | -0.155851 | 209 |
| VR59 | 0.009207 | 164 | -0.149352 | 192 | -0.064433 | 177 |
| VR60 | 0.139085 | 112 | -0.231083 | 209 | 0.078316 | 125 |
| VR61 | -0.32838 | 280 | -0.33734 | 250 | -0.33734 | 271 |
| VR62 | 0.073623 | 135 | -0.073802 | 173 | 0.06786 | 137 |
| VR63 | -0.015776 | 175 | -0.02139 | 141 | -0.100572 | 197 |
| VR64 | -0.072651 | 194 | -0.24925 | 217 | -0.079571 | 186 |
| VR65 | 0.360692 | 39 | 0.360692 | 13 | 0.39699 | 13 |
| VR66 | -0.240808 | 250 | -0.24925 | 217 | -0.36883 | 275 |
| VR67 | 0.188102 | 92 | 0.132984 | 75 | 0.132984 | 100 |
| VR68 | 0.129269 | 116 | -0.155851 | 193 | 0.070729 | 133 |
| VR69 | -0.228857 | 242 | -0.155851 | 193 | -0.247035 | 247 |
| VR70 | 0.180021 | 100 | -0.058042 | 160 | 0.238066 | 67 |
| VR71 | 0.288297 | 57 | 0.377745 | 12 | 0.30785 | 31 |
| VR72 | -0.240808 | 250 | -0.24925 | 217 | -0.36883 | 275 |
| VR73 | 0.017897 | 160 | -0.066946 | 162 | 0.001538 | 165 |
| VR74 | -0.208595 | 231 | -0.214075 | 203 | -0.214075 | 230 |
| VR75 | 0.191793 | 90 | 0.064082 | 109 | 0.133252 | 96 |
| VR76 | 0.127038 | 118 | -0.07201 | 166 | -0.07201 | 184 |
| VR77 | 0.188102 | 92 | 0.132984 | 75 | 0.132984 | 100 |
| VR78 | 0.352101 | 44 | 0.214307 | 51 | 0.171294 | 85 |
| VR79 | 0.33441 | 48 | 0.258966 | 41 | 0.35533 | 25 |
| VR80 | 0.186258 | 96 | 0.129269 | 81 | 0.129269 | 104 |
| VR81 | 0.310251 | 52 | 0.114789 | 86 | 0.272782 | 47 |
| VR82 | 0.013153 | 163 | -0.058042 | 160 | 0.008072 | 161 |
| VR83 | -0.228857 | 242 | -0.33734 | 250 | -0.247035 | 247 |
| VR84 | -0.305836 | 262 | -0.425087 | 269 | -0.231083 | 233 |
| VR85 | 0.277132 | 66 | 0.163783 | 70 | 0.27259 | 51 |
| VR86 | 0.276528 | 67 | 0.191793 | 60 | 0.126665 | 106 |
| VR87 | 0.261326 | 73 | 0.155817 | 72 | 0.21897 | 72 |
| VR88 | 0.188102 | 92 | 0.132984 | 75 | 0.132984 | 100 |
| VR89 | 0.105552 | 123 | -0.02139 | 141 | 0.114789 | 112 |
| VR90 | -0.14704 | 210 | -0.24925 | 217 | -0.164679 | 220 |
| VR91 | -0.305836 | 262 | -0.425087 | 269 | -0.327956 | 257 |
| VR92 | -0.240808 | 250 | -0.24925 | 217 | -0.36883 | 275 |
| VR93 | 0.469215 | 7 | 0.486764 | 3 | 0.486764 | 5 |
| VR94 | 0.426166 | 14 | 0.391824 | 11 | 0.469824 | 7 |
| VR95 | 0.046851 | 150 | -0.02139 | 141 | 0.043972 | 148 |
| VR96 | 0.288297 | 57 | 0.264536 | 35 | 0.30785 | 31 |
| VR97 | 0.068315 | 139 | 0.001663 | 127 | 0.063557 | 141 |
| VR98 | -0.150672 | 226 | -0.14704 | 189 | -0.14704 | 205 |
| VR99 | 0.186258 | 96 | 0.129269 | 81 | 0.129269 | 104 |
| VR100 | 0.353613 | 43 | 0.310251 | 26 | 0.310251 | 30 |
| VR101 | 0.006556 | 166 | -0.164679 | 201 | -0.079571 | 186 |
| VR102 | -0.415233 | 291 | -0.425087 | 269 | -0.425087 | 285 |
| VR103 | -0.305836 | 262 | -0.425087 | 269 | -0.327956 | 257 |
| VR104 | 0.017897 | 160 | -0.066946 | 162 | 0.001538 | 165 |
| VR105 | 0.203193 | 87 | -0.052292 | 159 | 0.088166 | 124 |
| VR106 | -0.015776 | 175 | -0.02139 | 141 | -0.02139 | 175 |
| VR107 | 0.098292 | 129 | 0.094111 | 93 | 0.094111 | 122 |
| VR108 | -0.14704 | 210 | -0.24925 | 217 | -0.164679 | 220 |
| VR109 | 0.172385 | 102 | 0.043972 | 117 | 0.114789 | 112 |
| VR110 | 0.279536 | 61 | 0.239195 | 44 | 0.239195 | 60 |
| VR111 | -0.058042 | 185 | -0.1389 | 180 | -0.064842 | 179 |
| VR112 | -0.015776 | 175 | -0.02139 | 141 | -0.100572 | 197 |
| VR113 | 0.046851 | 150 | 0.167456 | 62 | 0.043972 | 148 |
| VR114 | -0.150672 | 226 | 0.06881 | 104 | -0.14704 | 205 |
| VR115 | -0.415233 | 291 | -0.1389 | 180 | -0.425087 | 285 |
| VR116 | 0.046851 | 150 | 0.167456 | 62 | 0.114789 | 112 |
| VR117 | 0.279536 | 61 | 0.071259 | 99 | 0.239195 | 60 |
| VR118 | 0.066622 | 143 | 0.055009 | 111 | -0.000295 | 169 |
| VR119 | 0.001538 | 170 | -0.14704 | 189 | 0.006556 | 163 |
| VR120 | 0.288297 | 57 | 0.264536 | 35 | 0.264536 | 54 |
| VR121 | 0.227345 | 82 | -0.000572 | 131 | 0.289745 | 39 |
| VR122 | 0.000652 | 172 | -0.005596 | 139 | 0.126665 | 106 |
| VR123 | -0.22061 | 234 | -0.425087 | 269 | -0.231083 | 233 |
| VR124 | 0.206411 | 86 | 0.013153 | 122 | 0.136885 | 92 |
| VR125 | 0.482408 | 6 | 0.360692 | 13 | 0.442818 | 11 |
| VR126 | 0.371885 | 32 | 0.092298 | 96 | 0.14863 | 91 |
| VR127 | 0.337076 | 47 | 0.252637 | 42 | 0.218567 | 73 |
| VR128 | 0.055009 | 147 | -0.1389 | 180 | 0.057382 | 144 |
| VR129 | -0.305836 | 262 | -0.1389 | 180 | -0.327956 | 257 |
| VR130 | 0.356714 | 41 | 0.013739 | 121 | 0.194821 | 76 |
| VR131 | -0.135662 | 207 | -0.305836 | 245 | -0.130612 | 202 |
| VR132 | 0.06881 | 136 | -0.000572 | 131 | 0.064082 | 138 |
| VR133 | -0.072651 | 194 | -0.24925 | 217 | -0.079571 | 186 |
| VR134 | -0.072651 | 194 | -0.24925 | 217 | -0.079571 | 186 |
| VR135 | 0.365877 | 33 | 0.269508 | 33 | 0.231136 | 68 |
| VR136 | -0.32838 | 280 | -0.33734 | 250 | -0.33734 | 271 |
| VR137 | -0.143254 | 209 | -0.228857 | 206 | -0.149352 | 208 |
| VR138 | -0.32838 | 280 | -0.33734 | 250 | -0.464217 | 287 |
| VR139 | -0.32838 | 280 | -0.33734 | 250 | -0.33734 | 271 |
| VR140 | -0.150672 | 226 | -0.14704 | 189 | -0.14704 | 205 |
| VR141 | 0.382917 | 24 | 0.342148 | 19 | 0.379996 | 18 |
| VR142 | -0.073628 | 202 | -0.07973 | 176 | -0.07973 | 195 |
| VR143 | 0.431553 | 13 | 0.133252 | 74 | 0.290635 | 37 |
| VR144 | 0.241347 | 78 | 0.188102 | 61 | 0.188102 | 80 |
| VR145 | 0.190923 | 91 | 0.063557 | 110 | 0.133424 | 93 |
| VR146 | -0.22061 | 234 | -0.425087 | 269 | -0.231083 | 233 |
| VR147 | -0.305836 | 262 | -0.231083 | 209 | -0.327956 | 257 |
| VR148 | -0.149352 | 219 | -0.33734 | 250 | -0.155851 | 209 |
| VR149 | -0.072651 | 194 | -0.24925 | 217 | -0.079571 | 186 |
| VR150 | -0.32838 | 280 | -0.33734 | 250 | -0.464217 | 287 |
| VR151 | -0.214075 | 233 | -0.305836 | 245 | -0.22061 | 232 |
| VR152 | 0.338101 | 46 | 0.290817 | 27 | 0.32326 | 28 |
| VR153 | 0.379236 | 26 | 0.40453 | 9 | 0.40453 | 12 |
| VR154 | 0.269094 | 70 | 0.001663 | 127 | 0.133424 | 93 |
| VR155 | 0.164382 | 106 | 0.046851 | 114 | 0.172385 | 84 |
| VR156 | 0.078316 | 131 | 0.014126 | 118 | 0.014126 | 157 |
| VR157 | 0.078316 | 131 | -0.231083 | 209 | 0.014126 | 157 |
| VR158 | 0.422933 | 15 | 0.396739 | 10 | 0.396739 | 15 |
| VR159 | -0.058042 | 185 | -0.1389 | 180 | -0.064842 | 179 |
| VR160 | -0.005596 | 173 | -0.07973 | 176 | -0.010142 | 173 |
| VR161 | -0.058042 | 185 | -0.1389 | 180 | -0.064842 | 179 |
| VR162 | 0.209998 | 85 | 0.272933 | 31 | 0.214184 | 74 |
| VR163 | -0.32838 | 280 | -0.33734 | 250 | -0.464217 | 287 |
| VR164 | -0.305836 | 262 | -0.425087 | 269 | -0.327956 | 257 |
| VR165 | 0.068315 | 139 | 0.001663 | 127 | 0.063557 | 141 |
| VR166 | -0.415233 | 291 | -0.425087 | 269 | -0.564717 | 293 |
| VR167 | -0.072651 | 194 | -0.24925 | 217 | -0.079571 | 186 |
| VR168 | 0.152411 | 109 | 0.102211 | 92 | 0.157248 | 90 |
| VR169 | 0.001663 | 168 | 0.071259 | 99 | -0.002902 | 172 |
| VR170 | 0.001538 | 170 | 0.006556 | 125 | 0.006556 | 163 |
| VR171 | 0.396056 | 21 | 0.322077 | 25 | 0.266858 | 53 |
| VR172 | 0.139085 | 112 | 0.078316 | 98 | 0.078316 | 125 |
| VR173 | 0.250201 | 76 | 0.131112 | 78 | 0.245531 | 59 |
| VR174 | -0.015776 | 175 | -0.02139 | 141 | -0.100572 | 197 |
| VR175 | 0.422933 | 15 | 0.276996 | 30 | 0.396739 | 15 |
| VR176 | 0.37483 | 30 | 0.167456 | 62 | 0.276996 | 41 |
| VR177 | 0.260942 | 74 | 0.167456 | 62 | 0.276996 | 41 |
| VR178 | 0.129269 | 116 | 0.070729 | 103 | 0.070729 | 133 |
| VR179 | 0.279536 | 61 | 0.239195 | 44 | 0.239195 | 60 |
| VR180 | 0.046851 | 150 | -0.02139 | 141 | 0.114789 | 112 |
| VR181 | 0.106309 | 122 | 0.051311 | 112 | 0.10995 | 120 |
| VR182 | 0.377745 | 28 | 0.214307 | 51 | 0.260942 | 55 |
| VR183 | 0.225938 | 83 | 0.214307 | 51 | 0.260942 | 55 |
| VR184 | 0.054009 | 148 | 0.046851 | 114 | 0.046851 | 146 |
| VR185 | 0.105552 | 123 | -0.02139 | 141 | 0.114789 | 112 |
| VR186 | 0.046851 | 150 | -0.02139 | 141 | 0.043972 | 148 |
| VR187 | -0.32838 | 280 | -0.33734 | 250 | -0.464217 | 287 |
| VR188 | -0.240808 | 250 | -0.24925 | 217 | -0.36883 | 275 |
| VR189 | 0.464918 | 10 | 0.430736 | 8 | 0.503466 | 4 |
| VR190 | -0.415233 | 291 | -0.425087 | 269 | -0.564717 | 293 |
| VR191 | -0.14704 | 210 | -0.24925 | 217 | -0.164679 | 220 |
| VR192 | -0.305836 | 262 | -0.425087 | 269 | -0.327956 | 257 |
| VR193 | -0.32838 | 280 | -0.33734 | 250 | -0.33734 | 271 |
| VR194 | 0.007821 | 165 | 0.001663 | 127 | -0.065945 | 183 |
| VR195 | -0.22061 | 234 | -0.425087 | 269 | -0.231083 | 233 |
| VR196 | 0.308098 | 56 | 0.199802 | 57 | 0.303745 | 34 |
| VR197 | 0.389648 | 22 | 0.071259 | 99 | 0.239195 | 60 |
| VR198 | -0.305836 | 262 | -0.425087 | 269 | -0.327956 | 257 |
| VR199 | -0.14704 | 210 | -0.24925 | 217 | -0.164679 | 220 |
| VR200 | 0.200886 | 88 | 0.131112 | 78 | 0.184598 | 82 |
| VR201 | 0.104142 | 128 | 0.049175 | 113 | 0.107908 | 121 |
| VR202 | 0.37483 | 30 | 0.167456 | 62 | 0.276996 | 41 |
| VR203 | -0.149352 | 219 | -0.155851 | 193 | 0.070729 | 133 |
| VR204 | -0.015776 | 175 | -0.02139 | 141 | -0.02139 | 175 |
| VR205 | -0.415233 | 291 | -0.425087 | 269 | -0.564717 | 293 |
| VR206 | 0.491209 | 4 | 0.464918 | 6 | 0.445894 | 10 |
| VR207 | -0.14704 | 210 | -0.24925 | 217 | -0.164679 | 220 |
| VR208 | -0.228857 | 242 | -0.33734 | 250 | -0.247035 | 247 |
| VR209 | -0.415233 | 291 | -0.425087 | 269 | -0.564717 | 293 |
| VR210 | -0.305836 | 262 | -0.425087 | 269 | -0.327956 | 257 |
| VR211 | -0.228857 | 242 | -0.155851 | 193 | -0.247035 | 247 |
| VR212 | 0.046851 | 150 | -0.02139 | 141 | 0.043972 | 148 |
| VR213 | -0.240808 | 250 | -0.24925 | 217 | -0.36883 | 275 |
| VR214 | 0.081113 | 130 | -0.066946 | 162 | 0.075446 | 128 |
| VR215 | 0.406214 | 18 | 0.353613 | 17 | 0.353613 | 26 |
| VR216 | 0.186258 | 96 | 0.129269 | 81 | -0.064433 | 177 |
| VR217 | 0.287752 | 60 | 0.194427 | 59 | 0.298398 | 35 |
| VR218 | 0.171294 | 103 | 0.167456 | 62 | 0.113552 | 119 |
| VR219 | 0.403641 | 20 | 0.325966 | 22 | 0.296614 | 36 |
| VR220 | -0.240808 | 250 | -0.24925 | 217 | -0.36883 | 275 |
| VR221 | 0.548557 | 2 | 0.522165 | 2 | 0.583051 | 1 |
| VR222 | -0.228857 | 242 | -0.33734 | 250 | -0.247035 | 247 |
| VR223 | 0.361952 | 38 | 0.290817 | 27 | 0.382883 | 17 |
| VR224 | 0.246511 | 77 | 0.013153 | 122 | 0.074239 | 129 |
| VR225 | -0.240808 | 250 | -0.24925 | 217 | -0.36883 | 275 |
| VR226 | 0.061525 | 145 | -0.142464 | 188 | 0.056734 | 145 |
| VR227 | -0.305836 | 262 | -0.425087 | 269 | -0.327956 | 257 |
| VR228 | 0.379236 | 26 | 0.345244 | 18 | 0.379236 | 19 |
| VR229 | -0.415233 | 291 | -0.425087 | 269 | -0.564717 | 293 |
| VR230 | 0.279536 | 61 | 0.239195 | 44 | 0.239195 | 60 |
| VR231 | 0.231738 | 81 | 0.110066 | 90 | 0.226943 | 69 |
| VR232 | 0.509882 | 3 | 0.245531 | 43 | 0.371102 | 21 |
| VR233 | -0.22061 | 234 | -0.425087 | 269 | -0.231083 | 233 |
| VR234 | 0.017897 | 160 | -0.066946 | 162 | 0.001538 | 165 |
| VR235 | 0.465015 | 8 | 0.436536 | 7 | 0.465015 | 8 |
| VR236 | -0.240808 | 250 | -0.24925 | 217 | -0.24925 | 255 |
| VR237 | 0.219301 | 84 | 0.092298 | 96 | 0.030548 | 156 |
| VR238 | -0.228857 | 242 | -0.33734 | 250 | -0.247035 | 247 |
| VR239 | 0.131112 | 114 | 0.06881 | 104 | 0.126665 | 106 |
| VR240 | -0.240808 | 250 | -0.24925 | 217 | -0.24925 | 255 |
| VR241 | 0.264536 | 72 | 0.214307 | 51 | 0.260942 | 55 |
| VR242 | 0.413532 | 17 | 0.324179 | 24 | 0.288297 | 40 |
| VR243 | -0.32838 | 280 | -0.33734 | 250 | -0.464217 | 287 |
| VR244 | 0.06881 | 136 | -0.000572 | 131 | 0.064082 | 138 |
| VR245 | 0.310251 | 52 | 0.272782 | 32 | 0.272782 | 47 |
| VR246 | 0.40482 | 19 | 0.264536 | 35 | 0.225938 | 70 |
| VR247 | 0.06786 | 142 | -0.22061 | 204 | 0.001051 | 168 |
| VR248 | -0.065945 | 192 | -0.07201 | 166 | -0.157601 | 217 |
| VR249 | -0.232128 | 249 | -0.228857 | 206 | -0.32838 | 270 |
| VR250 | -0.240808 | 250 | -0.24925 | 217 | -0.36883 | 275 |
| VR251 | 0.324179 | 50 | 0.264536 | 35 | 0.30785 | 31 |
| VR252 | -0.305836 | 262 | -0.425087 | 269 | -0.231083 | 233 |
| VR253 | -0.22061 | 234 | -0.425087 | 269 | -0.231083 | 233 |
| VR254 | 0.131112 | 114 | 0.06881 | 104 | 0.126665 | 106 |
| VR255 | 0.457579 | 11 | 0.332181 | 21 | 0.37034 | 22 |
| VR256 | -0.015776 | 175 | -0.02139 | 141 | -0.100572 | 197 |
| VR257 | 0.105552 | 123 | -0.02139 | 141 | 0.114789 | 112 |
| VR258 | -0.078151 | 203 | -0.156871 | 200 | -0.002391 | 171 |
| VR259 | -0.305836 | 262 | -0.425087 | 269 | -0.327956 | 257 |
| VR260 | 0.310251 | 52 | 0.114789 | 86 | 0.272782 | 47 |
| VR261 | -0.240808 | 250 | -0.24925 | 217 | -0.36883 | 275 |
| VR262 | 0.068315 | 139 | 0.133424 | 73 | 0.063557 | 141 |
| VR263 | -0.305836 | 262 | -0.231083 | 209 | -0.327956 | 257 |
| VR264 | 0.046851 | 150 | -0.02139 | 141 | 0.043972 | 148 |
| VR265 | 0.177988 | 101 | 0.166931 | 69 | 0.166931 | 87 |
| VR266 | 0.276528 | 67 | 0.06881 | 104 | 0.126665 | 106 |
| VR267 | -0.149352 | 219 | -0.33734 | 250 | -0.155851 | 209 |
| VR268 | 0.063557 | 144 | -0.07201 | 166 | 0.071259 | 131 |
| VR269 | -0.415233 | 291 | -0.425087 | 269 | -0.564717 | 293 |
| VR270 | -0.015776 | 175 | -0.02139 | 141 | -0.100572 | 197 |
| VR271 | -0.311733 | 279 | -0.305836 | 245 | -0.415233 | 284 |
| VR272 | 0.105552 | 123 | 0.114789 | 86 | 0.114789 | 112 |
| VR273 | -0.046232 | 182 | -0.228853 | 205 | -0.136685 | 204 |
| VR274 | 0.482826 | 5 | 0.482826 | 4 | 0.511385 | 3 |
| VR275 | 0.126665 | 119 | -0.000572 | 131 | 0.133252 | 96 |
| VR276 | 0.389648 | 22 | 0.071259 | 99 | 0.239195 | 60 |
| VR277 | 0.241347 | 78 | 0.006556 | 125 | 0.188102 | 80 |
| VR278 | -0.065945 | 192 | -0.07201 | 166 | -0.157601 | 217 |
| VR279 | -0.305836 | 262 | -0.425087 | 269 | -0.327956 | 257 |
| VR280 | 0.147887 | 110 | 0.131112 | 78 | 0.074148 | 130 |
| VR281 | 0.569452 | 1 | 0.581347 | 1 | 0.569452 | 2 |
| VR282 | 0.365877 | 33 | 0.269508 | 33 | 0.269508 | 52 |
| VR283 | 0.364065 | 35 | 0.264536 | 35 | 0.360064 | 23 |
| VR284 | 0.364065 | 35 | 0.264536 | 35 | 0.360064 | 23 |
| VR285 | -0.415233 | 291 | -0.425087 | 269 | -0.564717 | 293 |
| VR286 | 0.16105 | 108 | 0.209246 | 55 | 0.16105 | 88 |
| VR287 | 0.046851 | 150 | -0.02139 | 141 | 0.043972 | 148 |
| VR288 | 0.364065 | 35 | 0.360064 | 16 | 0.458179 | 9 |
