Skip to main content
Cureus logoLink to Cureus
. 2024 Jun 3;16(6):e61570. doi: 10.7759/cureus.61570

Mutations in Genes Producing Nitric Oxide and Hydrogen Sulfide and Their Connection With Apoptotic Genes in Chronic Myeloid Leukemia

Bahaaddin A Saber 1,, Ashabil Aygan 2, Abbas Salihi 3
Editors: Alexander Muacevic, John R Adler
PMCID: PMC11221202  PMID: 38962618

Abstract

Background

Despite advances in chronic myeloid leukemia (CML) genetics, the role of nitric oxide (NO) and hydrogen sulfide (H2S) gene mutations and their relationship to apoptotic genes is unclear. Therefore, this study investigated NO- and H2S-producing genes' mutations and their interactions with apoptotic genes using Sanger sequencing and next-generation sequencing (NGS).

Methodology

A complete blood count (CBC) was carried out to measure the total number of white blood cells, while IL-6 levels were assessed in both control and CML patients using an ELISA technique. Sanger sequencing was used to analyze mutations in the CTH and NOS3 genes, whereas NGS was applied to examine mutations on all chromosomes.

Results

White blood cell (WBC) and granulocyte counts were significantly higher in CML patients compared to controls (p<0.0001), and monocyte counts were similarly higher (p<0.05). Interleukin-6 (IL-6) levels were significantly elevated in CML patients than controls (p<0.0001), indicating a possible link to CML etiology or progression. Multiple mutations have been identified in both genes, notably in CTH exon 12 and the NOS3 genes VNTR, T786C, and G894T. This study also measured IL-6 concentrations using IL-6 assays, identifying its potential as a CML prognostic diagnostic. WBC counts, granulocyte counts, and mid-range absolute counts, or MID counts, were significantly higher in CML patients than in normal control individuals. NGS identified 1643 somatic and sex chromosomal abnormalities and 439 actively expressed genes in CML patients. The findings imply a genomic landscape beyond the BCR-ABL1 mutation in CML development compared to other databases.

Conclusion

In conclusion, this study advances the understanding of the genetic characteristics of CML by identifying mutations in the NO- and H2S-producing genes and their complex connections with genes involved in apoptosis. The comprehensive genetic profile obtained by Sanger sequencing and NGS provides possibilities for identifying novel targets for therapy and personalized treatments for CML, therefore contributing to developments in hematological diseases.

Keywords: next-generation sequencing (ngs), sanger sequencing, next generation sequencing (ngs), chronic myeloid leukaemia, nos3 gene, cth gene

Introduction

Chronic myeloid leukemia (CML), also known as chronic myelogenous leukemia, is a myeloproliferative neoplasm that involves uncontrolled myeloid cell growth [1]. CML differs from other myeloproliferative neoplasms because of the BCR-ABL1 fusion gene and Philadelphia chromosome (Ph) caused by t(9;22)(q34.1;q11.2) [2-4]. Proven (1805) genes from every leukemia subtype have been used to develop the database of leukemia gene literature, or dbLGL [5].

Hydrogen sulfide (H2S) is synthesized internally inside mammalian tissues by the enzymatic actions of cystathionine-β-synthase (CBS), cystathionine γ-lyase, and 3-mercaptopyruvate sulfurtransferase, which is located in the mitochondria. The mechanism regulates the vascular diameter, and protects the endothelium against oxidative stress, ischemia, reperfusion damage, and chronic inflammation, by activating potassium (K+) channels in vascular smooth muscle cells [6,7]. In mammals, nitric oxide synthase (NOS) in tissues generates NO. Neuronal, inducible, and endothelial NOS enzymes convert L-arginine to NO. Endothelial and neuronal NOS (eNOS and nNOS) are constitutive and calcium-dependent isoforms with small NO production. Conversely, the calcium-independent inducible NO synthase (iNOS) may be continually activated. The NO response depends on NO concentrations; lower NO concentrations stimulate cellular growth and suppress apoptosis, whereas greater NO concentrations stop the cell cycle and induce apoptosis [7-12].

Despite developments in CML genetics, little is known about NO and H2S gene mutations and their connections with apoptotic genes. To understand CML genetics, NO and H2S gene mutations and their interactions with apoptotic genes must be studied. This study will explain CML's molecular processes and the complex connection between these mutations and apoptotic genes. This study used Sanger sequencing and next-generation sequencing (NGS) to create a detailed genetic profile of CML, which could lead to novel therapeutic targets and personalized therapies for this hematological disorder.

Materials and methods

Sample collection

Blood samples were collected from 40 CML patients and 40 healthy individuals and placed into ethylene diamine tetraacetic acid (EDTA) tubes. Each tube received 3 ml of sodium citrate for haematology tests, and 3 ml was placed in gel tubes to induce coagulation and collect blood for interleukin (IL) measurement.

Complete blood count

The blood sample was analysed using a Coulter counter (Medonic M16M and M16 models; CLIAwaived Inc., CA, USA) to determine the total white blood cell (WBC), lymphocyte, and monocyte counts.

DNA extraction and quantification

The extraction of genomic DNA from blood samples collected from persons diagnosed with CML was performed using the genomic blood DNA isolation kit (Hibrigen, Turkey) according to the manufacturer's instructions, with some modifications. In summary, blood samples were obtained and promptly handled within a specified time period to avoid DNA deterioration. After extracting the DNA, we assessed both the amount and the quality of the isolated genomic DNA. The DNA concentration was measured using a nanodrop spectrophotometer at a wavelength of 260 nm. In addition, the quality of the extracted DNA was assessed by determining the A260/A280 ratio. A ratio between 1.8 and 2.0 indicates that the DNA is free of contaminants and lacks any protein or other impurities. Only DNA samples with A260/A280 ratios within the acceptable range were selected for downstream applications, ensuring high-quality genomic DNA for further molecular analysis.

Determination of genotype

Three genetic variants within the NOS3 gene and one variant of the CTH gene were studied. Individual amplification of DNA for each variant was performed using polymerase chain reaction (PCR), followed by gel electrophoresis and sequencing analysis. DNA sequencing plays a vital role in understanding genetic diversity and uncovering potential health and disease susceptibility implications. The PCR product underwent sequencing, particularly Sanger sequencing. Initially, the sample sequence was processed at the Kahramanmaraş Sütçü Imam University, ÜSKIM Laboratory, following purification and amplification with specific primers for both directions. Subsequently, a sequencing library was created using the Applied Biosystems ABI 3100 AVANT DNA Sequencer (Thermo Fisher Scientific Inc., Waltham, MA) to enable thorough sequencing analysis. The resulting extension file