| VR289 | -0.15995 | 230 | -0.166556 | 202 | -0.091334 | 196 |
| VR290 | -0.305836 | 262 | -0.425087 | 269 | -0.327956 | 257 |
| VR291 | -0.32838 | 280 | -0.33734 | 250 | -0.464217 | 287 |
| VR292 | 0.328595 | 49 | 0.290635 | 29 | 0.290635 | 37 |
| VR293 | -0.22061 | 234 | -0.425087 | 269 | -0.231083 | 233 |
| VR294 | -0.149352 | 219 | -0.33734 | 250 | -0.155851 | 209 |
| VR295 | -0.22061 | 234 | -0.425087 | 269 | -0.231083 | 233 |
| VR296 | -0.14704 | 210 | -0.24925 | 217 | -0.164679 | 220 |
| VR297 | 0.345244 | 45 | 0.200886 | 56 | 0.250201 | 58 |
| VR298 | -0.072651 | 194 | -0.079571 | 174 | -0.079571 | 186 |
| VR299 | 0.046851 | 150 | -0.02139 | 141 | 0.043972 | 148 |
| VR300 | 0.046851 | 150 | -0.02139 | 141 | 0.043972 | 148 |
| q = 5 | ||||||
| Alternatives | Expert 1 | Expert 2 | Expert 3 | |||
| Score | final rank | Score | final rank | Score | final rank | |
| VR1 | -0.045117 | 205 | -0.205559 | 248 | -0.128103 | 233 |
| VR2 | 0.18326 | 86 | 0.104189 | 91 | 0.155117 | 81 |
| VR3 | 0.116648 | 117 | 0.079693 | 100 | 0.079693 | 132 |
| VR4 | -0.011278 | 189 | -0.156481 | 214 | -0.083244 | 210 |
| VR5 | -0.028273 | 202 | -0.13111 | 213 | -0.015679 | 179 |
| VR6 | 0.117504 | 116 | 0.090003 | 97 | 0.090003 | 129 |
| VR7 | -0.113159 | 234 | -0.276722 | 269 | -0.128103 | 233 |
| VR8 | -0.076365 | 220 | -0.220682 | 250 | -0.083244 | 210 |
| VR9 | 0.098267 | 127 | 0.115263 | 80 | 0.242009 | 33 |
| VR10 | -0.165607 | 262 | -0.276722 | 269 | -0.128103 | 233 |
| VR11 | 0.283182 | 33 | 0.260493 | 20 | 0.279962 | 21 |
| VR12 | 0.190947 | 81 | 0.141684 | 65 | 0.21817 | 43 |
| VR13 | 0.06745 | 139 | 0.021789 | 131 | 0.061079 | 145 |
| VR14 | 0.02265 | 175 | -0.026943 | 168 | 0.073968 | 137 |
| VR15 | 0.148018 | 102 | 0.176732 | 51 | 0.153108 | 82 |
| VR16 | -0.045117 | 205 | -0.205559 | 248 | -0.128103 | 233 |
| VR17 | -0.011278 | 189 | -0.156481 | 214 | -0.083244 | 210 |
| VR18 | 0.293071 | 29 | 0.206362 | 38 | 0.186869 | 68 |
| VR19 | 0.177801 | 89 | -0.029896 | 174 | 0.148164 | 86 |
| VR20 | 0.236851 | 54 | 0.170219 | 52 | 0.21817 | 43 |
| VR21 | 0.029819 | 166 | 0.021789 | 131 | 0.021789 | 167 |
| VR22 | -0.257096 | 291 | -0.276722 | 269 | -0.424756 | 293 |
| VR23 | -0.165607 | 262 | -0.276722 | 269 | -0.128103 | 233 |
| VR24 | 0.349438 | 10 | 0.27693 | 15 | 0.295287 | 17 |
| VR25 | -0.091507 | 231 | -0.276722 | 269 | -0.104831 | 230 |
| VR26 | 0.117826 | 115 | 0.091169 | 96 | 0.121587 | 97 |
| VR27 | -0.005647 | 185 | -0.062741 | 180 | -0.017166 | 180 |
| VR28 | 0.199749 | 73 | -0.026943 | 168 | 0.111207 | 113 |
| VR29 | -0.124389 | 242 | -0.083244 | 193 | -0.156481 | 247 |
| VR30 | -0.058836 | 207 | -0.045117 | 179 | 0.116648 | 103 |
| VR31 | 0.099213 | 124 | 0.021789 | 131 | 0.117173 | 99 |
| VR32 | 0.143856 | 106 | 0.090003 | 97 | 0.171722 | 79 |
| VR33 | 0.223904 | 60 | -0.083244 | 193 | 0.206843 | 51 |
| VR34 | 0.011994 | 180 | -0.038555 | 176 | 0.003958 | 175 |
| VR35 | 0.298077 | 28 | 0.248936 | 23 | 0.248936 | 29 |
| VR36 | 0.004864 | 183 | 0.030457 | 126 | -0.045117 | 201 |
| VR37 | 0.133237 | 110 | 0.06745 | 108 | 0.151473 | 83 |
| VR38 | -0.070479 | 211 | -0.159064 | 217 | -0.099202 | 220 |
| VR39 | -0.076365 | 220 | -0.083244 | 193 | 0.106865 | 117 |
| VR40 | 0.108702 | 121 | 0.076582 | 103 | 0.104189 | 121 |
| VR41 | 0.099213 | 124 | 0.021789 | 131 | 0.117173 | 99 |
| VR42 | -0.025486 | 194 | -0.159064 | 217 | -0.029896 | 186 |
| VR43 | 0.116648 | 117 | 0.079693 | 100 | 0.079693 | 132 |
| VR44 | 0.236583 | 55 | 0.110257 | 85 | 0.224809 | 41 |
| VR45 | 0.261982 | 46 | 0.170219 | 52 | 0.236851 | 38 |
| VR46 | 0.206362 | 72 | 0.186869 | 47 | 0.186869 | 68 |
| VR47 | 0.361265 | 8 | 0.365367 | 4 | 0.365367 | 7 |
| VR48 | -0.070479 | 211 | -0.159064 | 217 | -0.099202 | 220 |
| VR49 | -0.025486 | 194 | -0.159064 | 217 | -0.029896 | 186 |
| VR50 | 0.071981 | 136 | 0.066122 | 113 | 0.066122 | 143 |
| VR51 | 0.051678 | 161 | 0.011994 | 157 | 0.099213 | 123 |
| VR52 | -0.070479 | 211 | -0.159064 | 217 | -0.099202 | 220 |
| VR53 | -0.203683 | 280 | -0.124389 | 205 | -0.156481 | 247 |
| VR54 | -0.143429 | 250 | -0.159064 | 217 | -0.099202 | 220 |
| VR55 | -0.001789 | 184 | -0.062741 | 180 | 0.030457 | 164 |
| VR56 | -0.076365 | 220 | -0.220682 | 250 | -0.083244 | 210 |
| VR57 | -0.067341 | 209 | -0.015679 | 162 | -0.081445 | 209 |
| VR58 | -0.011278 | 189 | -0.156481 | 214 | -0.083244 | 210 |
| VR59 | 0.034825 | 165 | -0.076365 | 192 | -0.011278 | 177 |
| VR60 | 0.149894 | 100 | -0.128103 | 208 | 0.116648 | 103 |
| VR61 | -0.203683 | 280 | -0.220682 | 250 | -0.220682 | 271 |
| VR62 | 0.079921 | 134 | -0.021987 | 167 | 0.070529 | 140 |
| VR63 | 0.027261 | 168 | 0.018966 | 139 | -0.043342 | 196 |
| VR64 | -0.025486 | 194 | -0.159064 | 217 | -0.029896 | 186 |
| VR65 | 0.27693 | 40 | 0.27693 | 15 | 0.295287 | 17 |
| VR66 | -0.143429 | 250 | -0.159064 | 217 | -0.276918 | 278 |
| VR67 | 0.177801 | 89 | 0.148164 | 61 | 0.148164 | 86 |
| VR68 | 0.139032 | 107 | -0.083244 | 193 | 0.106865 | 117 |
| VR69 | -0.124389 | 242 | -0.083244 | 193 | -0.156481 | 247 |
| VR70 | 0.157921 | 97 | -0.005647 | 160 | 0.201753 | 59 |
| VR71 | 0.233374 | 56 | 0.283182 | 13 | 0.217839 | 48 |
| VR72 | -0.143429 | 250 | -0.159064 | 217 | -0.276918 | 278 |
| VR73 | 0.052943 | 158 | -0.018312 | 163 | 0.021465 | 168 |
| VR74 | -0.091507 | 231 | -0.104831 | 203 | -0.104831 | 230 |
| VR75 | 0.151473 | 98 | 0.061079 | 116 | 0.117173 | 99 |
| VR76 | 0.1288 | 113 | -0.026943 | 168 | -0.026943 | 185 |
| VR77 | 0.177801 | 89 | 0.148164 | 61 | 0.148164 | 86 |
| VR78 | 0.274982 | 41 | 0.166361 | 54 | 0.145998 | 90 |
| VR79 | 0.244373 | 53 | 0.211042 | 33 | 0.276735 | 23 |
| VR80 | 0.170391 | 93 | 0.139032 | 72 | 0.139032 | 92 |
| VR81 | 0.258237 | 48 | 0.115263 | 80 | 0.242009 | 33 |
| VR82 | 0.036275 | 164 | -0.005647 | 160 | 0.030457 | 164 |
| VR83 | -0.124389 | 242 | -0.220682 | 250 | -0.156481 | 247 |
| VR84 | -0.165607 | 262 | -0.276722 | 269 | -0.128103 | 233 |
| VR85 | 0.191289 | 79 | 0.108702 | 86 | 0.18326 | 71 |
| VR86 | 0.213094 | 67 | 0.151473 | 60 | 0.099213 | 123 |
| VR87 | 0.193072 | 78 | 0.121559 | 75 | 0.172442 | 78 |
| VR88 | 0.177801 | 89 | 0.148164 | 61 | 0.148164 | 86 |
| VR89 | 0.098267 | 127 | 0.018966 | 139 | 0.115263 | 106 |
| VR90 | -0.070479 | 211 | -0.159064 | 217 | -0.099202 | 220 |
| VR91 | -0.165607 | 262 | -0.276722 | 269 | -0.205559 | 258 |
| VR92 | -0.143429 | 250 | -0.159064 | 217 | -0.276918 | 278 |
| VR93 | 0.378715 | 5 | 0.382379 | 3 | 0.382379 | 3 |
| VR94 | 0.344822 | 12 | 0.327954 | 8 | 0.381198 | 4 |
| VR95 | 0.066122 | 142 | 0.018966 | 139 | 0.058895 | 148 |
| VR96 | 0.233374 | 56 | 0.194971 | 41 | 0.217839 | 48 |
| VR97 | 0.061795 | 153 | 0.02265 | 127 | 0.056349 | 156 |
| VR98 | -0.077168 | 227 | -0.070479 | 189 | -0.070479 | 205 |
| VR99 | 0.170391 | 93 | 0.139032 | 72 | 0.139032 | 92 |
| VR100 | 0.282139 | 35 | 0.258237 | 21 | 0.258237 | 26 |
| VR101 | 0.036325 | 163 | -0.099202 | 202 | -0.029896 | 186 |
| VR102 | -0.257096 | 291 | -0.276722 | 269 | -0.276722 | 276 |
| VR103 | -0.165607 | 262 | -0.276722 | 269 | -0.205559 | 258 |
| VR104 | 0.052943 | 158 | -0.018312 | 163 | 0.021465 | 168 |
| VR105 | 0.197166 | 76 | 0.006301 | 159 | 0.101514 | 122 |
| VR106 | 0.027261 | 168 | 0.018966 | 139 | 0.018966 | 171 |
| VR107 | 0.094815 | 132 | 0.090003 | 97 | 0.090003 | 129 |
| VR108 | -0.070479 | 211 | -0.159064 | 217 | -0.099202 | 220 |
| VR109 | 0.150674 | 99 | 0.058895 | 117 | 0.115263 | 106 |
| VR110 | 0.223904 | 60 | 0.206843 | 35 | 0.206843 | 51 |
| VR111 | -0.005647 | 185 | -0.062741 | 180 | -0.017166 | 180 |
| VR112 | 0.027261 | 168 | 0.018966 | 139 | -0.043342 | 196 |
| VR113 | 0.066122 | 142 | 0.141684 | 65 | 0.058895 | 148 |
| VR114 | -0.077168 | 227 | 0.06745 | 108 | -0.070479 | 205 |
| VR115 | -0.257096 | 291 | -0.062741 | 180 | -0.276722 | 276 |
| VR116 | 0.066122 | 142 | 0.141684 | 65 | 0.115263 | 106 |
| VR117 | 0.223904 | 60 | 0.073968 | 104 | 0.206843 | 51 |
| VR118 | 0.065414 | 152 | 0.053807 | 119 | 0.026448 | 166 |
| VR119 | 0.021465 | 177 | -0.070479 | 189 | 0.036325 | 161 |
| VR120 | 0.233374 | 56 | 0.194971 | 41 | 0.194971 | 60 |
| VR121 | 0.185866 | 85 | 0.021789 | 131 | 0.237661 | 37 |
| VR122 | 0.017937 | 179 | 0.011994 | 157 | 0.099213 | 123 |
| VR123 | -0.113159 | 234 | -0.276722 | 269 | -0.128103 | 233 |
| VR124 | 0.197653 | 75 | 0.036275 | 124 | 0.139971 | 91 |
| VR125 | 0.365202 | 7 | 0.27693 | 15 | 0.334469 | 11 |
| VR126 | 0.316446 | 21 | 0.101819 | 93 | 0.131657 | 95 |
| VR127 | 0.260493 | 47 | 0.186115 | 48 | 0.170219 | 80 |
| VR128 | 0.053807 | 157 | -0.062741 | 180 | 0.05513 | 159 |
| VR129 | -0.165607 | 262 | -0.062741 | 180 | -0.205559 | 258 |
| VR130 | 0.293071 | 29 | 0.044392 | 121 | 0.186869 | 68 |
| VR131 | -0.058836 | 207 | -0.165607 | 245 | -0.045117 | 201 |
| VR132 | 0.06745 | 139 | 0.021789 | 131 | 0.061079 | 145 |
| VR133 | -0.025486 | 194 | -0.159064 | 217 | -0.029896 | 186 |
| VR134 | -0.025486 | 194 | -0.159064 | 217 | -0.029896 | 186 |
| VR135 | 0.302294 | 24 | 0.20501 | 39 | 0.188759 | 66 |
| VR136 | -0.203683 | 280 | -0.220682 | 250 | -0.220682 | 271 |
| VR137 | -0.068716 | 210 | -0.124389 | 205 | -0.076365 | 208 |
| VR138 | -0.203683 | 280 | -0.220682 | 250 | -0.348835 | 287 |
| VR139 | -0.203683 | 280 | -0.220682 | 250 | -0.220682 | 271 |
| VR140 | -0.077168 | 227 | -0.070479 | 189 | -0.070479 | 205 |
| VR141 | 0.280577 | 36 | 0.257847 | 22 | 0.277351 | 22 |
| VR142 | -0.029662 | 203 | -0.038555 | 176 | -0.038555 | 195 |
| VR143 | 0.337388 | 15 | 0.117173 | 78 | 0.242382 | 31 |
| VR144 | 0.207455 | 70 | 0.177801 | 50 | 0.177801 | 75 |
| VR145 | 0.144673 | 105 | 0.056349 | 118 | 0.111207 | 113 |
| VR146 | -0.113159 | 234 | -0.276722 | 269 | -0.128103 | 233 |
| VR147 | -0.165607 | 262 | -0.128103 | 208 | -0.205559 | 258 |
| VR148 | -0.076365 | 220 | -0.220682 | 250 | -0.083244 | 210 |
| VR149 | -0.025486 | 194 | -0.159064 | 217 | -0.029896 | 186 |
| VR150 | -0.203683 | 280 | -0.220682 | 250 | -0.348835 | 287 |
| VR151 | -0.104831 | 233 | -0.165607 | 245 | -0.113159 | 232 |
| VR152 | 0.272629 | 42 | 0.245964 | 25 | 0.258173 | 27 |
| VR153 | 0.301614 | 26 | 0.308391 | 11 | 0.308391 | 15 |
| VR154 | 0.199749 | 73 | 0.02265 | 127 | 0.111207 | 113 |
| VR155 | 0.132652 | 111 | 0.066122 | 113 | 0.150674 | 84 |
| VR156 | 0.116648 | 117 | 0.079693 | 100 | 0.079693 | 132 |
| VR157 | 0.116648 | 117 | -0.128103 | 208 | 0.079693 | 132 |
| VR158 | 0.323698 | 18 | 0.314779 | 10 | 0.314779 | 12 |
| VR159 | -0.005647 | 185 | -0.062741 | 180 | -0.017166 | 180 |
| VR160 | 0.011994 | 180 | -0.038555 | 176 | 0.003958 | 175 |
| VR161 | -0.005647 | 185 | -0.062741 | 180 | -0.017166 | 180 |
| VR162 | 0.183046 | 87 | 0.234847 | 29 | 0.188162 | 67 |
| VR163 | -0.203683 | 280 | -0.220682 | 250 | -0.348835 | 287 |
| VR164 | -0.165607 | 262 | -0.276722 | 269 | -0.205559 | 258 |
| VR165 | 0.061795 | 153 | 0.02265 | 127 | 0.056349 | 156 |
| VR166 | -0.257096 | 291 | -0.276722 | 269 | -0.424756 | 293 |
| VR167 | -0.025486 | 194 | -0.159064 | 217 | -0.029896 | 186 |
| VR168 | 0.145041 | 104 | 0.121263 | 76 | 0.149904 | 85 |
| VR169 | 0.02265 | 175 | 0.073968 | 104 | 0.014943 | 174 |
| VR170 | 0.021465 | 177 | 0.036325 | 122 | 0.036325 | 161 |
| VR171 | 0.291195 | 31 | 0.219274 | 31 | 0.172548 | 77 |
| VR172 | 0.149894 | 100 | 0.116648 | 79 | 0.116648 | 103 |
| VR173 | 0.191252 | 80 | 0.104351 | 88 | 0.183083 | 72 |
| VR174 | 0.027261 | 168 | 0.018966 | 139 | -0.043342 | 196 |
| VR175 | 0.323698 | 18 | 0.21817 | 32 | 0.314779 | 12 |
| VR176 | 0.279962 | 37 | 0.141684 | 65 | 0.21817 | 43 |
| VR177 | 0.190947 | 81 | 0.141684 | 65 | 0.21817 | 43 |
| VR178 | 0.139032 | 107 | 0.106865 | 87 | 0.106865 | 117 |
| VR179 | 0.223904 | 60 | 0.206843 | 35 | 0.206843 | 51 |
| VR180 | 0.066122 | 142 | 0.018966 | 139 | 0.115263 | 106 |
| VR181 | 0.076582 | 135 | 0.047665 | 120 | 0.079919 | 131 |
| VR182 | 0.283182 | 33 | 0.166361 | 54 | 0.190947 | 62 |
| VR183 | 0.178353 | 88 | 0.166361 | 54 | 0.190947 | 62 |
| VR184 | 0.071981 | 136 | 0.066122 | 113 | 0.066122 | 143 |
| VR185 | 0.098267 | 127 | 0.018966 | 139 | 0.115263 | 106 |
| VR186 | 0.066122 | 142 | 0.018966 | 139 | 0.058895 | 148 |
| VR187 | -0.203683 | 280 | -0.220682 | 250 | -0.348835 | 287 |
| VR188 | -0.143429 | 250 | -0.159064 | 217 | -0.276918 | 278 |
| VR189 | 0.340684 | 13 | 0.32096 | 9 | 0.374598 | 6 |
| VR190 | -0.257096 | 291 | -0.276722 | 269 | -0.424756 | 293 |
| VR191 | -0.070479 | 211 | -0.159064 | 217 | -0.099202 | 220 |
| VR192 | -0.165607 | 262 | -0.276722 | 269 | -0.205559 | 258 |
| VR193 | -0.203683 | 280 | -0.220682 | 250 | -0.220682 | 271 |
| VR194 | 0.028688 | 167 | 0.02265 | 127 | -0.01822 | 184 |
| VR195 | -0.113159 | 234 | -0.276722 | 269 | -0.128103 | 233 |
| VR196 | 0.227062 | 59 | 0.148164 | 64 | 0.21939 | 42 |
| VR197 | 0.307244 | 22 | 0.073968 | 104 | 0.206843 | 51 |
| VR198 | -0.165607 | 262 | -0.276722 | 269 | -0.205559 | 258 |
| VR199 | -0.070479 | 211 | -0.159064 | 217 | -0.099202 | 220 |
| VR200 | 0.164742 | 96 | 0.104351 | 88 | 0.133237 | 94 |
| VR201 | 0.124616 | 114 | 0.097373 | 95 | 0.12788 | 96 |
| VR202 | 0.279962 | 37 | 0.141684 | 65 | 0.21817 | 43 |
| VR203 | -0.076365 | 220 | -0.083244 | 193 | 0.106865 | 117 |
| VR204 | 0.027261 | 168 | 0.018966 | 139 | 0.018966 | 171 |
| VR205 | -0.257096 | 291 | -0.276722 | 269 | -0.424756 | 293 |
| VR206 | 0.378923 | 4 | 0.340684 | 7 | 0.335853 | 10 |
| VR207 | -0.070479 | 211 | -0.159064 | 217 | -0.099202 | 220 |
| VR208 | -0.124389 | 242 | -0.220682 | 250 | -0.156481 | 247 |
| VR209 | -0.257096 | 291 | -0.276722 | 269 | -0.424756 | 293 |
| VR210 | -0.165607 | 262 | -0.276722 | 269 | -0.205559 | 258 |
| VR211 | -0.124389 | 242 | -0.083244 | 193 | -0.156481 | 247 |
| VR212 | 0.066122 | 142 | 0.018966 | 139 | 0.058895 | 148 |
| VR213 | -0.143429 | 250 | -0.159064 | 217 | -0.276918 | 278 |
| VR214 | 0.08913 | 133 | -0.018312 | 163 | 0.079619 | 136 |
| VR215 | 0.329103 | 17 | 0.282139 | 14 | 0.282139 | 19 |
| VR216 | 0.170391 | 93 | 0.139032 | 72 | -0.011278 | 177 |
| VR217 | 0.209984 | 69 | 0.162202 | 59 | 0.230552 | 40 |
| VR218 | 0.145998 | 103 | 0.141684 | 65 | 0.109484 | 116 |
| VR219 | 0.332446 | 16 | 0.262148 | 18 | 0.253889 | 28 |
| VR220 | -0.143429 | 250 | -0.159064 | 217 | -0.276918 | 278 |
| VR221 | 0.42333 | 2 | 0.409062 | 2 | 0.455195 | 1 |
| VR222 | -0.124389 | 242 | -0.220682 | 250 | -0.156481 | 247 |
| VR223 | 0.277752 | 39 | 0.245964 | 25 | 0.308723 | 14 |
| VR224 | 0.21355 | 66 | 0.036275 | 124 | 0.068862 | 141 |
| VR225 | -0.143429 | 250 | -0.159064 | 217 | -0.276918 | 278 |
| VR226 | 0.051678 | 161 | -0.066124 | 188 | 0.046157 | 160 |
| VR227 | -0.165607 | 262 | -0.276722 | 269 | -0.205559 | 258 |
| VR228 | 0.301614 | 26 | 0.283965 | 12 | 0.301614 | 16 |
| VR229 | -0.257096 | 291 | -0.276722 | 269 | -0.424756 | 293 |
| VR230 | 0.223904 | 60 | 0.206843 | 35 | 0.206843 | 51 |
| VR231 | 0.190792 | 83 | 0.103463 | 92 | 0.182607 | 73 |
| VR232 | 0.398542 | 3 | 0.183083 | 49 | 0.281906 | 20 |
| VR233 | -0.113159 | 234 | -0.276722 | 269 | -0.128103 | 233 |
| VR234 | 0.052943 | 158 | -0.018312 | 163 | 0.021465 | 168 |
| VR235 | 0.361265 | 8 | 0.345999 | 6 | 0.361265 | 8 |
| VR236 | -0.143429 | 250 | -0.159064 | 217 | -0.159064 | 255 |
| VR237 | 0.221105 | 65 | 0.101819 | 93 | 0.068203 | 142 |
| VR238 | -0.124389 | 242 | -0.220682 | 250 | -0.156481 | 247 |
| VR239 | 0.104351 | 122 | 0.06745 | 108 | 0.099213 | 123 |
| VR240 | -0.143429 | 250 | -0.159064 | 217 | -0.159064 | 255 |
| VR241 | 0.194971 | 77 | 0.166361 | 54 | 0.190947 | 62 |
| VR242 | 0.339707 | 14 | 0.248095 | 24 | 0.233374 | 39 |
| VR243 | -0.203683 | 280 | -0.220682 | 250 | -0.348835 | 287 |
| VR244 | 0.06745 | 139 | 0.021789 | 131 | 0.061079 | 145 |
| VR245 | 0.258237 | 48 | 0.242009 | 28 | 0.242009 | 33 |
| VR246 | 0.322477 | 20 | 0.194971 | 41 | 0.178353 | 74 |
| VR247 | 0.070529 | 138 | -0.113159 | 204 | 0.03212 | 163 |
| VR248 | -0.01822 | 192 | -0.026943 | 168 | -0.092478 | 218 |
| VR249 | -0.132675 | 249 | -0.124389 | 205 | -0.203683 | 257 |
| VR250 | -0.143429 | 250 | -0.159064 | 217 | -0.276918 | 278 |
| VR251 | 0.248095 | 52 | 0.194971 | 41 | 0.217839 | 48 |
| VR252 | -0.165607 | 262 | -0.276722 | 269 | -0.128103 | 233 |
| VR253 | -0.113159 | 234 | -0.276722 | 269 | -0.128103 | 233 |
| VR254 | 0.104351 | 122 | 0.06745 | 108 | 0.099213 | 123 |
| VR255 | 0.345619 | 11 | 0.225857 | 30 | 0.246147 | 30 |
| VR256 | 0.027261 | 168 | 0.018966 | 139 | -0.043342 | 196 |
| VR257 | 0.098267 | 127 | 0.018966 | 139 | 0.115263 | 106 |
| VR258 | -0.035619 | 204 | -0.090527 | 200 | 0.017684 | 173 |
| VR259 | -0.165607 | 262 | -0.276722 | 269 | -0.205559 | 258 |
| VR260 | 0.258237 | 48 | 0.115263 | 80 | 0.242009 | 33 |
| VR261 | -0.143429 | 250 | -0.159064 | 217 | -0.276918 | 278 |
| VR262 | 0.061795 | 153 | 0.111207 | 84 | 0.056349 | 156 |
| VR263 | -0.165607 | 262 | -0.128103 | 208 | -0.205559 | 258 |
| VR264 | 0.066122 | 142 | 0.018966 | 139 | 0.058895 | 148 |
| VR265 | 0.130305 | 112 | 0.117826 | 77 | 0.117826 | 98 |
| VR266 | 0.213094 | 67 | 0.06745 | 108 | 0.099213 | 123 |
| VR267 | -0.076365 | 220 | -0.220682 | 250 | -0.083244 | 210 |
| VR268 | 0.056349 | 156 | -0.026943 | 168 | 0.073968 | 137 |
| VR269 | -0.257096 | 291 | -0.276722 | 269 | -0.424756 | 293 |
| VR270 | 0.027261 | 168 | 0.018966 | 139 | -0.043342 | 196 |
| VR271 | -0.178581 | 279 | -0.165607 | 245 | -0.257096 | 275 |
| VR272 | 0.098267 | 127 | 0.115263 | 80 | 0.115263 | 106 |
| VR273 | 0.011477 | 182 | -0.12935 | 212 | -0.063082 | 204 |
| VR274 | 0.365367 | 6 | 0.365367 | 4 | 0.380814 | 5 |
| VR275 | 0.099213 | 124 | 0.021789 | 131 | 0.117173 | 99 |
| VR276 | 0.307244 | 22 | 0.073968 | 104 | 0.206843 | 51 |
| VR277 | 0.207455 | 70 | 0.036325 | 122 | 0.177801 | 75 |
| VR278 | -0.01822 | 192 | -0.026943 | 168 | -0.092478 | 218 |
| VR279 | -0.165607 | 262 | -0.276722 | 269 | -0.205559 | 258 |
| VR280 | 0.137796 | 109 | 0.104351 | 88 | 0.073855 | 139 |
| VR281 | 0.453635 | 1 | 0.455904 | 1 | 0.453635 | 2 |
| VR282 | 0.302294 | 24 | 0.20501 | 39 | 0.20501 | 58 |
| VR283 | 0.269224 | 43 | 0.194971 | 41 | 0.261982 | 24 |
| VR284 | 0.269224 | 43 | 0.194971 | 41 | 0.261982 | 24 |
| VR285 | -0.257096 | 291 | -0.276722 | 269 | -0.424756 | 293 |
| VR286 | 0.188846 | 84 | 0.209235 | 34 | 0.188846 | 65 |
| VR287 | 0.066122 | 142 | 0.018966 | 139 | 0.058895 | 148 |
| VR288 | 0.269224 | 43 | 0.261982 | 19 | 0.343898 | 9 |
| VR289 | -0.082344 | 230 | -0.092089 | 201 | -0.046528 | 203 |
| VR290 | -0.165607 | 262 | -0.276722 | 269 | -0.205559 | 258 |
| VR291 | -0.203683 | 280 | -0.220682 | 250 | -0.348835 | 287 |
| VR292 | 0.25813 | 51 | 0.242382 | 27 | 0.242382 | 31 |
| VR293 | -0.113159 | 234 | -0.276722 | 269 | -0.128103 | 233 |
| VR294 | -0.076365 | 220 | -0.220682 | 250 | -0.083244 | 210 |
| VR295 | -0.113159 | 234 | -0.276722 | 269 | -0.128103 | 233 |
| VR296 | -0.070479 | 211 | -0.159064 | 217 | -0.099202 | 220 |
| VR297 | 0.283965 | 32 | 0.164742 | 58 | 0.191252 | 61 |
| VR298 | -0.025486 | 194 | -0.029896 | 174 | -0.029896 | 186 |
| VR299 | 0.066122 | 142 | 0.018966 | 139 | 0.058895 | 148 |
| VR300 | 0.066122 | 142 | 0.018966 | 139 | 0.058895 | 148 |
| q = 7 | ||||||
| Alternatives | Expert 1 | Expert 2 | Expert 3 | |||
| Score | final rank | Score | final rank | Score | final rank | |
| VR1 | -0.006175 | 194 | -0.12517 | 248 | -0.067522 | 233 |
| VR2 | 0.110879 | 108 | 0.060162 | 101 | 0.097272 | 101 |
| VR3 | 0.112545 | 103 | 0.093842 | 79 | 0.093842 | 103 |
| VR4 | 0.008955 | 189 | -0.096914 | 217 | -0.042656 | 210 |
| VR5 | -0.006762 | 196 | -0.066428 | 208 | 0.008087 | 177 |
| VR6 | 0.082033 | 117 | 0.067481 | 94 | 0.067481 | 126 |
| VR7 | -0.053512 | 234 | -0.177565 | 269 | -0.067522 | 233 |
| VR8 | -0.036637 | 222 | -0.142507 | 250 | -0.042656 | 210 |
| VR9 | 0.072285 | 120 | 0.088602 | 82 | 0.190354 | 27 |
| VR10 | -0.083814 | 250 | -0.177565 | 269 | -0.067522 | 233 |
| VR11 | 0.197748 | 37 | 0.186347 | 23 | 0.195614 | 24 |
| VR12 | 0.124841 | 93 | 0.09949 | 71 | 0.150465 | 54 |
| VR13 | 0.048069 | 151 | 0.019086 | 150 | 0.041485 | 153 |
| VR14 | 0.021653 | 176 | -0.010365 | 171 | 0.05642 | 137 |
| VR15 | 0.1115 | 107 | 0.125416 | 53 | 0.114137 | 87 |
| VR16 | -0.006175 | 194 | -0.12517 | 248 | -0.067522 | 233 |
| VR17 | 0.008955 | 189 | -0.096914 | 217 | -0.042656 | 210 |
| VR18 | 0.22676 | 26 | 0.160027 | 35 | 0.152282 | 49 |
| VR19 | 0.143859 | 77 | -0.009754 | 169 | 0.12957 | 68 |
| VR20 | 0.159429 | 68 | 0.114408 | 59 | 0.150465 | 54 |
| VR21 | 0.026359 | 174 | 0.019086 | 150 | 0.019086 | 172 |
| VR22 | -0.153987 | 291 | -0.177565 | 269 | -0.32457 | 293 |
| VR23 | -0.083814 | 250 | -0.177565 | 269 | -0.067522 | 233 |
| VR24 | 0.265511 | 11 | 0.205076 | 14 | 0.213592 | 17 |
| VR25 | -0.031444 | 211 | -0.177565 | 269 | -0.047129 | 218 |
| VR26 | 0.072211 | 125 | 0.059437 | 102 | 0.074418 | 124 |
| VR27 | 0.009875 | 185 | -0.028156 | 180 | -0.001368 | 180 |
| VR28 | 0.135979 | 81 | -0.010365 | 171 | 0.077449 | 121 |
| VR29 | -0.063665 | 242 | -0.042656 | 193 | -0.096914 | 247 |
| VR30 | -0.022652 | 207 | -0.006175 | 168 | 0.112545 | 88 |
| VR31 | 0.063698 | 130 | 0.019086 | 150 | 0.082724 | 115 |
| VR32 | 0.094346 | 114 | 0.067481 | 94 | 0.12056 | 81 |
| VR33 | 0.166607 | 57 | -0.042656 | 193 | 0.160044 | 41 |
| VR34 | 0.011569 | 182 | -0.021662 | 177 | 0.002985 | 178 |
| VR35 | 0.217985 | 30 | 0.178665 | 27 | 0.178665 | 33 |
| VR36 | 0.021551 | 178 | 0.027754 | 126 | -0.006175 | 185 |
| VR37 | 0.080903 | 118 | 0.048069 | 110 | 0.101769 | 99 |
| VR38 | -0.032113 | 213 | -0.103442 | 220 | -0.061492 | 223 |
| VR39 | -0.036637 | 222 | -0.042656 | 193 | 0.105188 | 94 |
| VR40 | 0.062999 | 133 | 0.047593 | 115 | 0.060162 | 136 |
| VR41 | 0.063698 | 130 | 0.019086 | 150 | 0.082724 | 115 |
| VR42 | -0.006952 | 197 | -0.103442 | 220 | -0.009754 | 187 |
| VR43 | 0.112545 | 103 | 0.093842 | 79 | 0.093842 | 103 |
| VR44 | 0.172306 | 53 | 0.07875 | 90 | 0.168753 | 38 |
| VR45 | 0.172169 | 54 | 0.114408 | 59 | 0.159429 | 48 |
| VR46 | 0.160027 | 67 | 0.152282 | 36 | 0.152282 | 49 |
| VR47 | 0.267577 | 9 | 0.268401 | 4 | 0.268401 | 7 |
| VR48 | -0.032113 | 213 | -0.103442 | 220 | -0.061492 | 223 |
| VR49 | -0.006952 | 197 | -0.103442 | 220 | -0.009754 | 187 |
| VR50 | 0.058036 | 135 | 0.055889 | 107 | 0.055889 | 139 |
| VR51 | 0.032143 | 163 | 0.011569 | 158 | 0.063698 | 128 |
| VR52 | -0.032113 | 213 | -0.103442 | 220 | -0.061492 | 223 |
| VR53 | -0.122682 | 280 | -0.063665 | 205 | -0.096914 | 247 |
| VR54 | -0.085508 | 267 | -0.103442 | 220 | -0.061492 | 223 |
| VR55 | 0.011163 | 184 | -0.028156 | 180 | 0.027754 | 164 |
| VR56 | -0.036637 | 222 | -0.142507 | 250 | -0.042656 | 210 |
| VR57 | -0.025581 | 209 | 0.008087 | 162 | -0.038036 | 209 |
| VR58 | 0.008955 | 189 | -0.096914 | 217 | -0.042656 | 210 |
| VR59 | 0.034091 | 162 | -0.036637 | 192 | 0.008955 | 175 |
| VR60 | 0.128272 | 89 | -0.067522 | 209 | 0.112545 | 88 |
| VR61 | -0.122682 | 280 | -0.142507 | 250 | -0.142507 | 271 |
| VR62 | 0.062735 | 134 | -0.002665 | 167 | 0.053582 | 141 |
| VR63 | 0.031105 | 166 | 0.022797 | 128 | -0.028913 | 200 |
| VR64 | -0.006952 | 197 | -0.103442 | 220 | -0.009754 | 187 |
| VR65 | 0.205076 | 33 | 0.205076 | 14 | 0.213592 | 17 |
| VR66 | -0.085508 | 267 | -0.103442 | 220 | -0.215221 | 278 |
| VR67 | 0.143859 | 77 | 0.12957 | 43 | 0.12957 | 68 |
| VR68 | 0.12096 | 96 | -0.042656 | 193 | 0.105188 | 94 |
| VR69 | -0.063665 | 242 | -0.042656 | 193 | -0.096914 | 247 |
| VR70 | 0.118293 | 100 | 0.009875 | 160 | 0.150548 | 53 |
| VR71 | 0.163709 | 63 | 0.197748 | 18 | 0.138376 | 64 |
| VR72 | -0.085508 | 267 | -0.103442 | 220 | -0.215221 | 278 |
| VR73 | 0.051631 | 148 | -0.001603 | 163 | 0.019105 | 169 |
| VR74 | -0.031444 | 211 | -0.047129 | 200 | -0.047129 | 218 |
| VR75 | 0.101769 | 112 | 0.041485 | 118 | 0.082724 | 115 |
| VR76 | 0.103026 | 110 | -0.010365 | 171 | -0.010365 | 196 |
| VR77 | 0.143859 | 77 | 0.12957 | 43 | 0.12957 | 68 |
| VR78 | 0.195031 | 45 | 0.113047 | 62 | 0.102881 | 98 |
| VR79 | 0.174001 | 52 | 0.160615 | 31 | 0.20324 | 20 |
| VR80 | 0.13586 | 83 | 0.12096 | 55 | 0.12096 | 79 |
| VR81 | 0.197118 | 39 | 0.088602 | 82 | 0.190354 | 27 |
| VR82 | 0.031652 | 165 | 0.009875 | 160 | 0.027754 | 164 |
| VR83 | -0.063665 | 242 | -0.142507 | 250 | -0.096914 | 247 |
| VR84 | -0.083814 | 250 | -0.177565 | 269 | -0.067522 | 233 |
| VR85 | 0.1192 | 99 | 0.062999 | 100 | 0.110879 | 92 |
| VR86 | 0.147716 | 74 | 0.101769 | 70 | 0.063698 | 128 |
| VR87 | 0.128904 | 88 | 0.081012 | 87 | 0.118653 | 83 |
| VR88 | 0.143859 | 77 | 0.12957 | 43 | 0.12957 | 68 |
| VR89 | 0.072285 | 120 | 0.022797 | 128 | 0.088602 | 107 |
| VR90 | -0.032113 | 213 | -0.103442 | 220 | -0.061492 | 223 |
| VR91 | -0.083814 | 250 | -0.177565 | 269 | -0.12517 | 258 |
| VR92 | -0.085508 | 267 | -0.103442 | 220 | -0.215221 | 278 |
| VR93 | 0.29684 | 3 | 0.297454 | 3 | 0.297454 | 4 |
| VR94 | 0.272932 | 7 | 0.265155 | 6 | 0.300952 | 3 |
| VR95 | 0.055889 | 137 | 0.022797 | 128 | 0.046937 | 145 |
| VR96 | 0.163709 | 63 | 0.1275 | 47 | 0.138376 | 64 |
| VR97 | 0.041802 | 156 | 0.021653 | 146 | 0.038175 | 157 |
| VR98 | -0.039938 | 230 | -0.032113 | 189 | -0.032113 | 205 |
| VR99 | 0.13586 | 83 | 0.12096 | 55 | 0.12096 | 79 |
| VR100 | 0.208843 | 32 | 0.197118 | 19 | 0.197118 | 23 |
| VR101 | 0.036947 | 161 | -0.061492 | 204 | -0.009754 | 187 |
| VR102 | -0.153987 | 291 | -0.177565 | 269 | -0.177565 | 276 |
| VR103 | -0.083814 | 250 | -0.177565 | 269 | -0.12517 | 258 |
| VR104 | 0.051631 | 148 | -0.001603 | 163 | 0.019105 | 169 |
| VR105 | 0.163782 | 62 | 0.024337 | 127 | 0.083995 | 114 |
| VR106 | 0.031105 | 166 | 0.022797 | 128 | 0.022797 | 167 |
| VR107 | 0.071122 | 126 | 0.067481 | 94 | 0.067481 | 126 |
| VR108 | -0.032113 | 213 | -0.103442 | 220 | -0.061492 | 223 |
| VR109 | 0.110329 | 109 | 0.046937 | 116 | 0.088602 | 107 |
| VR110 | 0.166607 | 57 | 0.160044 | 32 | 0.160044 | 41 |
| VR111 | 0.009875 | 185 | -0.028156 | 180 | -0.001368 | 180 |
| VR112 | 0.031105 | 166 | 0.022797 | 128 | -0.028913 | 200 |
| VR113 | 0.055889 | 137 | 0.09949 | 71 | 0.046937 | 145 |
| VR114 | -0.039938 | 230 | 0.048069 | 110 | -0.032113 | 205 |
| VR115 | -0.153987 | 291 | -0.028156 | 180 | -0.177565 | 276 |
| VR116 | 0.055889 | 137 | 0.09949 | 71 | 0.088602 | 107 |
| VR117 | 0.166607 | 57 | 0.05642 | 103 | 0.160044 | 41 |
| VR118 | 0.046075 | 155 | 0.038975 | 119 | 0.026455 | 166 |
| VR119 | 0.019105 | 179 | -0.032113 | 189 | 0.036947 | 160 |
| VR120 | 0.163709 | 63 | 0.1275 | 47 | 0.1275 | 72 |
| VR121 | 0.134347 | 87 | 0.019086 | 150 | 0.172005 | 36 |
| VR122 | 0.014226 | 181 | 0.011569 | 158 | 0.063698 | 128 |
| VR123 | -0.053512 | 234 | -0.177565 | 269 | -0.067522 | 233 |
| VR124 | 0.155001 | 71 | 0.031652 | 124 | 0.111027 | 91 |
| VR125 | 0.273161 | 6 | 0.205076 | 14 | 0.243935 | 10 |
| VR126 | 0.252035 | 14 | 0.080538 | 88 | 0.094524 | 102 |
| VR127 | 0.186347 | 47 | 0.122655 | 54 | 0.114408 | 86 |
| VR128 | 0.038975 | 159 | -0.028156 | 180 | 0.039329 | 156 |
| VR129 | -0.083814 | 250 | -0.028156 | 180 | -0.12517 | 258 |
| VR130 | 0.22676 | 26 | 0.042914 | 117 | 0.152282 | 49 |
| VR131 | -0.022652 | 207 | -0.083814 | 214 | -0.006175 | 185 |
| VR132 | 0.048069 | 151 | 0.019086 | 150 | 0.041485 | 153 |
| VR133 | -0.006952 | 197 | -0.103442 | 220 | -0.009754 | 187 |
| VR134 | -0.006952 | 197 | -0.103442 | 220 | -0.009754 | 187 |
| VR135 | 0.231929 | 24 | 0.139746 | 40 | 0.132762 | 67 |
| VR136 | -0.122682 | 280 | -0.142507 | 250 | -0.142507 | 271 |
| VR137 | -0.030907 | 210 | -0.063665 | 205 | -0.036637 | 208 |
| VR138 | -0.122682 | 280 | -0.142507 | 250 | -0.266085 | 287 |
| VR139 | -0.122682 | 280 | -0.142507 | 250 | -0.142507 | 271 |
| VR140 | -0.039938 | 230 | -0.032113 | 189 | -0.032113 | 205 |
| VR141 | 0.196857 | 42 | 0.185743 | 24 | 0.19477 | 26 |
| VR142 | -0.01332 | 205 | -0.021662 | 177 | -0.021662 | 197 |
| VR143 | 0.251498 | 15 | 0.082724 | 86 | 0.181817 | 31 |
| VR144 | 0.158107 | 69 | 0.143859 | 38 | 0.143859 | 60 |
| VR145 | 0.09419 | 115 | 0.038175 | 120 | 0.077449 | 121 |
| VR146 | -0.053512 | 234 | -0.177565 | 269 | -0.067522 | 233 |
| VR147 | -0.083814 | 250 | -0.067522 | 209 | -0.12517 | 258 |
| VR148 | -0.036637 | 222 | -0.142507 | 250 | -0.042656 | 210 |
| VR149 | -0.006952 | 197 | -0.103442 | 220 | -0.009754 | 187 |
| VR150 | -0.122682 | 280 | -0.142507 | 250 | -0.266085 | 287 |
| VR151 | -0.047129 | 233 | -0.083814 | 214 | -0.053512 | 220 |
| VR152 | 0.204208 | 35 | 0.191244 | 20 | 0.19543 | 25 |
| VR153 | 0.223499 | 28 | 0.225006 | 11 | 0.225006 | 15 |
| VR154 | 0.135979 | 81 | 0.021653 | 146 | 0.077449 | 121 |
| VR155 | 0.090155 | 116 | 0.055889 | 107 | 0.110329 | 93 |
| VR156 | 0.112545 | 103 | 0.093842 | 79 | 0.093842 | 103 |
| VR157 | 0.112545 | 103 | -0.067522 | 209 | 0.093842 | 103 |
| VR158 | 0.234962 | 19 | 0.232047 | 10 | 0.232047 | 13 |
| VR159 | 0.009875 | 185 | -0.028156 | 180 | -0.001368 | 180 |
| VR160 | 0.011569 | 182 | -0.021662 | 177 | 0.002985 | 178 |
| VR161 | 0.009875 | 185 | -0.028156 | 180 | -0.001368 | 180 |
| VR162 | 0.144676 | 76 | 0.182427 | 25 | 0.148427 | 59 |
| VR163 | -0.122682 | 280 | -0.142507 | 250 | -0.266085 | 287 |
| VR164 | -0.083814 | 250 | -0.177565 | 269 | -0.12517 | 258 |
| VR165 | 0.041802 | 156 | 0.021653 | 146 | 0.038175 | 157 |
| VR166 | -0.153987 | 291 | -0.177565 | 269 | -0.32457 | 293 |
| VR167 | -0.006952 | 197 | -0.103442 | 220 | -0.009754 | 187 |
| VR168 | 0.122206 | 95 | 0.112617 | 66 | 0.125686 | 75 |
| VR169 | 0.021653 | 176 | 0.05642 | 103 | 0.013643 | 174 |
| VR170 | 0.019105 | 179 | 0.036947 | 121 | 0.036947 | 160 |
| VR171 | 0.200002 | 36 | 0.133451 | 42 | 0.098155 | 100 |
| VR172 | 0.128272 | 89 | 0.112545 | 67 | 0.112545 | 88 |
| VR173 | 0.126144 | 92 | 0.067139 | 97 | 0.117716 | 84 |
| VR174 | 0.031105 | 166 | 0.022797 | 128 | -0.028913 | 200 |
| VR175 | 0.234962 | 19 | 0.150465 | 37 | 0.232047 | 13 |
| VR176 | 0.195614 | 43 | 0.09949 | 71 | 0.150465 | 54 |
| VR177 | 0.124841 | 93 | 0.09949 | 71 | 0.150465 | 54 |
| VR178 | 0.12096 | 96 | 0.105188 | 68 | 0.105188 | 94 |
| VR179 | 0.166607 | 57 | 0.160044 | 32 | 0.160044 | 41 |
| VR180 | 0.055889 | 137 | 0.022797 | 128 | 0.088602 | 107 |
| VR181 | 0.047593 | 154 | 0.033499 | 123 | 0.049313 | 143 |
| VR182 | 0.197748 | 37 | 0.113047 | 62 | 0.124841 | 76 |
| VR183 | 0.120137 | 98 | 0.113047 | 62 | 0.124841 | 76 |
| VR184 | 0.058036 | 135 | 0.055889 | 107 | 0.055889 | 139 |
| VR185 | 0.072285 | 120 | 0.022797 | 128 | 0.088602 | 107 |
| VR186 | 0.055889 | 137 | 0.022797 | 128 | 0.046937 | 145 |
| VR187 | -0.122682 | 280 | -0.142507 | 250 | -0.266085 | 287 |
| VR188 | -0.085508 | 267 | -0.103442 | 220 | -0.215221 | 278 |
| VR189 | 0.242132 | 18 | 0.232048 | 9 | 0.269528 | 6 |
| VR190 | -0.153987 | 291 | -0.177565 | 269 | -0.32457 | 293 |
| VR191 | -0.032113 | 213 | -0.103442 | 220 | -0.061492 | 223 |
| VR192 | -0.083814 | 250 | -0.177565 | 269 | -0.12517 | 258 |
| VR193 | -0.122682 | 280 | -0.142507 | 250 | -0.142507 | 271 |
| VR194 | 0.024535 | 175 | 0.021653 | 146 | -0.002328 | 184 |
| VR195 | -0.053512 | 234 | -0.177565 | 269 | -0.067522 | 233 |
| VR196 | 0.151472 | 72 | 0.09712 | 78 | 0.143445 | 62 |
| VR197 | 0.232225 | 22 | 0.05642 | 103 | 0.160044 | 41 |
| VR198 | -0.083814 | 250 | -0.177565 | 269 | -0.12517 | 258 |
| VR199 | -0.032113 | 213 | -0.103442 | 220 | -0.061492 | 223 |
| VR200 | 0.113594 | 102 | 0.067139 | 97 | 0.080903 | 119 |
| VR201 | 0.114829 | 101 | 0.103486 | 69 | 0.117406 | 85 |
| VR202 | 0.195614 | 43 | 0.09949 | 71 | 0.150465 | 54 |
| VR203 | -0.036637 | 222 | -0.042656 | 193 | 0.105188 | 94 |
| VR204 | 0.031105 | 166 | 0.022797 | 128 | 0.022797 | 167 |
| VR205 | -0.153987 | 291 | -0.177565 | 269 | -0.32457 | 293 |
| VR206 | 0.277131 | 5 | 0.242132 | 8 | 0.24104 | 11 |
| VR207 | -0.032113 | 213 | -0.103442 | 220 | -0.061492 | 223 |
| VR208 | -0.063665 | 242 | -0.142507 | 250 | -0.096914 | 247 |
| VR209 | -0.153987 | 291 | -0.177565 | 269 | -0.32457 | 293 |
| VR210 | -0.083814 | 250 | -0.177565 | 269 | -0.12517 | 258 |
| VR211 | -0.063665 | 242 | -0.042656 | 193 | -0.096914 | 247 |
| VR212 | 0.055889 | 137 | 0.022797 | 128 | 0.046937 | 145 |
| VR213 | -0.085508 | 267 | -0.103442 | 220 | -0.215221 | 278 |
| VR214 | 0.069961 | 127 | -0.001603 | 163 | 0.060523 | 135 |
| VR215 | 0.246755 | 16 | 0.208843 | 13 | 0.208843 | 19 |
| VR216 | 0.13586 | 83 | 0.12096 | 55 | 0.008955 | 175 |
| VR217 | 0.150189 | 73 | 0.128381 | 46 | 0.171822 | 37 |
| VR218 | 0.102881 | 111 | 0.09949 | 71 | 0.07847 | 120 |
| VR219 | 0.259701 | 12 | 0.199483 | 17 | 0.197575 | 22 |
| VR220 | -0.085508 | 267 | -0.103442 | 220 | -0.215221 | 278 |
| VR221 | 0.322101 | 2 | 0.314996 | 2 | 0.348174 | 2 |
| VR222 | -0.063665 | 242 | -0.142507 | 250 | -0.096914 | 247 |
| VR223 | 0.204458 | 34 | 0.191244 | 20 | 0.232465 | 12 |
| VR224 | 0.161032 | 66 | 0.031652 | 124 | 0.047112 | 144 |
| VR225 | -0.085508 | 267 | -0.103442 | 220 | -0.215221 | 278 |
| VR226 | 0.032143 | 163 | -0.028898 | 188 | 0.028443 | 163 |
| VR227 | -0.083814 | 250 | -0.177565 | 269 | -0.12517 | 258 |
| VR228 | 0.223499 | 28 | 0.21509 | 12 | 0.223499 | 16 |
| VR229 | -0.153987 | 291 | -0.177565 | 269 | -0.32457 | 293 |
| VR230 | 0.166607 | 57 | 0.160044 | 32 | 0.160044 | 41 |
| VR231 | 0.135221 | 86 | 0.075874 | 92 | 0.126829 | 73 |
| VR232 | 0.296486 | 4 | 0.117716 | 58 | 0.199421 | 21 |
| VR233 | -0.053512 | 234 | -0.177565 | 269 | -0.067522 | 233 |
| VR234 | 0.051631 | 148 | -0.001603 | 163 | 0.019105 | 169 |
| VR235 | 0.267577 | 9 | 0.259985 | 7 | 0.267577 | 8 |
| VR236 | -0.085508 | 267 | -0.103442 | 220 | -0.103442 | 255 |
| VR237 | 0.184639 | 48 | 0.080538 | 88 | 0.063601 | 134 |
| VR238 | -0.063665 | 242 | -0.142507 | 250 | -0.096914 | 247 |
| VR239 | 0.067139 | 128 | 0.048069 | 110 | 0.063698 | 128 |
| VR240 | -0.085508 | 267 | -0.103442 | 220 | -0.103442 | 255 |
| VR241 | 0.1275 | 91 | 0.113047 | 62 | 0.124841 | 76 |
| VR242 | 0.25841 | 13 | 0.169819 | 30 | 0.163709 | 40 |
| VR243 | -0.122682 | 280 | -0.142507 | 250 | -0.266085 | 287 |
| VR244 | 0.048069 | 151 | 0.019086 | 150 | 0.041485 | 153 |
| VR245 | 0.197118 | 39 | 0.190354 | 22 | 0.190354 | 27 |
| VR246 | 0.233753 | 21 | 0.1275 | 47 | 0.120137 | 82 |
| VR247 | 0.053582 | 147 | -0.053512 | 203 | 0.034886 | 162 |
| VR248 | -0.002328 | 192 | -0.010365 | 171 | -0.060375 | 221 |
| VR249 | -0.073273 | 249 | -0.063665 | 205 | -0.122682 | 257 |
| VR250 | -0.085508 | 267 | -0.103442 | 220 | -0.215221 | 278 |
| VR251 | 0.169819 | 55 | 0.1275 | 47 | 0.138376 | 64 |
| VR252 | -0.083814 | 250 | -0.177565 | 269 | -0.067522 | 233 |
| VR253 | -0.053512 | 234 | -0.177565 | 269 | -0.067522 | 233 |
| VR254 | 0.067139 | 128 | 0.048069 | 110 | 0.063698 | 128 |
| VR255 | 0.244024 | 17 | 0.141148 | 39 | 0.150782 | 52 |
| VR256 | 0.031105 | 166 | 0.022797 | 128 | -0.028913 | 200 |
| VR257 | 0.072285 | 120 | 0.022797 | 128 | 0.088602 | 107 |
| VR258 | -0.016088 | 206 | -0.052802 | 202 | 0.0187 | 173 |
| VR259 | -0.083814 | 250 | -0.177565 | 269 | -0.12517 | 258 |
| VR260 | 0.197118 | 39 | 0.088602 | 82 | 0.190354 | 27 |
| VR261 | -0.085508 | 267 | -0.103442 | 220 | -0.215221 | 278 |
| VR262 | 0.041802 | 156 | 0.077449 | 91 | 0.038175 | 157 |
| VR263 | -0.083814 | 250 | -0.067522 | 209 | -0.12517 | 258 |
| VR264 | 0.055889 | 137 | 0.022797 | 128 | 0.046937 | 145 |
| VR265 | 0.080034 | 119 | 0.072211 | 93 | 0.072211 | 125 |
| VR266 | 0.147716 | 74 | 0.048069 | 110 | 0.063698 | 128 |
| VR267 | -0.036637 | 222 | -0.142507 | 250 | -0.042656 | 210 |
| VR268 | 0.038175 | 160 | -0.010365 | 171 | 0.05642 | 137 |
| VR269 | -0.153987 | 291 | -0.177565 | 269 | -0.32457 | 293 |
| VR270 | 0.031105 | 166 | 0.022797 | 128 | -0.028913 | 200 |
| VR271 | -0.097486 | 279 | -0.083814 | 214 | -0.153987 | 275 |
| VR272 | 0.072285 | 120 | 0.088602 | 82 | 0.088602 | 107 |
| VR273 | 0.026426 | 173 | -0.072514 | 213 | -0.028744 | 199 |
| VR274 | 0.268401 | 8 | 0.268401 | 4 | 0.276048 | 5 |
| VR275 | 0.063698 | 130 | 0.019086 | 150 | 0.082724 | 115 |
| VR276 | 0.232225 | 22 | 0.05642 | 103 | 0.160044 | 41 |
| VR277 | 0.158107 | 69 | 0.036947 | 121 | 0.143859 | 60 |
| VR278 | -0.002328 | 192 | -0.010365 | 171 | -0.060375 | 221 |
| VR279 | -0.083814 | 250 | -0.177565 | 269 | -0.12517 | 258 |
| VR280 | 0.100659 | 113 | 0.067139 | 97 | 0.051502 | 142 |
| VR281 | 0.352528 | 1 | 0.352906 | 1 | 0.352528 | 1 |
| VR282 | 0.231929 | 24 | 0.139746 | 40 | 0.139746 | 63 |
| VR283 | 0.179921 | 49 | 0.1275 | 47 | 0.172169 | 34 |
| VR284 | 0.179921 | 49 | 0.1275 | 47 | 0.172169 | 34 |
| VR285 | -0.153987 | 291 | -0.177565 | 269 | -0.32457 | 293 |
| VR286 | 0.167349 | 56 | 0.174735 | 28 | 0.167349 | 39 |
| VR287 | 0.055889 | 137 | 0.022797 | 128 | 0.046937 | 145 |
| VR288 | 0.179921 | 49 | 0.172169 | 29 | 0.245264 | 9 |
| VR289 | -0.038933 | 229 | -0.047565 | 201 | -0.022158 | 198 |
| VR290 | -0.083814 | 250 | -0.177565 | 269 | -0.12517 | 258 |
| VR291 | -0.122682 | 280 | -0.142507 | 250 | -0.266085 | 287 |
| VR292 | 0.187776 | 46 | 0.181817 | 26 | 0.181817 | 31 |
| VR293 | -0.053512 | 234 | -0.177565 | 269 | -0.067522 | 233 |
| VR294 | -0.036637 | 222 | -0.142507 | 250 | -0.042656 | 210 |
| VR295 | -0.053512 | 234 | -0.177565 | 269 | -0.067522 | 233 |
| VR296 | -0.032113 | 213 | -0.103442 | 220 | -0.061492 | 223 |
| VR297 | 0.21509 | 31 | 0.113594 | 61 | 0.126144 | 74 |
| VR298 | -0.006952 | 197 | -0.009754 | 169 | -0.009754 | 187 |
| VR299 | 0.055889 | 137 | 0.022797 | 128 | 0.046937 | 145 |
| VR300 | 0.055889 | 137 | 0.022797 | 128 | 0.046937 | 145 |
| q = 10 | ||||||
| Alternatives | Expert 1 | Expert 2 | Expert 3 | |||
| Score | final rank | Score | final rank | Score | final rank | |
| VR1 | 0.00956 | 189 | -0.059204 | 248 | -0.024363 | 216 |
| VR2 | 0.050663 | 113 | 0.02489 | 113 | 0.046543 | 113 |
| VR3 | 0.088206 | 84 | 0.082568 | 49 | 0.082568 | 71 |
| VR4 | 0.013559 | 174 | -0.047112 | 217 | -0.014532 | 207 |
| VR5 | 0.000597 | 198 | -0.022901 | 206 | 0.01409 | 166 |
| VR6 | 0.043713 | 117 | 0.037974 | 93 | 0.037974 | 124 |
| VR7 | -0.016359 | 234 | -0.093189 | 269 | -0.024363 | 216 |
| VR8 | -0.011633 | 222 | -0.075758 | 250 | -0.014532 | 207 |
| VR9 | 0.040108 | 118 | 0.051437 | 80 | 0.127586 | 24 |
| VR10 | -0.029006 | 249 | -0.093189 | 269 | -0.024363 | 216 |
| VR11 | 0.113437 | 44 | 0.109707 | 28 | 0.1126 | 34 |
| VR12 | 0.062565 | 103 | 0.052421 | 73 | 0.080104 | 75 |
| VR13 | 0.02389 | 152 | 0.009127 | 154 | 0.019136 | 157 |
| VR14 | 0.013026 | 180 | -0.003436 | 171 | 0.032174 | 131 |
| VR15 | 0.06947 | 99 | 0.073822 | 55 | 0.070056 | 85 |
| VR16 | 0.00956 | 189 | -0.059204 | 248 | -0.024363 | 216 |
| VR17 | 0.013559 | 174 | -0.047112 | 217 | -0.014532 | 207 |
| VR18 | 0.154199 | 21 | 0.107277 | 29 | 0.105514 | 44 |
| VR19 | 0.099484 | 61 | -0.000283 | 169 | 0.095292 | 51 |
| VR20 | 0.083493 | 90 | 0.05829 | 70 | 0.080104 | 75 |
| VR21 | 0.014134 | 173 | 0.009127 | 154 | 0.009127 | 178 |
| VR22 | -0.071408 | 291 | -0.093189 | 269 | -0.229116 | 293 |
| VR23 | -0.029006 | 249 | -0.093189 | 269 | -0.024363 | 216 |
| VR24 | 0.181392 | 7 | 0.136471 | 13 | 0.139072 | 17 |
| VR25 | 0.000873 | 196 | -0.093189 | 269 | -0.013292 | 205 |
| VR26 | 0.031572 | 143 | 0.027452 | 108 | 0.032308 | 130 |
| VR27 | 0.010113 | 182 | -0.009763 | 178 | 0.002751 | 180 |
| VR28 | 0.076949 | 95 | -0.003436 | 171 | 0.040884 | 119 |
| VR29 | -0.022612 | 242 | -0.014532 | 194 | -0.047112 | 247 |
| VR30 | -0.0046 | 207 | 0.00956 | 153 | 0.088206 | 61 |
| VR31 | 0.028997 | 147 | 0.009127 | 154 | 0.043322 | 114 |
| VR32 | 0.047415 | 114 | 0.037974 | 93 | 0.065593 | 90 |
| VR33 | 0.108654 | 53 | -0.014532 | 194 | 0.10719 | 37 |
| VR34 | 0.006032 | 192 | -0.011608 | 189 | -0.00016 | 185 |
| VR35 | 0.137601 | 31 | 0.112355 | 27 | 0.112355 | 35 |
| VR36 | 0.019585 | 169 | 0.016026 | 127 | 0.00956 | 176 |
| VR37 | 0.034543 | 126 | 0.02389 | 114 | 0.051134 | 110 |
| VR38 | -0.009834 | 213 | -0.05749 | 220 | -0.031528 | 235 |
| VR39 | -0.011633 | 222 | -0.014532 | 194 | 0.085236 | 66 |
| VR40 | 0.025905 | 150 | 0.021294 | 120 | 0.02489 | 151 |
| VR41 | 0.028997 | 147 | 0.009127 | 154 | 0.043322 | 114 |
| VR42 | 0.000287 | 199 | -0.05749 | 220 | -0.000283 | 187 |
| VR43 | 0.088206 | 84 | 0.082568 | 49 | 0.082568 | 71 |
| VR44 | 0.110477 | 50 | 0.042049 | 89 | 0.109968 | 36 |
| VR45 | 0.087644 | 89 | 0.05829 | 70 | 0.083493 | 70 |
| VR46 | 0.107277 | 58 | 0.105514 | 34 | 0.105514 | 44 |
| VR47 | 0.172794 | 11 | 0.172862 | 5 | 0.172862 | 6 |
| VR48 | -0.009834 | 213 | -0.05749 | 220 | -0.031528 | 235 |
| VR49 | 0.000287 | 199 | -0.05749 | 220 | -0.000283 | 187 |
| VR50 | 0.033584 | 141 | 0.03416 | 96 | 0.03416 | 127 |
| VR51 | 0.01309 | 178 | 0.006032 | 162 | 0.028997 | 135 |
| VR52 | -0.009834 | 213 | -0.05749 | 220 | -0.031528 | 235 |
| VR53 | -0.057723 | 280 | -0.022612 | 203 | -0.047112 | 247 |
| VR54 | -0.041318 | 268 | -0.05749 | 220 | -0.031528 | 235 |
| VR55 | 0.009779 | 188 | -0.009763 | 178 | 0.016026 | 163 |
| VR56 | -0.011633 | 222 | -0.075758 | 250 | -0.014532 | 207 |
| VR57 | -0.005057 | 209 | 0.01409 | 128 | -0.011322 | 202 |
| VR58 | 0.013559 | 174 | -0.047112 | 217 | -0.014532 | 207 |
| VR59 | 0.022502 | 156 | -0.011633 | 192 | 0.013559 | 169 |
| VR60 | 0.092751 | 75 | -0.024363 | 207 | 0.088206 | 61 |
| VR61 | -0.057723 | 280 | -0.075758 | 250 | -0.075758 | 272 |
| VR62 | 0.035524 | 125 | 0.002081 | 168 | 0.02902 | 134 |
| VR63 | 0.020552 | 159 | 0.013566 | 129 | -0.030023 | 230 |
| VR64 | 0.000287 | 199 | -0.05749 | 220 | -0.000283 | 187 |
| VR65 | 0.136471 | 32 | 0.136471 | 13 | 0.139072 | 17 |
| VR66 | -0.041318 | 268 | -0.05749 | 220 | -0.158403 | 278 |
| VR67 | 0.099484 | 61 | 0.095292 | 36 | 0.095292 | 51 |
| VR68 | 0.089909 | 78 | -0.014532 | 194 | 0.085236 | 66 |
| VR69 | -0.022612 | 242 | -0.014532 | 194 | -0.047112 | 247 |
| VR70 | 0.0723 | 98 | 0.010113 | 151 | 0.091972 | 55 |
| VR71 | 0.088682 | 81 | 0.113437 | 26 | 0.066958 | 87 |
| VR72 | -0.041318 | 268 | -0.05749 | 220 | -0.158403 | 278 |
| VR73 | 0.034017 | 138 | 0.00278 | 164 | 0.009962 | 173 |
| VR74 | 0.000873 | 196 | -0.013292 | 193 | -0.013292 | 205 |
| VR75 | 0.051134 | 112 | 0.019136 | 122 | 0.043322 | 114 |
| VR76 | 0.066697 | 101 | -0.003436 | 171 | -0.003436 | 196 |
| VR77 | 0.099484 | 61 | 0.095292 | 36 | 0.095292 | 51 |
| VR78 | 0.112786 | 47 | 0.058811 | 65 | 0.054586 | 101 |
| VR79 | 0.110345 | 51 | 0.106948 | 33 | 0.129547 | 21 |
| VR80 | 0.094271 | 69 | 0.089909 | 41 | 0.089909 | 57 |
| VR81 | 0.129411 | 37 | 0.051437 | 80 | 0.127586 | 24 |
| VR82 | 0.017565 | 172 | 0.010113 | 151 | 0.016026 | 163 |
| VR83 | -0.022612 | 242 | -0.075758 | 250 | -0.047112 | 247 |
| VR84 | -0.029006 | 249 | -0.093189 | 269 | -0.024363 | 216 |
| VR85 | 0.056912 | 109 | 0.025905 | 110 | 0.050663 | 112 |
| VR86 | 0.08347 | 91 | 0.051134 | 84 | 0.028997 | 135 |
| VR87 | 0.06757 | 100 | 0.04111 | 91 | 0.063525 | 92 |
| VR88 | 0.099484 | 61 | 0.095292 | 36 | 0.095292 | 51 |
| VR89 | 0.040108 | 118 | 0.013566 | 129 | 0.051437 | 103 |
| VR90 | -0.009834 | 213 | -0.05749 | 220 | -0.031528 | 235 |
| VR91 | -0.029006 | 249 | -0.093189 | 269 | -0.059204 | 258 |
| VR92 | -0.041318 | 268 | -0.05749 | 220 | -0.158403 | 278 |
| VR93 | 0.21123 | 3 | 0.211265 | 3 | 0.211265 | 4 |
| VR94 | 0.198335 | 4 | 0.195927 | 4 | 0.21593 | 3 |
| VR95 | 0.03416 | 128 | 0.013566 | 129 | 0.026354 | 141 |
| VR96 | 0.088682 | 81 | 0.063607 | 57 | 0.066958 | 87 |
| VR97 | 0.019841 | 166 | 0.013026 | 147 | 0.018419 | 160 |
| VR98 | -0.015873 | 231 | -0.009834 | 186 | -0.009834 | 199 |
| VR99 | 0.094271 | 69 | 0.089909 | 41 | 0.089909 | 57 |
| VR100 | 0.133099 | 33 | 0.129411 | 18 | 0.129411 | 22 |
| VR101 | 0.024908 | 151 | -0.031528 | 215 | -0.000283 | 187 |
| VR102 | -0.071408 | 291 | -0.093189 | 269 | -0.093189 | 276 |
| VR103 | -0.029006 | 249 | -0.093189 | 269 | -0.059204 | 258 |
| VR104 | 0.034017 | 138 | 0.00278 | 164 | 0.009962 | 173 |
| VR105 | 0.119139 | 42 | 0.022969 | 119 | 0.051958 | 102 |
| VR106 | 0.020552 | 159 | 0.013566 | 129 | 0.013566 | 167 |
| VR107 | 0.039919 | 124 | 0.037974 | 93 | 0.037974 | 124 |
| VR108 | -0.009834 | 213 | -0.05749 | 220 | -0.031528 | 235 |
| VR109 | 0.06233 | 106 | 0.026354 | 109 | 0.051437 | 103 |
| VR110 | 0.108654 | 53 | 0.10719 | 30 | 0.10719 | 37 |
| VR111 | 0.010113 | 182 | -0.009763 | 178 | 0.002751 | 180 |
| VR112 | 0.020552 | 159 | 0.013566 | 129 | -0.030023 | 230 |
| VR113 | 0.03416 | 128 | 0.052421 | 73 | 0.026354 | 141 |
| VR114 | -0.015873 | 231 | 0.02389 | 114 | -0.009834 | 199 |
| VR115 | -0.071408 | 291 | -0.009763 | 178 | -0.093189 | 276 |
| VR116 | 0.03416 | 128 | 0.052421 | 73 | 0.051437 | 103 |
| VR117 | 0.108654 | 53 | 0.032174 | 99 | 0.10719 | 37 |
| VR118 | 0.022116 | 157 | 0.019503 | 121 | 0.01584 | 165 |
| VR119 | 0.009962 | 186 | -0.009834 | 186 | 0.024908 | 149 |
| VR120 | 0.088682 | 81 | 0.063607 | 57 | 0.063607 | 91 |
| VR121 | 0.079235 | 93 | 0.009127 | 154 | 0.100877 | 47 |
| VR122 | 0.006179 | 191 | 0.006032 | 162 | 0.028997 | 135 |
| VR123 | -0.016359 | 234 | -0.093189 | 269 | -0.024363 | 216 |
| VR124 | 0.097431 | 67 | 0.017565 | 124 | 0.070311 | 84 |
| VR125 | 0.183837 | 6 | 0.136471 | 13 | 0.157974 | 9 |
| VR126 | 0.177751 | 9 | 0.046647 | 86 | 0.050784 | 111 |
| VR127 | 0.109707 | 52 | 0.061867 | 63 | 0.05829 | 99 |
| VR128 | 0.019503 | 170 | -0.009763 | 178 | 0.019539 | 156 |
| VR129 | -0.029006 | 249 | -0.009763 | 178 | -0.059204 | 258 |
| VR130 | 0.154199 | 21 | 0.028221 | 107 | 0.105514 | 44 |
| VR131 | -0.0046 | 207 | -0.029006 | 212 | 0.00956 | 176 |
| VR132 | 0.02389 | 152 | 0.009127 | 154 | 0.019136 | 157 |
| VR133 | 0.000287 | 199 | -0.05749 | 220 | -0.000283 | 187 |
| VR134 | 0.000287 | 199 | -0.05749 | 220 | -0.000283 | 187 |
| VR135 | 0.155903 | 17 | 0.074786 | 53 | 0.072568 | 82 |
| VR136 | -0.057723 | 280 | -0.075758 | 250 | -0.075758 | 272 |
| VR137 | -0.008944 | 212 | -0.022612 | 203 | -0.011633 | 204 |
| VR138 | -0.057723 | 280 | -0.075758 | 250 | -0.188303 | 287 |
| VR139 | -0.057723 | 280 | -0.075758 | 250 | -0.075758 | 272 |
| VR140 | -0.015873 | 231 | -0.009834 | 186 | -0.009834 | 199 |
| VR141 | 0.120326 | 41 | 0.116817 | 24 | 0.11953 | 30 |
| VR142 | -0.005624 | 211 | -0.011608 | 189 | -0.011608 | 203 |
| VR143 | 0.16413 | 15 | 0.043322 | 88 | 0.116585 | 31 |
| VR144 | 0.10372 | 59 | 0.099484 | 35 | 0.099484 | 49 |
| VR145 | 0.046173 | 116 | 0.018419 | 123 | 0.040884 | 119 |
| VR146 | -0.016359 | 234 | -0.093189 | 269 | -0.024363 | 216 |
| VR147 | -0.029006 | 249 | -0.024363 | 207 | -0.059204 | 258 |
| VR148 | -0.011633 | 222 | -0.075758 | 250 | -0.014532 | 207 |
| VR149 | 0.000287 | 199 | -0.05749 | 220 | -0.000283 | 187 |
| VR150 | -0.057723 | 280 | -0.075758 | 250 | -0.188303 | 287 |
| VR151 | -0.013292 | 230 | -0.029006 | 212 | -0.016359 | 215 |
| VR152 | 0.131659 | 35 | 0.127677 | 19 | 0.128478 | 23 |
| VR153 | 0.145244 | 26 | 0.145379 | 10 | 0.145379 | 15 |
| VR154 | 0.076949 | 95 | 0.013026 | 147 | 0.040884 | 119 |
| VR155 | 0.046324 | 115 | 0.03416 | 96 | 0.06233 | 97 |
| VR156 | 0.088206 | 84 | 0.082568 | 49 | 0.082568 | 71 |
| VR157 | 0.088206 | 84 | -0.024363 | 207 | 0.082568 | 71 |
| VR158 | 0.146537 | 24 | 0.145955 | 9 | 0.145955 | 13 |
| VR159 | 0.010113 | 182 | -0.009763 | 178 | 0.002751 | 180 |
| VR160 | 0.006032 | 192 | -0.011608 | 189 | -0.00016 | 185 |
| VR161 | 0.010113 | 182 | -0.009763 | 178 | 0.002751 | 180 |
| VR162 | 0.099115 | 65 | 0.120896 | 23 | 0.100842 | 48 |
| VR163 | -0.057723 | 280 | -0.075758 | 250 | -0.188303 | 287 |
| VR164 | -0.029006 | 249 | -0.093189 | 269 | -0.059204 | 258 |
| VR165 | 0.019841 | 166 | 0.013026 | 147 | 0.018419 | 160 |
| VR166 | -0.071408 | 291 | -0.093189 | 269 | -0.229116 | 293 |
| VR167 | 0.000287 | 199 | -0.05749 | 220 | -0.000283 | 187 |
| VR168 | 0.089649 | 80 | 0.087621 | 46 | 0.091297 | 56 |
| VR169 | 0.013026 | 180 | 0.032174 | 99 | 0.007424 | 179 |
| VR170 | 0.009962 | 186 | 0.024908 | 111 | 0.024908 | 149 |
| VR171 | 0.112837 | 46 | 0.060506 | 64 | 0.03929 | 122 |
| VR172 | 0.092751 | 75 | 0.088206 | 44 | 0.088206 | 61 |
| VR173 | 0.062519 | 105 | 0.030352 | 104 | 0.056219 | 100 |
| VR174 | 0.020552 | 159 | 0.013566 | 129 | -0.030023 | 230 |
| VR175 | 0.146537 | 24 | 0.080104 | 52 | 0.145955 | 13 |
| VR176 | 0.1126 | 48 | 0.052421 | 73 | 0.080104 | 75 |
| VR177 | 0.062565 | 103 | 0.052421 | 73 | 0.080104 | 75 |
| VR178 | 0.089909 | 78 | 0.085236 | 48 | 0.085236 | 66 |
| VR179 | 0.108654 | 53 | 0.10719 | 30 | 0.10719 | 37 |
| VR180 | 0.03416 | 128 | 0.013566 | 129 | 0.051437 | 103 |
| VR181 | 0.021294 | 158 | 0.016702 | 126 | 0.021816 | 155 |
| VR182 | 0.113437 | 44 | 0.058811 | 65 | 0.062565 | 93 |
| VR183 | 0.061096 | 107 | 0.058811 | 65 | 0.062565 | 93 |
| VR184 | 0.033584 | 141 | 0.03416 | 96 | 0.03416 | 127 |
| VR185 | 0.040108 | 118 | 0.013566 | 129 | 0.051437 | 103 |
| VR186 | 0.03416 | 128 | 0.013566 | 129 | 0.026354 | 141 |
| VR187 | -0.057723 | 280 | -0.075758 | 250 | -0.188303 | 287 |
| VR188 | -0.041318 | 268 | -0.05749 | 220 | -0.158403 | 278 |
| VR189 | 0.148651 | 23 | 0.14531 | 11 | 0.166602 | 8 |
| VR190 | -0.071408 | 291 | -0.093189 | 269 | -0.229116 | 293 |
| VR191 | -0.009834 | 213 | -0.05749 | 220 | -0.031528 | 235 |
| VR192 | -0.029006 | 249 | -0.093189 | 269 | -0.059204 | 258 |
| VR193 | -0.057723 | 280 | -0.075758 | 250 | -0.075758 | 272 |
| VR194 | 0.013391 | 177 | 0.013026 | 147 | 0.002148 | 184 |
| VR195 | -0.016359 | 234 | -0.093189 | 269 | -0.024363 | 216 |
| VR196 | 0.078898 | 94 | 0.048448 | 85 | 0.072784 | 81 |
| VR197 | 0.15541 | 19 | 0.032174 | 99 | 0.10719 | 37 |
| VR198 | -0.029006 | 249 | -0.093189 | 269 | -0.059204 | 258 |
| VR199 | -0.009834 | 213 | -0.05749 | 220 | -0.031528 | 235 |
| VR200 | 0.058753 | 108 | 0.030352 | 104 | 0.034543 | 126 |
| VR201 | 0.088193 | 88 | 0.085749 | 47 | 0.08963 | 59 |
| VR202 | 0.1126 | 48 | 0.052421 | 73 | 0.080104 | 75 |
| VR203 | -0.011633 | 222 | -0.014532 | 194 | 0.085236 | 66 |
| VR204 | 0.020552 | 159 | 0.013566 | 129 | 0.013566 | 167 |
| VR205 | -0.071408 | 291 | -0.093189 | 269 | -0.229116 | 293 |
| VR206 | 0.172705 | 13 | 0.148651 | 8 | 0.148538 | 12 |
| VR207 | -0.009834 | 213 | -0.05749 | 220 | -0.031528 | 235 |
| VR208 | -0.022612 | 242 | -0.075758 | 250 | -0.047112 | 247 |
| VR209 | -0.071408 | 291 | -0.093189 | 269 | -0.229116 | 293 |
| VR210 | -0.029006 | 249 | -0.093189 | 269 | -0.059204 | 258 |
| VR211 | -0.022612 | 242 | -0.014532 | 194 | -0.047112 | 247 |
| VR212 | 0.03416 | 128 | 0.013566 | 129 | 0.026354 | 141 |
| VR213 | -0.041318 | 268 | -0.05749 | 220 | -0.158403 | 278 |
| VR214 | 0.040006 | 123 | 0.00278 | 164 | 0.033276 | 129 |
| VR215 | 0.157779 | 16 | 0.133099 | 17 | 0.133099 | 20 |
| VR216 | 0.094271 | 69 | 0.089909 | 41 | 0.013559 | 169 |
| VR217 | 0.097417 | 68 | 0.090971 | 39 | 0.113746 | 33 |
| VR218 | 0.054586 | 110 | 0.052421 | 73 | 0.038921 | 123 |
| VR219 | 0.180188 | 8 | 0.13525 | 16 | 0.135075 | 19 |
| VR220 | -0.041318 | 268 | -0.05749 | 220 | -0.158403 | 278 |
| VR221 | 0.221723 | 2 | 0.219395 | 2 | 0.238801 | 2 |
| VR222 | -0.022612 | 242 | -0.075758 | 250 | -0.047112 | 247 |
| VR223 | 0.13119 | 36 | 0.127677 | 19 | 0.149862 | 11 |
| VR224 | 0.098906 | 66 | 0.017565 | 124 | 0.022246 | 154 |
| VR225 | -0.041318 | 268 | -0.05749 | 220 | -0.158403 | 278 |
| VR226 | 0.01309 | 178 | -0.008393 | 177 | 0.011622 | 172 |
| VR227 | -0.029006 | 249 | -0.093189 | 269 | -0.059204 | 258 |
| VR228 | 0.145244 | 26 | 0.142645 | 12 | 0.145244 | 16 |
| VR229 | -0.071408 | 291 | -0.093189 | 269 | -0.229116 | 293 |
| VR230 | 0.108654 | 53 | 0.10719 | 30 | 0.10719 | 37 |
| VR231 | 0.074209 | 97 | 0.041651 | 90 | 0.067936 | 86 |
| VR232 | 0.19103 | 5 | 0.056219 | 72 | 0.121539 | 29 |
| VR233 | -0.016359 | 234 | -0.093189 | 269 | -0.024363 | 216 |
| VR234 | 0.034017 | 138 | 0.00278 | 164 | 0.009962 | 173 |
| VR235 | 0.172794 | 11 | 0.170326 | 7 | 0.172794 | 7 |
| VR236 | -0.041318 | 268 | -0.05749 | 220 | -0.05749 | 255 |
| VR237 | 0.131837 | 34 | 0.046647 | 86 | 0.04089 | 118 |
| VR238 | -0.022612 | 242 | -0.075758 | 250 | -0.047112 | 247 |
| VR239 | 0.030352 | 144 | 0.02389 | 114 | 0.028997 | 135 |
| VR240 | -0.041318 | 268 | -0.05749 | 220 | -0.05749 | 255 |
| VR241 | 0.063607 | 102 | 0.058811 | 65 | 0.062565 | 93 |
| VR242 | 0.170128 | 14 | 0.090542 | 40 | 0.088682 | 60 |
| VR243 | -0.057723 | 280 | -0.075758 | 250 | -0.188303 | 287 |
| VR244 | 0.02389 | 152 | 0.009127 | 154 | 0.019136 | 157 |
| VR245 | 0.129411 | 37 | 0.127586 | 21 | 0.127586 | 24 |
| VR246 | 0.138177 | 30 | 0.063607 | 57 | 0.061096 | 98 |
| VR247 | 0.02902 | 146 | -0.016359 | 201 | 0.02353 | 153 |
| VR248 | 0.002148 | 194 | -0.003436 | 171 | -0.038267 | 245 |
| VR249 | -0.029745 | 266 | -0.022612 | 203 | -0.057723 | 257 |
| VR250 | -0.041318 | 268 | -0.05749 | 220 | -0.158403 | 278 |
| VR251 | 0.090542 | 77 | 0.063607 | 57 | 0.066958 | 87 |
| VR252 | -0.029006 | 249 | -0.093189 | 269 | -0.024363 | 216 |
| VR253 | -0.016359 | 234 | -0.093189 | 269 | -0.024363 | 216 |
| VR254 | 0.030352 | 144 | 0.02389 | 114 | 0.028997 | 135 |
| VR255 | 0.141285 | 29 | 0.067597 | 56 | 0.070531 | 83 |
| VR256 | 0.020552 | 159 | 0.013566 | 129 | -0.030023 | 230 |
| VR257 | 0.040108 | 118 | 0.013566 | 129 | 0.051437 | 103 |
| VR258 | -0.005155 | 210 | -0.024825 | 211 | 0.013399 | 171 |
| VR259 | -0.029006 | 249 | -0.093189 | 269 | -0.059204 | 258 |
| VR260 | 0.129411 | 37 | 0.051437 | 80 | 0.127586 | 24 |
| VR261 | -0.041318 | 268 | -0.05749 | 220 | -0.158403 | 278 |
| VR262 | 0.019841 | 166 | 0.040884 | 92 | 0.018419 | 160 |
| VR263 | -0.029006 | 249 | -0.024363 | 207 | -0.059204 | 258 |
| VR264 | 0.03416 | 128 | 0.013566 | 129 | 0.026354 | 141 |
| VR265 | 0.034434 | 127 | 0.031572 | 103 | 0.031572 | 133 |
| VR266 | 0.08347 | 91 | 0.02389 | 114 | 0.028997 | 135 |
| VR267 | -0.011633 | 222 | -0.075758 | 250 | -0.014532 | 207 |
| VR268 | 0.018419 | 171 | -0.003436 | 171 | 0.032174 | 131 |
| VR269 | -0.071408 | 291 | -0.093189 | 269 | -0.229116 | 293 |
| VR270 | 0.020552 | 159 | 0.013566 | 129 | -0.030023 | 230 |
| VR271 | -0.03841 | 267 | -0.029006 | 212 | -0.071408 | 271 |
| VR272 | 0.040108 | 118 | 0.051437 | 80 | 0.051437 | 103 |
| VR273 | 0.02279 | 155 | -0.032144 | 216 | -0.009462 | 198 |
| VR274 | 0.172862 | 10 | 0.172862 | 5 | 0.175337 | 5 |
| VR275 | 0.028997 | 147 | 0.009127 | 154 | 0.043322 | 114 |
| VR276 | 0.15541 | 19 | 0.032174 | 99 | 0.10719 | 37 |
| VR277 | 0.10372 | 59 | 0.024908 | 111 | 0.099484 | 49 |
| VR278 | 0.002148 | 194 | -0.003436 | 171 | -0.038267 | 245 |
| VR279 | -0.029006 | 249 | -0.093189 | 269 | -0.059204 | 258 |
| VR280 | 0.054474 | 111 | 0.030352 | 104 | 0.024567 | 152 |
| VR281 | 0.244441 | 1 | 0.244465 | 1 | 0.244441 | 1 |
| VR282 | 0.155903 | 17 | 0.074786 | 53 | 0.074786 | 80 |
| VR283 | 0.093666 | 72 | 0.063607 | 57 | 0.087644 | 64 |
| VR284 | 0.093666 | 72 | 0.063607 | 57 | 0.087644 | 64 |
| VR285 | -0.071408 | 291 | -0.093189 | 269 | -0.229116 | 293 |
| VR286 | 0.124014 | 40 | 0.125373 | 22 | 0.124014 | 28 |
| VR287 | 0.03416 | 128 | 0.013566 | 129 | 0.026354 | 141 |
| VR288 | 0.093666 | 72 | 0.087644 | 45 | 0.149931 | 10 |
| VR289 | -0.012047 | 229 | -0.017059 | 202 | -0.006966 | 197 |
| VR290 | -0.029006 | 249 | -0.093189 | 269 | -0.059204 | 258 |
| VR291 | -0.057723 | 280 | -0.075758 | 250 | -0.188303 | 287 |
| VR292 | 0.1179 | 43 | 0.116585 | 25 | 0.116585 | 31 |
| VR293 | -0.016359 | 234 | -0.093189 | 269 | -0.024363 | 216 |
| VR294 | -0.011633 | 222 | -0.075758 | 250 | -0.014532 | 207 |
| VR295 | -0.016359 | 234 | -0.093189 | 269 | -0.024363 | 216 |
| VR296 | -0.009834 | 213 | -0.05749 | 220 | -0.031528 | 235 |
| VR297 | 0.142645 | 28 | 0.058753 | 69 | 0.062519 | 96 |
| VR298 | 0.000287 | 199 | -0.000283 | 169 | -0.000283 | 187 |
| VR299 | 0.03416 | 128 | 0.013566 | 129 | 0.026354 | 141 |
| VR300 | 0.03416 | 128 | 0.013566 | 129 | 0.026354 | 141 |
Table A2.
Group results of q-ROFDOSM.
| Alternatives | q = 1 | q = 3 | q = 5 | q = 7 | q = 10 | |||||
|---|---|---|---|---|---|---|---|---|---|---|
| Score | Final rank | Score | Final rank | Score | Final rank | Score | Final rank | Score | Final rank | |
| VR1 | -0.2879969 | 234 | -0.2298837 | 234 | -0.1262594 | 228 | -0.0662891 | 226 | -0.02466931 | 217 |
| VR2 | 0.1861822 | 53 | 0.2183817 | 68 | 0.1475219 | 86 | 0.0894377 | 101 | 0.04069889 | 114 |
| VR3 | -0.0807016 | 166 | 0.0355225 | 141 | 0.0920117 | 118 | 0.100076 | 91 | 0.0844476 | 63 |
| VR4 | -0.2056802 | 210 | -0.1557731 | 210 | -0.0836673 | 210 | -0.0435386 | 212 | -0.01602858 | 206 |
| VR5 | -0.2013731 | 209 | -0.1306485 | 198 | -0.0583542 | 198 | -0.0217009 | 196 | -0.00273792 | 194 |
| VR6 | 0.0247994 | 116 | 0.1111214 | 108 | 0.0991704 | 114 | 0.0723318 | 116 | 0.03988728 | 115 |
| VR7 | -0.3478996 | 258 | -0.2922598 | 258 | -0.1726611 | 249 | -0.0995332 | 245 | -0.04463694 | 243 |
| VR8 | -0.2605366 | 228 | -0.214181 | 228 | -0.1267636 | 230 | -0.0739335 | 231 | -0.03397462 | 232 |
| VR9 | 0.0669532 | 95 | 0.1643745 | 84 | 0.1518465 | 82 | 0.1170806 | 80 | 0.07304372 | 80 |
| VR10 | -0.379279 | 270 | -0.3206686 | 266 | -0.1901438 | 257 | -0.1096338 | 257 | -0.04885261 | 256 |
| VR11 | 0.3095055 | 19 | 0.3632172 | 22 | 0.2745458 | 22 | 0.1932362 | 25 | 0.1119145 | 31 |
| VR12 | 0.1592543 | 65 | 0.2351317 | 60 | 0.1836005 | 67 | 0.1249318 | 74 | 0.06502967 | 87 |
| VR13 | -0.0142952 | 131 | 0.0441067 | 136 | 0.0501061 | 139 | 0.0362134 | 149 | 0.01738409 | 155 |
| VR14 | -0.0540078 | 147 | 0.0003042 | 158 | 0.023225 | 160 | 0.0225692 | 167 | 0.01392129 | 169 |
| VR15 | 0.1277663 | 73 | 0.1903929 | 76 | 0.159286 | 76 | 0.1170176 | 81 | 0.07111569 | 82 |
| VR16 | -0.2879969 | 234 | -0.2298837 | 234 | -0.1262594 | 228 | -0.0662891 | 226 | -0.02466931 | 217 |
| VR17 | -0.2056802 | 210 | -0.1557731 | 210 | -0.0836673 | 210 | -0.0435386 | 212 | -0.01602858 | 206 |
| VR18 | 0.1801295 | 54 | 0.2634994 | 51 | 0.2287674 | 39 | 0.1796898 | 30 | 0.12233021 | 25 |
| VR19 | -0.0097874 | 128 | 0.0805052 | 125 | 0.0986898 | 115 | 0.0878914 | 103 | 0.064831 | 89 |
| VR20 | 0.1935764 | 51 | 0.2707227 | 47 | 0.2084137 | 51 | 0.1414337 | 61 | 0.07396224 | 76 |
| VR21 | -0.0613609 | 153 | 0.0013317 | 157 | 0.0244658 | 159 | 0.02151 | 168 | 0.01079629 | 172 |
| VR22 | -0.5104426 | 293 | -0.4683455 | 293 | -0.3195247 | 293 | -0.2187072 | 293 | -0.1312375 | 293 |
| VR23 | -0.379279 | 270 | -0.3206686 | 266 | -0.1901438 | 257 | -0.1096338 | 257 | -0.04885261 | 256 |
| VR24 | 0.3776349 | 10 | 0.4033188 | 12 | 0.3072183 | 12 | 0.2280596 | 12 | 0.15231181 | 11 |
| VR25 | -0.3285027 | 246 | -0.2825857 | 246 | -0.1576862 | 241 | -0.0853794 | 238 | -0.03520271 | 237 |
| VR26 | 0.0938197 | 86 | 0.1506887 | 90 | 0.1101942 | 104 | 0.0686886 | 119 | 0.03044413 | 131 |
| VR27 | -0.1466017 | 186 | -0.0872613 | 191 | -0.0285181 | 188 | -0.0065496 | 186 | 0.0010339 | 184 |
| VR28 | 0.0626389 | 99 | 0.1101696 | 110 | 0.0946709 | 117 | 0.0676875 | 120 | 0.0381323 | 117 |
| VR29 | -0.2582641 | 225 | -0.2105812 | 224 | -0.1213712 | 225 | -0.0677453 | 228 | -0.02808577 | 219 |
| VR30 | -0.1271966 | 180 | -0.0626527 | 182 | 0.0042316 | 171 | 0.0279059 | 159 | 0.03105537 | 130 |
| VR31 | 0.024852 | 113 | 0.0864484 | 120 | 0.0793915 | 125 | 0.0551694 | 133 | 0.02714879 | 134 |
| VR32 | 0.0849529 | 89 | 0.1677712 | 83 | 0.1351936 | 89 | 0.094129 | 97 | 0.05032737 | 101 |
| VR33 | 0.0503824 | 106 | 0.1209599 | 101 | 0.1158347 | 102 | 0.0946649 | 96 | 0.06710367 | 84 |
| VR34 | -0.0765703 | 164 | -0.0318228 | 170 | -0.0075344 | 180 | -0.0023691 | 184 | -0.00191194 | 191 |
| VR35 | 0.2891864 | 24 | 0.3433579 | 24 | 0.2653159 | 27 | 0.1917715 | 28 | 0.12077062 | 26 |
| VR36 | -0.1083775 | 172 | -0.0580868 | 180 | -0.0032653 | 177 | 0.0143767 | 171 | 0.01505685 | 167 |
| VR37 | 0.1016574 | 83 | 0.1484004 | 91 | 0.1173866 | 99 | 0.0769138 | 112 | 0.03652234 | 120 |
| VR38 | -0.2381774 | 214 | -0.1869896 | 214 | -0.1095815 | 216 | -0.0656824 | 217 | -0.03295054 | 223 |
| VR39 | -0.1462024 | 184 | -0.0781582 | 187 | -0.0175812 | 183 | 0.0086315 | 174 | 0.0196903 | 151 |
| VR40 | 0.1171402 | 78 | 0.1432547 | 95 | 0.096491 | 116 | 0.0569181 | 129 | 0.02402952 | 146 |
| VR41 | 0.024852 | 113 | 0.0864484 | 120 | 0.0793915 | 125 | 0.0551694 | 133 | 0.02714879 | 134 |
| VR42 | -0.1882942 | 198 | -0.1338241 | 199 | -0.0714821 | 200 | -0.0400495 | 204 | -0.0191617 | 209 |
| VR43 | -0.0807016 | 166 | 0.0355225 | 141 | 0.0920117 | 118 | 0.100076 | 91 | 0.0844476 | 63 |
| VR44 | 0.1652573 | 61 | 0.2376996 | 59 | 0.1905496 | 64 | 0.1399364 | 64 | 0.08749786 | 61 |
| VR45 | 0.2335792 | 34 | 0.2984121 | 38 | 0.2230174 | 41 | 0.1486684 | 52 | 0.0764755 | 73 |
| VR46 | 0.115932 | 79 | 0.2095353 | 70 | 0.1933667 | 63 | 0.1548639 | 47 | 0.10610197 | 38 |
| VR47 | 0.4405608 | 4 | 0.4768894 | 5 | 0.3639994 | 5 | 0.2681267 | 6 | 0.17283946 | 6 |
| VR48 | -0.2381774 | 214 | -0.1869896 | 214 | -0.1095815 | 216 | -0.0656824 | 217 | -0.03295054 | 223 |
| VR49 | -0.1882942 | 198 | -0.1338241 | 199 | -0.0714821 | 200 | -0.0400495 | 204 | -0.0191617 | 209 |
| VR50 | -0.0306289 | 140 | 0.0492368 | 131 | 0.0680755 | 132 | 0.0566049 | 130 | 0.0339679 | 126 |
| VR51 | 0.0271573 | 112 | 0.0608647 | 130 | 0.0542948 | 136 | 0.0358036 | 152 | 0.01603962 | 160 |
| VR52 | -0.2381774 | 214 | -0.1869896 | 214 | -0.1095815 | 216 | -0.0656824 | 217 | -0.03295054 | 223 |
| VR53 | -0.3094664 | 240 | -0.2680909 | 241 | -0.1615178 | 242 | -0.0944206 | 242 | -0.04248275 | 241 |
| VR54 | -0.2677166 | 233 | -0.2182454 | 233 | -0.1338982 | 236 | -0.0834807 | 237 | -0.04344517 | 242 |
| VR55 | -0.1132338 | 174 | -0.0613461 | 181 | -0.0113574 | 182 | 0.0035872 | 182 | 0.00534742 | 178 |
| VR56 | -0.2605366 | 228 | -0.214181 | 228 | -0.1267636 | 230 | -0.0739335 | 231 | -0.03397462 | 232 |
| VR57 | -0.1991949 | 207 | -0.1277636 | 197 | -0.0548218 | 197 | -0.0185101 | 194 | -0.00076298 | 190 |
| VR58 | -0.2056802 | 210 | -0.1557731 | 210 | -0.0836673 | 210 | -0.0435386 | 212 | -0.01602858 | 206 |
| VR59 | -0.1106886 | 173 | -0.0681929 | 183 | -0.0176059 | 185 | 0.0021362 | 183 | 0.00814256 | 176 |
| VR60 | -0.0861884 | 169 | -0.0045604 | 159 | 0.0461466 | 152 | 0.0577649 | 128 | 0.05219797 | 100 |
| VR61 | -0.3771719 | 266 | -0.3343531 | 271 | -0.2150157 | 272 | -0.1358989 | 282 | -0.06974667 | 273 |
| VR62 | -0.0234308 | 135 | 0.0225604 | 153 | 0.0428211 | 154 | 0.037884 | 147 | 0.02220829 | 147 |
| VR63 | -0.1466854 | 190 | -0.0459123 | 172 | 0.0009616 | 172 | 0.0083296 | 176 | 0.00136486 | 179 |
| VR64 | -0.1882942 | 198 | -0.1338241 | 199 | -0.0714821 | 200 | -0.0400495 | 204 | -0.0191617 | 209 |
| VR65 | 0.3457063 | 14 | 0.3727912 | 17 | 0.2830491 | 19 | 0.2079147 | 18 | 0.13733836 | 17 |
| VR66 | -0.328521 | 247 | -0.2862959 | 247 | -0.1931369 | 261 | -0.1347237 | 273 | -0.08573704 | 277 |
| VR67 | 0.0448562 | 107 | 0.151357 | 86 | 0.1580434 | 78 | 0.1343327 | 67 | 0.09668906 | 47 |
| VR68 | -0.0694526 | 162 | 0.0147157 | 155 | 0.054218 | 137 | 0.061164 | 125 | 0.05353772 | 99 |
| VR69 | -0.2582641 | 225 | -0.2105812 | 224 | -0.1213712 | 225 | -0.0677453 | 228 | -0.02808577 | 219 |
| VR70 | 0.0594526 | 101 | 0.1200148 | 102 | 0.1180089 | 97 | 0.0929053 | 99 | 0.05812843 | 96 |
| VR71 | 0.2703296 | 29 | 0.3246309 | 31 | 0.2447984 | 31 | 0.1666109 | 37 | 0.08969236 | 56 |
| VR72 | -0.328521 | 247 | -0.2862959 | 247 | -0.1931369 | 261 | -0.1347237 | 273 | -0.08573704 | 277 |
| VR73 | -0.0563894 | 149 | -0.0158369 | 164 | 0.0186987 | 165 | 0.0230447 | 164 | 0.01558651 | 164 |
| VR74 | -0.253127 | 224 | -0.2122483 | 227 | -0.1003893 | 215 | -0.0419008 | 211 | -0.0085704 | 198 |
| VR75 | 0.0643743 | 98 | 0.1297094 | 98 | 0.1099081 | 105 | 0.0753262 | 113 | 0.03786374 | 118 |
| VR76 | -0.0711672 | 163 | -0.0056604 | 160 | 0.024971 | 158 | 0.0274317 | 160 | 0.01994193 | 148 |
| VR77 | 0.0448562 | 107 | 0.151357 | 86 | 0.1580434 | 78 | 0.1343327 | 67 | 0.09668906 | 47 |
| VR78 | 0.1756524 | 56 | 0.245901 | 57 | 0.1957804 | 61 | 0.1369865 | 66 | 0.07539432 | 75 |
| VR79 | 0.2253908 | 39 | 0.3162352 | 33 | 0.2440498 | 32 | 0.1792855 | 31 | 0.11561329 | 30 |
| VR80 | 0.0681459 | 92 | 0.1482657 | 92 | 0.1494853 | 83 | 0.1259269 | 72 | 0.09136294 | 53 |
| VR81 | 0.1290753 | 71 | 0.2326073 | 65 | 0.2051695 | 54 | 0.1586914 | 44 | 0.10281123 | 39 |
| VR82 | -0.0557352 | 148 | -0.0122723 | 163 | 0.0203616 | 164 | 0.0230937 | 163 | 0.01456795 | 168 |
| VR83 | -0.3149314 | 241 | -0.2710774 | 242 | -0.1671839 | 245 | -0.1010289 | 253 | -0.04849439 | 252 |
| VR84 | -0.379279 | 270 | -0.3206686 | 266 | -0.1901438 | 257 | -0.1096338 | 257 | -0.04885261 | 256 |
| VR85 | 0.2113865 | 44 | 0.2378351 | 58 | 0.1610836 | 74 | 0.0976928 | 95 | 0.04449319 | 111 |
| VR86 | 0.146903 | 68 | 0.1983288 | 74 | 0.1545932 | 81 | 0.1043944 | 89 | 0.05453393 | 98 |
| VR87 | 0.1456796 | 69 | 0.212038 | 69 | 0.1623577 | 73 | 0.1095229 | 87 | 0.05740182 | 97 |
| VR88 | 0.0448562 | 107 | 0.151357 | 86 | 0.1580434 | 78 | 0.1343327 | 67 | 0.09668906 | 47 |
| VR89 | -0.0253101 | 136 | 0.0663172 | 127 | 0.077499 | 128 | 0.0612279 | 122 | 0.03503686 | 123 |
| VR90 | -0.2381774 | 214 | -0.1869896 | 214 | -0.1095815 | 216 | -0.0656824 | 217 | -0.03295054 | 223 |
| VR91 | -0.4073165 | 276 | -0.3529597 | 276 | -0.2159625 | 276 | -0.1288497 | 263 | -0.06046627 | 263 |
| VR92 | -0.328521 | 247 | -0.2862959 | 247 | -0.1931369 | 261 | -0.1347237 | 273 | -0.08573704 | 277 |
| VR93 | 0.4233344 | 5 | 0.4809144 | 4 | 0.3811576 | 3 | 0.2972496 | 3 | 0.21125332 | 3 |
| VR94 | 0.3570667 | 11 | 0.4292712 | 9 | 0.3513243 | 8 | 0.2796798 | 4 | 0.20339749 | 4 |
| VR95 | -0.0686621 | 155 | 0.0231444 | 146 | 0.0479946 | 143 | 0.0418742 | 140 | 0.02469324 | 139 |
| VR96 | 0.233045 | 35 | 0.2868943 | 40 | 0.2153947 | 43 | 0.143195 | 59 | 0.07308227 | 79 |
| VR97 | 0.0110561 | 122 | 0.0445113 | 134 | 0.0469313 | 150 | 0.0338767 | 153 | 0.01709534 | 158 |
| VR98 | -0.1940662 | 205 | -0.1482508 | 208 | -0.0727083 | 207 | -0.0347216 | 200 | -0.01184713 | 200 |
| VR99 | 0.0681459 | 92 | 0.1482657 | 92 | 0.1494853 | 83 | 0.1259269 | 72 | 0.09136294 | 53 |
| VR100 | 0.2411547 | 32 | 0.3247047 | 30 | 0.2662041 | 26 | 0.2010262 | 21 | 0.13064019 | 19 |
| VR101 | -0.1379673 | 182 | -0.079231 | 190 | -0.0309244 | 192 | -0.011433 | 192 | -0.00230075 | 193 |
| VR102 | -0.4743332 | 292 | -0.4218022 | 292 | -0.2701798 | 292 | -0.1697055 | 286 | -0.08592856 | 286 |
| VR103 | -0.4073165 | 276 | -0.3529597 | 276 | -0.2159625 | 276 | -0.1288497 | 263 | -0.06046627 | 263 |
| VR104 | -0.0563894 | 149 | -0.0158369 | 164 | 0.0186987 | 165 | 0.0230447 | 164 | 0.01558651 | 164 |
| VR105 | 0.0310923 | 111 | 0.0796892 | 126 | 0.1016602 | 112 | 0.0907045 | 100 | 0.06468865 | 90 |
| VR106 | -0.1189583 | 175 | -0.0195184 | 168 | 0.021731 | 162 | 0.0255659 | 161 | 0.01589445 | 161 |
| VR107 | 0.0020294 | 126 | 0.095505 | 115 | 0.0916072 | 121 | 0.0686947 | 118 | 0.03862249 | 116 |
| VR108 | -0.2381774 | 214 | -0.1869896 | 214 | -0.1095815 | 216 | -0.0656824 | 217 | -0.03295054 | 223 |
| VR109 | 0.0184227 | 119 | 0.110382 | 109 | 0.1082776 | 107 | 0.0819558 | 108 | 0.04670697 | 107 |
| VR110 | 0.1703459 | 58 | 0.2526418 | 53 | 0.2125304 | 48 | 0.1622316 | 38 | 0.10767775 | 34 |
| VR111 | -0.1466017 | 186 | -0.0872613 | 191 | -0.0285181 | 188 | -0.0065496 | 186 | 0.0010339 | 184 |
| VR112 | -0.1466854 | 190 | -0.0459123 | 172 | 0.0009616 | 172 | 0.0083296 | 176 | 0.00136486 | 179 |
| VR113 | -0.0005581 | 127 | 0.086093 | 123 | 0.0889007 | 124 | 0.0674388 | 121 | 0.03764495 | 119 |
| VR114 | -0.1214242 | 178 | -0.0763008 | 184 | -0.026732 | 186 | -0.0079941 | 190 | -0.00060585 | 189 |
| VR115 | -0.382727 | 274 | -0.3264067 | 270 | -0.1988528 | 270 | -0.1199025 | 262 | -0.05811975 | 262 |
| VR116 | 0.0197743 | 118 | 0.1096987 | 111 | 0.10769 | 108 | 0.0813274 | 109 | 0.04600574 | 109 |
| VR117 | 0.1227774 | 76 | 0.1966634 | 75 | 0.1682387 | 72 | 0.1276901 | 71 | 0.08267247 | 66 |
| VR118 | -0.0108064 | 129 | 0.0404453 | 140 | 0.0485563 | 142 | 0.0371681 | 148 | 0.01915302 | 153 |
| VR119 | -0.0944292 | 170 | -0.0463154 | 178 | -0.0042293 | 179 | 0.0079798 | 181 | 0.00834537 | 175 |
| VR120 | 0.2165977 | 41 | 0.2724562 | 46 | 0.2077719 | 52 | 0.1395698 | 65 | 0.07196503 | 81 |
| VR121 | 0.0957226 | 85 | 0.1721725 | 81 | 0.1484388 | 85 | 0.1084792 | 88 | 0.06307951 | 91 |
| VR122 | 0.0031736 | 125 | 0.0405735 | 139 | 0.0430477 | 153 | 0.0298313 | 157 | 0.0137359 | 170 |
| VR123 | -0.3478996 | 258 | -0.2922598 | 258 | -0.1726611 | 249 | -0.0995332 | 245 | -0.04463694 | 243 |
| VR124 | 0.0517571 | 105 | 0.118816 | 103 | 0.1246332 | 95 | 0.0992266 | 94 | 0.06176911 | 92 |
| VR125 | 0.4006543 | 8 | 0.4286395 | 10 | 0.3255338 | 10 | 0.2407239 | 10 | 0.15942749 | 8 |
| VR126 | 0.1566111 | 67 | 0.204271 | 73 | 0.1833076 | 69 | 0.1423659 | 60 | 0.09172727 | 52 |
| VR127 | 0.1981892 | 47 | 0.2694267 | 49 | 0.2056092 | 53 | 0.1411365 | 62 | 0.07662147 | 72 |
| VR128 | -0.0662573 | 154 | -0.0088363 | 162 | 0.0153989 | 168 | 0.0167159 | 169 | 0.00975992 | 173 |
| VR129 | -0.3157103 | 245 | -0.2575642 | 239 | -0.1446355 | 237 | -0.0790467 | 236 | -0.03265746 | 222 |
| VR130 | 0.1051172 | 82 | 0.1884248 | 78 | 0.1747773 | 71 | 0.1406521 | 63 | 0.0959783 | 50 |
| VR131 | -0.241074 | 223 | -0.1907035 | 223 | -0.0898535 | 214 | -0.0375471 | 203 | -0.00801525 | 197 |
| VR132 | -0.0142952 | 131 | 0.0441067 | 136 | 0.0501061 | 139 | 0.0362134 | 149 | 0.01738409 | 155 |
| VR133 | -0.1882942 | 198 | -0.1338241 | 199 | -0.0714821 | 200 | -0.0400495 | 204 | -0.0191617 | 209 |
| VR134 | -0.1882942 | 198 | -0.1338241 | 199 | -0.0714821 | 200 | -0.0400495 | 204 | -0.0191617 | 209 |
| VR135 | 0.2329082 | 36 | 0.2888403 | 39 | 0.2320211 | 37 | 0.1681456 | 36 | 0.10108581 | 42 |
| VR136 | -0.3771719 | 266 | -0.3343531 | 271 | -0.2150157 | 272 | -0.1358989 | 282 | -0.06974667 | 273 |
| VR137 | -0.210547 | 213 | -0.173821 | 213 | -0.0898234 | 213 | -0.0437367 | 215 | -0.01439655 | 205 |
| VR138 | -0.4111057 | 286 | -0.3766457 | 286 | -0.2577335 | 286 | -0.1770915 | 287 | -0.10726158 | 287 |
| VR139 | -0.3771719 | 266 | -0.3343531 | 271 | -0.2150157 | 272 | -0.1358989 | 282 | -0.06974667 | 273 |
| VR140 | -0.1940662 | 205 | -0.1482508 | 208 | -0.0727083 | 207 | -0.0347216 | 200 | -0.01184713 | 200 |
| VR141 | 0.2976141 | 20 | 0.3683538 | 19 | 0.2719254 | 25 | 0.1924566 | 27 | 0.11889087 | 27 |
| VR142 | -0.1269254 | 179 | -0.0776959 | 186 | -0.0355907 | 193 | -0.0188811 | 195 | -0.00961308 | 199 |
| VR143 | 0.2047183 | 46 | 0.2851469 | 42 | 0.2323142 | 36 | 0.1720132 | 33 | 0.10801204 | 33 |
| VR144 | 0.120172 | 77 | 0.2058502 | 72 | 0.1876861 | 65 | 0.1486082 | 53 | 0.10089606 | 43 |
| VR145 | 0.0893154 | 88 | 0.1293013 | 99 | 0.1040762 | 111 | 0.0699379 | 117 | 0.03515884 | 122 |
| VR146 | -0.3478996 | 258 | -0.2922598 | 258 | -0.1726611 | 249 | -0.0995332 | 245 | -0.04463694 | 243 |
| VR147 | -0.3454372 | 256 | -0.2882917 | 256 | -0.1664228 | 243 | -0.0921689 | 240 | -0.03752439 | 239 |
| VR148 | -0.2605366 | 228 | -0.214181 | 228 | -0.1267636 | 230 | -0.0739335 | 231 | -0.03397462 | 232 |
| VR149 | -0.1882942 | 198 | -0.1338241 | 199 | -0.0714821 | 200 | -0.0400495 | 204 | -0.0191617 | 209 |
| VR150 | -0.4111057 | 286 | -0.3766457 | 286 | -0.2577335 | 286 | -0.1770915 | 287 | -0.10726158 | 287 |
| VR151 | -0.2954114 | 236 | -0.2468403 | 238 | -0.1278657 | 235 | -0.0614852 | 216 | -0.01955206 | 216 |
| VR152 | 0.2057277 | 45 | 0.3173922 | 32 | 0.2589223 | 28 | 0.1969608 | 24 | 0.12927144 | 20 |
| VR153 | 0.3507173 | 12 | 0.3960987 | 13 | 0.3061319 | 13 | 0.2245037 | 13 | 0.14533362 | 14 |
| VR154 | 0.0928716 | 87 | 0.134727 | 97 | 0.1112022 | 103 | 0.0783604 | 111 | 0.04361933 | 112 |
| VR155 | 0.0557192 | 102 | 0.1278728 | 100 | 0.1164828 | 101 | 0.0854578 | 106 | 0.04760465 | 106 |
| VR156 | -0.0807016 | 166 | 0.0355225 | 141 | 0.0920117 | 118 | 0.100076 | 91 | 0.0844476 | 63 |
| VR157 | -0.1421119 | 183 | -0.0462136 | 177 | 0.0227464 | 161 | 0.046288 | 137 | 0.04880374 | 103 |
| VR158 | 0.3229666 | 16 | 0.4054703 | 11 | 0.3177518 | 11 | 0.2330187 | 11 | 0.1461488 | 13 |
| VR159 | -0.1466017 | 186 | -0.0872613 | 191 | -0.0285181 | 188 | -0.0065496 | 186 | 0.0010339 | 184 |
| VR160 | -0.0765703 | 164 | -0.0318228 | 170 | -0.0075344 | 180 | -0.0023691 | 184 | -0.00191194 | 191 |
| VR161 | -0.1466017 | 186 | -0.0872613 | 191 | -0.0285181 | 188 | -0.0065496 | 186 | 0.0010339 | 184 |
| VR162 | 0.110109 | 80 | 0.2323717 | 67 | 0.2020184 | 56 | 0.1585098 | 46 | 0.10695105 | 37 |
| VR163 | -0.4111057 | 286 | -0.3766457 | 286 | -0.2577335 | 286 | -0.1770915 | 287 | -0.10726158 | 287 |
| VR164 | -0.4073165 | 276 | -0.3529597 | 276 | -0.2159625 | 276 | -0.1288497 | 263 | -0.06046627 | 263 |
| VR165 | 0.0110561 | 122 | 0.0445113 | 134 | 0.0469313 | 150 | 0.0338767 | 153 | 0.01709534 | 158 |
| VR166 | -0.5104426 | 293 | -0.4683455 | 293 | -0.3195247 | 293 | -0.2187072 | 293 | -0.1312375 | 293 |
| VR167 | -0.1882942 | 198 | -0.1338241 | 199 | -0.0714821 | 200 | -0.0400495 | 204 | -0.0191617 | 209 |
| VR168 | 0.0167621 | 120 | 0.13729 | 96 | 0.138736 | 88 | 0.1201695 | 77 | 0.08952236 | 57 |
| VR169 | -0.0295136 | 139 | 0.0233399 | 145 | 0.0371873 | 155 | 0.0305721 | 156 | 0.01754104 | 154 |
| VR170 | -0.0462085 | 144 | 0.0048834 | 156 | 0.0313719 | 157 | 0.0309999 | 155 | 0.01992616 | 150 |
| VR171 | 0.2900877 | 22 | 0.3283303 | 29 | 0.2276724 | 40 | 0.1438692 | 58 | 0.07087789 | 83 |
| VR172 | 0.0048013 | 124 | 0.0985727 | 114 | 0.1277301 | 93 | 0.1177873 | 79 | 0.08972116 | 55 |
| VR173 | 0.1641334 | 62 | 0.2089482 | 71 | 0.1595619 | 75 | 0.1036663 | 90 | 0.04969693 | 102 |
| VR174 | -0.1466854 | 190 | -0.0459123 | 172 | 0.0009616 | 172 | 0.0083296 | 176 | 0.00136486 | 179 |
| VR175 | 0.2840436 | 25 | 0.3655561 | 21 | 0.2855491 | 18 | 0.2058245 | 19 | 0.12419847 | 23 |
| VR176 | 0.1969388 | 48 | 0.2730942 | 44 | 0.2132723 | 46 | 0.148523 | 54 | 0.08170802 | 67 |
| VR177 | 0.1592543 | 65 | 0.2351317 | 60 | 0.1836005 | 67 | 0.1249318 | 74 | 0.06502967 | 87 |
| VR178 | -0.0117858 | 130 | 0.0902424 | 116 | 0.1175877 | 98 | 0.1104453 | 85 | 0.08679403 | 62 |
| VR179 | 0.1703459 | 58 | 0.2526418 | 53 | 0.2125304 | 48 | 0.1622316 | 38 | 0.10767775 | 34 |
| VR180 | -0.0483298 | 145 | 0.0467501 | 133 | 0.066784 | 135 | 0.0557627 | 132 | 0.03305403 | 128 |
| VR181 | 0.0413663 | 110 | 0.0891898 | 117 | 0.0680552 | 134 | 0.0434685 | 138 | 0.01993715 | 149 |
| VR182 | 0.2316395 | 37 | 0.2843318 | 43 | 0.2134966 | 44 | 0.1452118 | 57 | 0.07827078 | 71 |
| VR183 | 0.1747426 | 57 | 0.2337294 | 62 | 0.1785537 | 70 | 0.1193414 | 78 | 0.0608239 | 95 |
| VR184 | -0.0306289 | 140 | 0.0492368 | 131 | 0.0680755 | 132 | 0.0566049 | 130 | 0.0339679 | 126 |
| VR185 | -0.0253101 | 136 | 0.0663172 | 127 | 0.077499 | 128 | 0.0612279 | 122 | 0.03503686 | 123 |
| VR186 | -0.0686621 | 155 | 0.0231444 | 146 | 0.0479946 | 143 | 0.0418742 | 140 | 0.02469324 | 139 |
| VR187 | -0.4111057 | 286 | -0.3766457 | 286 | -0.2577335 | 286 | -0.1770915 | 287 | -0.10726158 | 287 |
| VR188 | -0.328521 | 247 | -0.2862959 | 247 | -0.1931369 | 261 | -0.1347237 | 273 | -0.08573704 | 277 |
| VR189 | 0.4052603 | 6 | 0.4663732 | 7 | 0.345414 | 9 | 0.2479027 | 9 | 0.15352137 | 10 |
| VR190 | -0.5104426 | 293 | -0.4683455 | 293 | -0.3195247 | 293 | -0.2187072 | 293 | -0.1312375 | 293 |
| VR191 | -0.2381774 | 214 | -0.1869896 | 214 | -0.1095815 | 216 | -0.0656824 | 217 | -0.03295054 | 223 |
| VR192 | -0.4073165 | 276 | -0.3529597 | 276 | -0.2159625 | 276 | -0.1288497 | 263 | -0.06046627 | 263 |
| VR193 | -0.3771719 | 266 | -0.3343531 | 271 | -0.2150157 | 272 | -0.1358989 | 282 | -0.06974667 | 273 |
| VR194 | -0.0612813 | 152 | -0.0188205 | 167 | 0.0110396 | 169 | 0.0146201 | 170 | 0.00952151 | 174 |
| VR195 | -0.3478996 | 258 | -0.2922598 | 258 | -0.1726611 | 249 | -0.0995332 | 245 | -0.04463694 | 243 |
| VR196 | 0.217943 | 40 | 0.2705482 | 48 | 0.1982053 | 58 | 0.1306788 | 70 | 0.06670969 | 85 |
| VR197 | 0.1601359 | 63 | 0.2333674 | 63 | 0.1960184 | 59 | 0.1495629 | 50 | 0.09825803 | 45 |
| VR198 | -0.4073165 | 276 | -0.3529597 | 276 | -0.2159625 | 276 | -0.1288497 | 263 | -0.06046627 | 263 |
| VR199 | -0.2381774 | 214 | -0.1869896 | 214 | -0.1095815 | 216 | -0.0656824 | 217 | -0.03295054 | 223 |
| VR200 | 0.131677 | 70 | 0.1721987 | 80 | 0.1341097 | 90 | 0.0872122 | 104 | 0.0412162 | 113 |
| VR201 | -0.0506052 | 146 | 0.0870749 | 119 | 0.1166227 | 100 | 0.1119071 | 84 | 0.08785746 | 59 |
| VR202 | 0.1969388 | 48 | 0.2730942 | 44 | 0.2132723 | 46 | 0.148523 | 54 | 0.08170802 | 67 |
| VR203 | -0.1462024 | 184 | -0.0781582 | 187 | -0.0175812 | 183 | 0.0086315 | 174 | 0.0196903 | 151 |
| VR204 | -0.1189583 | 175 | -0.0195184 | 168 | 0.021731 | 162 | 0.0255659 | 161 | 0.01589445 | 161 |
| VR205 | -0.5104426 | 293 | -0.4683455 | 293 | -0.3195247 | 293 | -0.2187072 | 293 | -0.1312375 | 293 |
| VR206 | 0.3954212 | 9 | 0.4673405 | 6 | 0.35182 | 7 | 0.2534343 | 8 | 0.15663151 | 9 |
| VR207 | -0.2381774 | 214 | -0.1869896 | 214 | -0.1095815 | 216 | -0.0656824 | 217 | -0.03295054 | 223 |
| VR208 | -0.3149314 | 241 | -0.2710774 | 242 | -0.1671839 | 245 | -0.1010289 | 253 | -0.04849439 | 252 |
| VR209 | -0.5104426 | 293 | -0.4683455 | 293 | -0.3195247 | 293 | -0.2187072 | 293 | -0.1312375 | 293 |
| VR210 | -0.4073165 | 276 | -0.3529597 | 276 | -0.2159625 | 276 | -0.1288497 | 263 | -0.06046627 | 263 |
| VR211 | -0.2582641 | 225 | -0.2105812 | 224 | -0.1213712 | 225 | -0.0677453 | 228 | -0.02808577 | 219 |
| VR212 | -0.0686621 | 155 | 0.0231444 | 146 | 0.0479946 | 143 | 0.0418742 | 140 | 0.02469324 | 139 |
| VR213 | -0.328521 | 247 | -0.2862959 | 247 | -0.1931369 | 261 | -0.1347237 | 273 | -0.08573704 | 277 |
| VR214 | -0.0151882 | 134 | 0.0298711 | 144 | 0.0501457 | 138 | 0.0429604 | 139 | 0.02535404 | 138 |
| VR215 | 0.2954219 | 21 | 0.3711464 | 18 | 0.2977938 | 14 | 0.2214806 | 14 | 0.14132555 | 16 |
| VR216 | 0.0151738 | 121 | 0.0836982 | 124 | 0.0993819 | 113 | 0.0885918 | 102 | 0.06591292 | 86 |
| VR217 | 0.1933379 | 52 | 0.2601921 | 52 | 0.2009126 | 57 | 0.1501309 | 49 | 0.10071106 | 44 |
| VR218 | 0.0616297 | 100 | 0.1507676 | 89 | 0.132389 | 91 | 0.0936137 | 98 | 0.04864283 | 104 |
| VR219 | 0.2893776 | 23 | 0.3420734 | 25 | 0.2828279 | 20 | 0.2189195 | 16 | 0.1501708 | 12 |
| VR220 | -0.328521 | 247 | -0.2862959 | 247 | -0.1931369 | 261 | -0.1347237 | -0.08573704 | 277 | |
| VR221 | 0.4961161 | 2 | 0.5512576 | 2 | 0.4291956 | 2 | 0.3284237 | 2 | 0.22663972 | 2 |
| VR222 | -0.3149314 | 241 | -0.2710774 | 242 | -0.1671839 | 245 | -0.1010289 | 253 | -0.04849439 | 252 |
| VR223 | 0.2312318 | 38 | 0.3452173 | 23 | 0.2774794 | 21 | 0.209389 | 17 | 0.13624296 | 18 |
| VR224 | 0.0676133 | 94 | 0.111301 | 107 | 0.1062291 | 109 | 0.0799321 | 110 | 0.04623898 | 108 |
| VR225 | -0.328521 | 247 | -0.2862959 | 247 | -0.1931369 | 261 | -0.1347237 | 273 | -0.08573704 | 277 |
| VR226 | -0.0386765 | 143 | -0.0080683 | 161 | 0.0105703 | 170 | 0.0105627 | 173 | 0.00543976 | 177 |
| VR227 | -0.4073165 | 276 | -0.3529597 | 276 | -0.2159625 | 276 | -0.1288497 | 263 | -0.06046627 | 263 |
| VR228 | 0.3097341 | 18 | 0.3679051 | 20 | 0.2957312 | 15 | 0.220696 | 15 | 0.14437743 | 15 |
| VR229 | -0.5104426 | 293 | -0.4683455 | 293 | -0.3195247 | 293 | -0.2187072 | 293 | -0.1312375 | 293 |
| VR230 | 0.1703459 | 58 | 0.2526418 | 53 | 0.2125304 | 48 | 0.1622316 | 38 | 0.10767775 | 34 |
| VR231 | 0.1245348 | 75 | 0.1895822 | 77 | 0.158954 | 77 | 0.1126414 | 83 | 0.06126535 | 94 |
| VR232 | 0.3181049 | 17 | 0.3755051 | 16 | 0.2878437 | 17 | 0.2045408 | 20 | 0.1229294 | 24 |
| VR233 | -0.3478996 | 258 | -0.2922598 | 258 | -0.1726611 | 249 | -0.0995332 | 245 | -0.04463694 | 243 |
| VR234 | -0.0563894 | 149 | -0.0158369 | 164 | 0.0186987 | 165 | 0.0230447 | 164 | 0.01558651 | 164 |
| VR235 | 0.4052289 | 7 | 0.4555222 | 8 | 0.3561761 | 6 | 0.2650467 | 7 | 0.17197117 | 7 |
| VR236 | -0.2963358 | 237 | -0.246436 | 236 | -0.1538522 | 239 | -0.097464 | 243 | -0.05209909 | 260 |
| VR237 | 0.054694 | 103 | 0.114049 | 105 | 0.1303758 | 92 | 0.1095927 | 86 | 0.07312497 | 78 |
| VR238 | -0.3149314 | 241 | -0.2710774 | 242 | -0.1671839 | 245 | -0.1010289 | 253 | -0.04849439 | 252 |
| VR239 | 0.0657862 | 96 | 0.1088623 | 112 | 0.0903379 | 122 | 0.0596355 | 126 | 0.02774644 | 132 |
| VR240 | -0.2963358 | 237 | -0.246436 | 236 | -0.1538522 | 239 | -0.097464 | 243 | -0.05209909 | 260 |
| VR241 | 0.1943549 | 50 | 0.2465952 | 56 | 0.1840929 | 66 | 0.121796 | 76 | 0.06166069 | 93 |
| VR242 | 0.2751449 | 28 | 0.3420028 | 26 | 0.2737251 | 23 | 0.1973128 | 23 | 0.11645062 | 29 |
| VR243 | -0.4111057 | 286 | -0.3766457 | 286 | -0.2577335 | 286 | -0.1770915 | 287 | -0.10726158 | 287 |
| VR244 | -0.0142952 | 131 | 0.0441067 | 136 | 0.0501061 | 139 | 0.0362134 | 149 | 0.01738409 | 155 |
| VR245 | 0.1761613 | 55 | 0.2852717 | 41 | 0.2474179 | 30 | 0.1926088 | 26 | 0.12819438 | 21 |
| VR246 | 0.234684 | 33 | 0.2984314 | 37 | 0.2319335 | 38 | 0.1604633 | 41 | 0.08762653 | 60 |
| VR247 | -0.1041331 | 171 | -0.050566 | 179 | -0.0035034 | 178 | 0.011652 | 172 | 0.01206393 | 171 |
| VR248 | -0.1521565 | 195 | -0.0985187 | 195 | -0.0458803 | 195 | -0.0243561 | 197 | -0.01318493 | 203 |
| VR249 | -0.2994327 | 239 | -0.2631217 | 240 | -0.1535827 | 238 | -0.0865401 | 239 | -0.03669348 | 238 |
| VR250 | -0.328521 | 247 | -0.2862959 | 247 | -0.1931369 | 261 | -0.1347237 | 273 | -0.08573704 | 277 |
| VR251 | 0.2515532 | 31 | 0.2988548 | 36 | 0.2203014 | 42 | 0.1452317 | 56 | 0.07370213 | 77 |
| VR252 | -0.379279 | 270 | -0.3206686 | 266 | -0.1901438 | 257 | -0.1096338 | 257 | -0.04885261 | 256 |
| VR253 | -0.3478996 | 258 | -0.2922598 | 258 | -0.1726611 | 249 | -0.0995332 | 245 | -0.04463694 | 243 |
| VR254 | 0.0657862 | 96 | 0.1088623 | 112 | 0.0903379 | 122 | 0.0596355 | 126 | 0.02774644 | 132 |
| VR255 | 0.3480105 | 13 | 0.3866998 | 15 | 0.2725407 | 24 | 0.1786514 | 32 | 0.09313753 | 51 |
| VR256 | -0.1466854 | 190 | -0.0459123 | 172 | 0.0009616 | 172 | 0.0083296 | 176 | 0.00136486 | 179 |
| VR257 | -0.0253101 | 136 | 0.0663172 | 127 | 0.077499 | 128 | 0.0612279 | 122 | 0.03503686 | 123 |
| VR258 | -0.1202467 | 177 | -0.0791378 | 189 | -0.0361542 | 194 | -0.0167303 | 193 | -0.00552676 | 195 |
| VR259 | -0.4073165 | 276 | -0.3529597 | 276 | -0.2159625 | 276 | -0.1288497 | 263 | -0.06046627 | 263 |
| VR260 | 0.1290753 | 71 | 0.2326073 | 65 | 0.2051695 | 54 | 0.1586914 | 44 | 0.10281123 | 39 |
| VR261 | -0.328521 | 247 | -0.2862959 | 247 | -0.1931369 | 261 | -0.1347237 | 273 | -0.08573704 | 277 |
| VR262 | 0.0522216 | 104 | 0.0884319 | 118 | 0.0764502 | 131 | 0.0524752 | 136 | 0.02638147 | 137 |
| VR263 | -0.3454372 | 256 | -0.2882917 | 256 | -0.1664228 | 243 | -0.0921689 | 240 | -0.03752439 | 239 |
| VR264 | -0.0686621 | 155 | 0.0231444 | 146 | 0.0479946 | 143 | 0.0418742 | 140 | 0.02469324 | 139 |
| VR265 | 0.1263586 | 74 | 0.1706169 | 82 | 0.1219857 | 96 | 0.0748184 | 114 | 0.03252617 | 129 |
| VR266 | 0.1090627 | 81 | 0.1573344 | 85 | 0.1265857 | 94 | 0.0864945 | 105 | 0.04545245 | 110 |
| VR267 | -0.2605366 | 228 | -0.214181 | 228 | -0.1267636 | 230 | -0.0739335 | 231 | -0.03397462 | 232 |
| VR268 | -0.0313232 | 142 | 0.0209355 | 154 | 0.0344578 | 156 | 0.0280765 | 158 | 0.01571927 | 163 |
| VR269 | -0.5104426 | 293 | -0.4683455 | 293 | -0.3195247 |
293 |
-0.2187072 | 293 | -0.1312375 | 293 |
| VR270 | -0.1466854 | 190 | -0.0459123 | 172 | 0.0009616 | 172 | 0.0083296 | 176 | 0.00136486 | 179 |
| VR271 | -0.3907092 | 275 | -0.3442674 | 275 | -0.2004282 | 271 | -0.1117621 | 261 | -0.04627449 | 251 |
| VR272 | 0.0198672 | 117 | 0.1117101 | 106 | 0.1095981 | 106 | 0.0831632 | 107 | 0.04766056 | 105 |
| VR273 | -0.1805969 | 197 | -0.1372569 | 206 | -0.0603184 | 199 | -0.0249444 | 199 | -0.00627211 | 196 |
| VR274 | 0.4655178 | 3 | 0.4923461 | 3 | 0.3705159 | 4 | 0.2709503 | 5 | 0.17368736 | 5 |
| VR275 | 0.024852 | 113 | 0.0864484 | 120 | 0.0793915 | 125 | 0.0551694 | 133 | 0.02714879 | 134 |
| VR276 | 0.1601359 | 63 | 0.2333674 | 63 | 0.1960184 | 59 | 0.1495629 | 50 | 0.09825803 | 45 |
| VR277 | 0.070006 | 90 | 0.145335 | 94 | 0.1405273 | 87 | 0.112971 | 82 | 0.07603746 | 74 |
| VR278 | -0.1521565 | 195 | -0.0985187 | 195 | -0.0458803 | 195 | -0.0243561 | 197 | -0.01318493 | 203 |
| VR279 | -0.4073165 | 276 | -0.3529597 | 276 | -0.2159625 | 276 | -0.1288497 | 263 | -0.06046627 | 263 |
| VR280 | 0.0684069 | 91 | 0.1177157 | 104 | 0.1053339 | 110 | 0.0731 | 115 | 0.03646415 | 121 |
| VR281 | 0.5169436 | 1 | 0.5734171 | 1 | 0.4543916 | 1 | 0.3526536 | 1 | 0.24444907 | 1 |
| VR282 | 0.2523543 | 30 | 0.301631 | 35 | 0.2374382 | 35 | 0.1704733 | 34 | 0.10182544 | 41 |
| VR283 | 0.2797245 | 26 | 0.3295549 | 27 | 0.2420588 | 33 | 0.1598632 | 42 | 0.08163873 | 69 |
| VR284 | 0.2797245 | 26 | 0.3295549 | 27 | 0.2420588 | 33 | 0.1598632 | 42 | 0.08163873 | 69 |
| VR285 | -0.5104426 | 293 | -0.4683455 | 293 | -0.3195247 | 293 | -0.2187072 | 293 | -0.1312375 | 293 |
| VR286 | 0.0962651 | 84 | 0.1771154 | 79 | 0.1956424 | 62 | 0.1698115 | 35 | 0.12446706 | 22 |
| VR287 | -0.0686621 | 155 | 0.0231444 | 146 | 0.0479946 | 143 | 0.0418742 | 140 | 0.02469324 | 139 |
| VR288 | 0.3426099 | 15 | 0.3941029 | 14 | 0.2917013 | 16 | 0.1991179 | 22 | 0.11041363 | 32 |
| VR289 | -0.2000514 | 208 | -0.1392801 | 207 | -0.0736538 | 209 | -0.0362187 | 202 | -0.01202402 | 202 |
| VR290 | -0.4073165 | 276 | -0.3529597 | 276 | -0.2159625 | 276 | -0.1288497 | 263 | -0.06046627 | 263 |
| VR291 | -0.4111057 | 286 | -0.3766457 | 286 | -0.2577335 | 286 | -0.1770915 | 287 | -0.10726158 | 287 |
| VR292 | 0.2144575 | 43 | 0.3032885 | 34 | 0.2476315 | 29 | 0.1838035 | 29 | 0.11702324 | 28 |
| VR293 | -0.3478996 | 258 | -0.2922598 | 258 | -0.1726611 | 249 | -0.0995332 | 245 | -0.04463694 | 243 |
| VR294 | -0.2605366 | 228 | -0.214181 | 228 | -0.1267636 | 230 | -0.0739335 | 231 | -0.03397462 | 232 |
| VR295 | -0.3478996 | 258 | -0.2922598 | 258 | -0.1726611 | 249 | -0.0995332 | 245 | -0.04463694 | 243 |
| VR296 | -0.2381774 | 214 | -0.1869896 | 214 | -0.1095815 | 216 | -0.0656824 | 217 | -0.03295054 | 223 |
| VR297 | 0.2154906 | 42 | 0.2654438 | 50 | 0.2133195 | 45 | 0.1516096 | 48 | 0.08797222 | 58 |
| VR298 | -0.1363048 | 181 | -0.0772643 | 185 | -0.0284263 | 187 | -0.0088203 | 191 | -9.2697E-05 | 188 |
| VR299 | -0.0686621 | 155 | 0.0231444 | 146 | 0.0479946 | 143 | 0.0418742 | 140 | 0.02469324 | 139 |
| VR300 | -0.0686621 | 155 | 0.0231444 | 146 | 0.0479946 | 143 | 0.0418742 | 140 | 0.02469324 | 139 |
References
- 1.Ibrahim N.K., Hammed H., Zaidan A.A., Zaidan B.B., Albahri O.S., Alsalem M.A., Alaa M. Multi-criteria evaluation and benchmarking for young learners’ English language mobile applications in terms of LSRW skills. IEEE Access. 2019;7:146620–146651.Chicago. [Google Scholar]
- 2.Jumaah F.M., Zadain A.A., Zaidan B.B., Hamzah A.K., Bahbibi R. Decision-making solution based multi-measurement design parameter for optimization of GPS receiver tracking channels in static and dynamic real-time positioning multipath environment. Measurement. 2018;118:83–95. [Google Scholar]
- 3.Zughoul O., et al. Comprehensive insights into the criteria of student performance in various educational domains. IEEE Access. 2018;6(4):73245–73264. [Google Scholar]
- 4.Salih M.M., Zaidan B., Zaidan A., Ahmed M.A. Survey on fuzzy TOPSIS state-of-the-art between 2007 and 2017. Comput. Oper. Res. 2019;104:207–227. [Google Scholar]
- 5.Albahri A., et al. Based multiple heterogeneous wearable sensors: A smart real-time health monitoring structured for hospitals distributor. IEEE Access. 2019;7:37269–37323. [Google Scholar]
- 6.Albahri O., et al. Fault-tolerant mHealth framework in the context of IoT-based real-time wearable health data sensors. IEEE Access. 2019;7:50052–50080. [Google Scholar]
- 7.Almahdi E., Zaidan A., Zaidan B., Alsalem M., Albahri O., Albahri A. Mobile patient monitoring systems from a benchmarking aspect: Challenges, open issues and recommended solutions. J. Med. Syst. 2019;43(7):207. doi: 10.1007/s10916-019-1336-z. [DOI] [PubMed] [Google Scholar]
- 8.Alsalem M., et al. Multiclass benchmarking framework for automated acute Leukaemia detection and classification based on BWM and group-VIKOR. J. Med. Syst. 2019;43(7):212. doi: 10.1007/s10916-019-1338-x. [DOI] [PubMed] [Google Scholar]
- 9.Almahdi E., Zaidan A., Zaidan B., Alsalem M., Albahri O., Albahri A.S.J.J. Mobile-based patient monitoring systems: A prioritisation framework using multi-criteria decision-making techniques. J. Med. Syst. 2019;43(7):219. doi: 10.1007/s10916-019-1339-9. [DOI] [PubMed] [Google Scholar]
- 10.Tariq I., et al. MOGSABAT: a metaheuristic hybrid algorithm for solving multi-objective optimisation problems. Neural Comput. Appl. 2018;32(2020) [Google Scholar]
- 11.Zaidan A.A., Zaidan B.B., Albahri O.S., Alsalem M.A., Albahri A.S., Yas Q.M., Hashim M. A review on smartphone skin cancer diagnosis apps in evaluation and benchmarking: coherent taxonomy, open issues and recommendation pathway solution. Health Technol. 2018;8(4):223–238. [Google Scholar]
- 12.Alsalem M.A., Zaidan A.A., Zaidan B.B., Hashim M., Albahri O.S., Albahri A.S., Mohammed K.I. Systematic review of an automated multiclass detection and classification system for acute Leukaemia in terms of evaluation and benchmarking, open challenges, issues and methodological aspects. J. Med. Syst. 2018;42(11):1–36. doi: 10.1007/s10916-018-1064-9. [DOI] [PubMed] [Google Scholar]
- 13.Kalid N., Zaidan A., Zaidan B., Salman O.H., Hashim M., Muzammil H.J.J. Based real time remote health monitoring systems: a review on patients prioritization and related“ big data” using body sensors information and communication technology. J. Med. Syst. 2018;42(2):30. doi: 10.1007/s10916-017-0883-4. [DOI] [PubMed] [Google Scholar]
- 14.Almahdi E., Zaidan A., Zaidan B., Alsalem M., Albahri O., Albahri A. Mobile-based patient monitoring systems: A prioritisation framework using multi-criteria decision-making techniques. J. Med. Syst. 2019;43(7):219. doi: 10.1007/s10916-019-1339-9. [DOI] [PubMed] [Google Scholar]
- 15.Mohammed K., et al. Real-time remote-health monitoring systems: a review on patients prioritisation for multiple-chronic diseases, taxonomy analysis, concerns and solution procedure. J. Med. Syst. 2019;43(7):223. doi: 10.1007/s10916-019-1362-x. [DOI] [PubMed] [Google Scholar]
- 16.Khatari M., Zaidan A., Zaidan B., Albahri O., Alsalem M. Multi-criteria evaluation and benchmarking for active queue management methods: Open issues, challenges and recommended pathway solutions. Int. J. Inf. Technol. Decis. Mak. 2019;18(04):1187–1242. [Google Scholar]
- 17.Alaa M., et al. Assessment and ranking framework for the English skills of pre-service teachers based on fuzzy Delphi and TOPSIS methods. IEEE Access. 2019;7:126201–126223. [Google Scholar]
- 18.Talal M., et al. Comprehensive review and analysis of anti-malware apps for smartphones. Telecommun. Syst. 2019;72(2):285–337. [Google Scholar]
- 19.Albahri A.S., et al. Development of IoT-based mhealth framework for various cases of heart disease patients. Health Technol. 2021 2021/07/24. [Google Scholar]
- 20.He P., Yang Z., Hou B. A multi-attribute decision-making algorithm using q-rung orthopair power bonferroni mean operator and its application. Mathematics. 2020;8(8):1240. [Google Scholar]
- 21.Zaidan A.A., Zaidan B.B., Al-Haiqi A., Kiah M.L.M., Hussain M., Abdulnabi M. Evaluation and selection of open-source EMR software packages based on integrated AHP and TOPSIS. J. Biomed. Inform. 2015;53(8):390–404. doi: 10.1016/j.jbi.2014.11.012. [DOI] [PubMed] [Google Scholar]
- 22.Zaidan A., Zaidan B., Hussain M., Haiqi A., Kiah M.M., Abdulnabi M. Multi-criteria analysis for OS-EMR software selection problem: a comparative study. Decis. Support Syst. 2015;78(4):15–27. [Google Scholar]
- 23.Abdullateef B.N., Elias N.F., Mohamed H., Zaidan A., Zaidan B. An evaluation and selection problems of OSS-LMS packages. SpringerPlus. 2016;5(1):248–255. doi: 10.1186/s40064-016-1828-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.Yas Q.M., Zadain A., Zaidan B., Lakulu M., Rahmatullah B. Towards on develop a framework for the evaluation and benchmarking of skin detectors based on artificial intelligent models using multi-criteria decision-making techniques. Int. J. Pattern Recognit. Artif. Intell. 2017;31(03) [Google Scholar]
- 25.Zaidan B., Zaidan A. Software and hardware FPGA-based digital watermarking and steganography approaches: toward new methodology for evaluation and benchmarking using multi-criteria decision-making techniques. J. Circ. Syst. Comput. 2017;26(07) [Google Scholar]
- 26.Zaidan B.B., Zaidan A.A., Karim H.A., Ahmad N.N. A new approach based on multi-dimensional evaluation and benchmarking for data hiding techniques. Int. J. Inf. Technol. Decis. Making. 2021;0(0):1–42. [Google Scholar]
- 27.Qader M., Zaidan B., Zaidan A., Ali S., Kamaluddin M. A methodology for football players selection problem based on multi-measurements criteria analysis. Measurement. 2017;111:38–50. [Google Scholar]
- 28.Jumaah F., Zaidan A., Zaidan B., Bahbibi R., Qahtan M., Sali A.J.T.S. Technique for order performance by similarity to ideal solution for solving complex situations in multi-criteria optimization of the tracking channels of GPS baseband telecommunication receivers. Telecommun. Syst. 2018;68(3):425–443. [Google Scholar]
- 29.Salman O.H., Zaidan A., Zaidan B., Naserkalid, Hashim M., Making D. Novel methodology for triage and prioritizing using “big data” patients with chronic heart diseases through telemedicine environmental. Int. J. Inf. Technol. Decis. Mak. 2017;16(05):1211–1245. [Google Scholar]
- 30.Zaidan B., Zaidan A. Comparative study on the evaluation and benchmarking information hiding approaches based multi-measurement analysis using TOPSIS method with different normalisation, separation and context techniques. Measurement. 2018;117:277–294. [Google Scholar]
- 31.Alamoodi A., et al. A systematic review into the assessment of medical apps: motivations, challenges, recommendations and methodological aspect. Health Technol. 2020:1–17. [Google Scholar]
- 32.Zughoul O., Zaidan A., Zaidan B., Faiez M.J.I.J.o.I.T., Making D. Novel triplex procedure for ranking the ability of software engineering students based on two levels of AHP and group TOPSIS techniques. Int. J. Inf. Technol. Decis. Mak. 2020 [Google Scholar]
- 33.Albahri A., Hamid R.A., Albahri O., Zaidan A. Detection-based prioritisation: framework of multi-laboratory characteristics for asymptomatic COVID-19 carriers based on integrated Entropy–TOPSIS methods. Artif. Intell. Med. 2021;111 doi: 10.1016/j.artmed.2020.101983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34.Albahri A., Zaidan A., Albahri O., Zaidan B., Alsalem M. Real-time fault-tolerant mHealth system: Comprehensive review of healthcare services, opens issues, challenges and methodological aspects. J. Med. Syst. 2018;42(8):1–56. doi: 10.1007/s10916-018-0983-9. [DOI] [PubMed] [Google Scholar]
- 35.Albahri O., et al. Systematic review of real-time remote health monitoring system in triage and priority-based sensor technology: Taxonomy, open challenges, motivation and recommendations. J. Med. Syst. 2018;42(5):1–27. doi: 10.1007/s10916-018-0943-4. [DOI] [PubMed] [Google Scholar]
- 36.Albahri A.S., et al. IoT-based telemedicine for disease prevention and health promotion: state-of-the-art. J. Netw. Comput. Appl. 2021;173 [Google Scholar]
- 37.Malik R., et al. Novel roadside unit positioning framework in the context of the vehicle-to-infrastructure communication system based on AHP—Entropy for weighting and borda—VIKOR for uniform ranking. Int. J. Inf. Technol. Decis. Mak. 2021:1–34. [Google Scholar]
- 38.Dawood K.A. Novel Multi-Perspective Usability Evaluation Framework for Selection of Open Source Software Based on BWM and Group VIKOR Techniques. Int. J. Inf. Technol. Decis. Mak. 2020 [Google Scholar]
- 39.Hamid R.A., Albahri A., Albahri O., Zaidan A. Dempster–Shafer theory for classification and hybridised models of multi-criteria decision analysis for prioritisation: a telemedicine framework for patients with heart diseases. J. Amb. Intell. Hum. Comput. 2021:1–35. [Google Scholar]
- 40.Alamoodi A., et al. Machine learning-based imputation soft computing approach for large missing scale and non-reference data imputation. Chaos Solitons Fract. 2021;151 [Google Scholar]
- 41.Riaz M., Sałabun W., Farid H.M.A., Ali N., Wątróbski J. A robust q-rung orthopair fuzzy information aggregation using Einstein operations with application to sustainable energy planning decision management. Energies. 2020;13(9):2155. [Google Scholar]
- 42.Abdulkareem K.H., Arbaiy N., Zaidan A.A., Zaidan B.B., Albahri O.S., Alsalem M.A., Salih M.M. A novel multi-perspective benchmarking framework for selecting image dehazing intelligent algorithms based on BWM and group VIKOR techniques. Int. J. Inf. Technol. Decis. Mak. 2020;19(03):909–957. [Google Scholar]
- 43.Albahri O., et al. New mHealth hospital selection framework supporting decentralised telemedicine architecture for outpatient cardiovascular disease-based integrated techniques: Haversine-GPS and AHP-VIKOR. J. Amb. Intell. Hum. Comput. 2021:1–21. [Google Scholar]
- 44.Albahri O., Zaidan A., Zaidan B., Hashim M., Albahri A., Alsalem M. Real-time remote health-monitoring Systems in a Medical Centre: a review of the provision of healthcare services-based body sensor information, open challenges and methodological aspects. J. Med. Syst. 2018;42(9):1–47. doi: 10.1007/s10916-018-1006-6. [DOI] [PubMed] [Google Scholar]
- 45.Albahri O.S., et al. Multidimensional benchmarking of the active queue management methods of network congestion control based on extension of fuzzy decision by opinion score method. Int. J. Intell. Syst. 2021;36(2):796–831. [Google Scholar]
- 46.Napi N.M., Zaidan A.A., Zaidan B.B., Albahri O.S., Alsalem M.A., Albahri A.S. Medical emergency triage and patient prioritisation in a telemedicine environment: a systematic review. Health Technol. 2019;9(5):679–700. 2019/11/01. [Google Scholar]
- 47.Enaizan O., et al. Electronic medical record systems: Decision support examination framework for individual, security and privacy concerns using multi-perspective analysis. Health Technol. 2020;10(3):795–822. [Google Scholar]
- 48.Zaidan A., Zaidan B., Alsalem M., Albahri O., Albahri A., Qahtan M. Multi-agent learning neural network and Bayesian model for real-time IoT skin detectors: a new evaluation and benchmarking methodology. Neural Comput. Appl. 2020;32(12):8315–8366. [Google Scholar]
- 49.Zaidan A., Zaidan B., Alsalem M., Momani F., Zughoul O. Novel multiperspective hiring framework for the selection of software programmer applicants based on AHP and group TOPSIS techniques. Int. J. Inf. Technol. Decis. Mak. 2020;18(4):1–73. [Google Scholar]
- 50.Wang H., Zhang Y., Yao J. An extended VIKOR method based on q-rung orthopair shadowed set and its application to multi-attribute decision making. Symmetry. 2020;12(9):1508. [Google Scholar]
- 51.Liu P., Zhu B., Wang P., Shen M. An approach based on linguistic spherical fuzzy sets for public evaluation of shared bicycles in China. Eng. Appl. Artif. Intell. 2020;87 [Google Scholar]
- 52.Yang Z., Li J., Huang L., Shi Y. Developing dynamic intuitionistic normal fuzzy aggregation operators for multi-attribute decision-making with time sequence preference. Expert Syst. Appl. 2017;82:344–356. [Google Scholar]
- 53.Hussian Z., Yang M.S. Distance and similarity measures of Pythagorean fuzzy sets based on the Hausdorff metric with application to fuzzy TOPSIS. Int. J. Intell. Syst. 2019;34(10):2633–2654. [Google Scholar]
- 54.Wan S.-P., Li S.-Q., Dong J.-Y. A three-phase method for Pythagorean fuzzy multi-attribute group decision making and application to haze management. Comput. Ind. Eng. 2018;123:348–363. [Google Scholar]
- 55.Hussain A., Ali M.Irfan, Mahmood T. Covering based q-rung orthopair fuzzy rough set model hybrid with TOPSIS for multi-attribute decision making. J. Intell. Fuzzy Syst. 2019:1–13. Preprint. [Google Scholar]
- 56.Mahmood T., Ali Z. Entropy measure and TOPSIS method based on correlation coefficient using complex q-rung orthopair fuzzy information and its application to multi-attribute decision making. Soft Comput. 2021;25(2):1249–1275. [Google Scholar]
- 57.Chen K., Luo Y. Generalized orthopair linguistic Muirhead mean operators and their application in multi-criteria decision making. J. Intell. Fuzzy Syst. 2019;37(1):797–809. [Google Scholar]
- 58.Yager R.R. Generalized orthopair fuzzy sets. IEEE Trans. Fuzzy Syst. 2016;25(5):1222–1230. [Google Scholar]
- 59.Hussain A., Ali M., Mahmood T. Hesitant q-rung orthopair fuzzy aggregation operators with their applications in multi-criteria decision making. Iran. J. Fuzzy Syst. 2020;17(3):117–134. [Google Scholar]
- 60.Liu Z., Li L., Li J. q-Rung orthopair uncertain linguistic partitioned Bonferroni mean operators and its application to multiple attribute decision-making method. Int. J. Intell. Syst. 2019;34(10):2490–2520. [Google Scholar]
- 61.Yang Z., Chang J. A multi-attribute decision-making-based site selection assessment algorithm for garbage disposal plant using interval q-rung orthopair fuzzy power Muirhead mean operator. Environ. Res. 2021;193 doi: 10.1016/j.envres.2020.110385. [DOI] [PubMed] [Google Scholar]
- 62.Yang Z., Li X., Cao Z., Li J. Q-rung orthopair normal fuzzy aggregation operators and their application in multi-attribute decision-making. Mathematics. 2019;7(12):1142. [Google Scholar]
- 63.Wang Y., Shan Z., Huang L. The extension of TOPSIS method for multi-attribute decision-making with q-Rung orthopair hesitant fuzzy sets. IEEE Access. 2020;8:165151–165167. [Google Scholar]
- 64.Riaz M., Hamid M.T., Afzal D., Pamucar D., Chu Y.-M. Multi-criteria decision making in robotic agri-farming with q-rung orthopair m-polar fuzzy sets. PLoS One. 2021;16(2) doi: 10.1371/journal.pone.0246485. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 65.Pınar A., Babak Daneshvar R., Özdemir Y.S. q-Rung orthopair fuzzy TOPSIS method for green supplier selection problem. Sustainability. 2021;13(2):985. [Google Scholar]
- 66.Krishankumar R., Nimmagadda S.S., Rani P., Mishra A.R., Ravichandran K., Gandomi A.H. Solving renewable energy source selection problems using a q-rung orthopair fuzzy-based integrated decision-making approach. J. Cleaner Prod. 2021;279 [Google Scholar]
- 67.Salih M.M., Zaidan B., Zaidan A. Fuzzy decision by opinion score method. Appl. Soft Comput. 2020;96 [Google Scholar]
- 68.Salih M.M., Albahri O., Zaidan A., Zaidan B., Jumaah F., Albahri A. Benchmarking of AQM methods of network congestion control based on extension of interval type-2 trapezoidal fuzzy decision by opinion score method. Telecommun. Syst. 2021;77(3):493–522. [Google Scholar]
- 69.Mohammed R.T., et al. Determining importance of many-objective optimisation competitive algorithms evaluation criteria based on a novel fuzzy-weighted zero-inconsistency method. Int. J. Inf. Technol. Decis. Mak. 2021;0(0):1–47. [Google Scholar]
- 70.Krishnan E., et al. Interval type 2 trapezoidal-fuzzy weighted with zero inconsistency combined with VIKOR for evaluating smart e-tourism applications. Int. J. Intell. Syst. 2021 [Google Scholar]
- 71.Liu P., Wang P. Some q-rung orthopair fuzzy aggregation operators and their applications to multiple-attribute decision making. Int. J. Intell. Syst. 2018;33(2):259–280. [Google Scholar]
- 72.Salih M.M., Albahri O., Zaidan A., Zaidan B., Jumaah F., Albahri A. Benchmarking of AQM methods of network congestion control based on extension of interval type-2 trapezoidal fuzzy decision by opinion score method. Telecommun. Syst. 2021:1–30. [Google Scholar]
- 73.Albahri O.S., et al. Multidimensional benchmarking of the active queue management methods of network congestion control based on extension of fuzzy decision by opinion score method. Int. J. Intell. Syst. 2021 [Google Scholar]
- 74.Salih M.M., Zaidan B., Zaidan A. Fuzzy decision by opinion score method. Appl. Soft Comput. 2020 [Google Scholar]
- 75.Albahri A., Hamid R.A. Role of biological data mining and machine learning techniques in detecting and diagnosing the novel coronavirus (COVID-19): a systematic review. J. Med. Syst. 2020;44(7):122. doi: 10.1007/s10916-020-01582-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 76.Albahri O., et al. Systematic review of artificial intelligence techniques in the detection and classification of COVID-19 medical images in terms of evaluation and benchmarking: Taxonomy analysis, challenges, future solutions and methodological aspects. J. Infect. Public Health. 2020;13(10):1381–1396. doi: 10.1016/j.jiph.2020.06.028. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 77.Albahri A., et al. Multi-biological laboratory examination framework for the prioritization of patients with COVID-19 based on integrated AHP and group VIKOR methods. Int. J. Inf. Technol. Decis. Mak. 2020;19(05):1247–1269. [Google Scholar]
- 78.Albahri O., et al. Helping doctors hasten COVID-19 treatment: Towards a rescue framework for the transfusion of best convalescent plasma to the most critical patients based on biological requirements via ml and novel MCDM methods. Comput. Methods Programs Biomed. 2020;196 doi: 10.1016/j.cmpb.2020.105617. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 79.Alamoodi A., et al. Sentiment analysis and its applications in fighting COVID-19 and infectious diseases: a systematic review. Expert Syst. Appl. 2020 doi: 10.1016/j.eswa.2020.114155. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 80.Albahri A., Hamid R.A. Detection-based prioritisation: framework of multi-laboratory characteristics for asymptomatic COVID-19 carriers based on integrated entropy–TOPSIS methods. Artif. Intell. Med. 2020 doi: 10.1016/j.artmed.2020.101983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 81.Mohsin A., et al. PSO–Blockchain-based image steganography: towards a new method to secure updating and sharing COVID-19 data in decentralised hospitals intelligence architecture. Multimed. Tools Appl. 2021;80(9):14137–14161. doi: 10.1007/s11042-020-10284-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 82.Mohammed T.J., et al. Convalescent-plasma-transfusion intelligent framework for rescuing COVID-19 patients across centralised/decentralised telemedicine hospitals based on AHP-group TOPSIS and matching component. Appl. Intell. 2021:1–32. doi: 10.1007/s10489-020-02169-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 83.del Carmen Munguía-López A., Ponce-Ortega J.M. Fair Allocation of Potential COVID-19 Vaccines Using an Optimization-Based Strategy. Process. Integr. Optim. Sustain. 2021;5(1):3–12. [Google Scholar]
- 84.Albahri A.S. Novel dynamic fuzzy decision-making framework for COVID-19 vaccine dose recipients. J. Adv. Res. 2021 doi: 10.1016/j.jare.2021.08.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 85.Kalid N., Zaidan A.A., Zaidan B.B., Salman O.H., Hashim M., Albahri O.S., Albahri A.S. Based on real time remote health monitoring systems: a new approach for prioritization “large scales data” patients with chronic heart diseases using body sensors and communication technology. J. Med. Syst. 2018;42(4):1–37. doi: 10.1007/s10916-018-0916-7. [DOI] [PubMed] [Google Scholar]
- 86.Abdulkareem K.H., et al. A novel multi-perspective benchmarking framework for selecting image dehazing intelligent algorithms based on BWM and group VIKOR techniques. Int. J. Inf. Technol. Decis. Mak. 2020:1–49. [Google Scholar]
- 87.Albahri O.S., et al. Multidimensional benchmarking of the active queue management methods of network congestion control based on extension of fuzzy decision by opinion score method. Int. J. Intell. Syst. 2021;n/a(n/a) [Google Scholar]
- 88.Abdulkareem K.H., Arbaiy N., Zaidan A.A., Zaidan B.B., Albahri O.S., Alsalem M.A., Salih M.M. A new standardisation and selection framework for real-time image dehazing algorithms from multi-foggy scenes based on fuzzy Delphi and hybrid multi-criteria decision analysis methods. Neural Comput. Appl. 2021;33:1029–1054. [Google Scholar]
- 89.Abdulkareem K.H., et al. A new standardisation and selection framework for real-time image dehazing algorithms from multi-foggy scenes based on fuzzy Delphi and hybrid multi-criteria decision analysis methods. Neural Comput. Appl. 2020 2020/05/26. [Google Scholar]
- 90.K. Mohammed et al., "Novel technique for reorganisation of opinion order to interval levels for solving several instances representing prioritisation in patients with multiple chronic diseases," vol. 185, p. 105151, 2020. [DOI] [PubMed]
- 91.Mohammed K.I., Jaafar J., Zaidan A.A., Albahri O.S., Zaidan B.B., Abdulkareem K.H., Alamoodi A.H. A uniform intelligent prioritisation for solving diverse and big data generated from multiple chronic diseases patients based on hybrid decision-making and voting method. IEEE Access. 2020;8:91521–91530. [Google Scholar]
- 92.Abdulkareem K.H. A novel multi-perspective benchmarking framework for selecting image dehazing intelligent algorithms based on BWM and group VIKOR techniques. Int. J. Inf. Technol. Decis. Mak. 2020 [Google Scholar]
- 93.Pamucar D., Yazdani M., Obradovic R., Kumar A., Torres-Jiménez M. A novel fuzzy hybrid neutrosophic decision-making approach for the resilient supplier selection problem. Int. J. Intell. Syst. 2020;35(12):1934–1986. [Google Scholar]
- 94.Ali Z., Mahmood T., Ullah K., Khan Q. Einstein geometric aggregation operators using a novel complex interval-valued pythagorean fuzzy setting with application in green supplier chain management. Rep. Mech. Eng. 2021;2(1):105–134. doi: 10.31181/rme2001020105t. [DOI] [Google Scholar]
- 95.Kushwaha D.K., Panchal D., Sachdeva A. Risk analysis of cutting system under intuitionistic fuzzy environment. Rep. Mech. Eng. 2020;1(1):162–173. doi: 10.31181/rme200101162k. [DOI] [Google Scholar]
- 96.Pamucar D.S., Savin L.M. Multiple-criteria model for optimal off-road vehicle selection for passenger transportation: BWM-COPRAS model. Milit. Tech. Courier. 2020;68(1):28–64. [Google Scholar]
- 97.Milosevic T., Pamucar D., Chatterjee P. Model for selecting a route for the transport of hazardous materials using a fuzzy logic system. Milit. Tech. Courier. 2021;69(2):355–390. [Google Scholar]
- 98.Žižović M., Pamucar D., Miljković B., Karan A. Multiple-criteria evaluation model for medical professionals assigned to temporary SARS-CoV-2 hospitals. Decis. Making. 2021;4(1):153–173. [Google Scholar]
- 99.Badi I., Pamucar D. Supplier selection for steelmaking company by using combined Grey-MARCOS methods. Decis. Making. 2020;3(2):37–48. doi: 10.31181/dmame2003037b. [DOI] [Google Scholar]
- 100.Biswas S. Measuring performance of healthcare supply chains in India: A comparative analysis of multi-criteria decision making methods. Decis. Making. 2020;3(2):162–189. doi: 10.31181/dmame2003162b. [DOI] [Google Scholar]
- 101.Pamucar D. Normalized weighted Geometric Dombi Bonferoni Mean Operator with interval grey numbers: application in multicriteria decision making. Rep. Mech. Eng. 2020;1(1):44–52. [Google Scholar]











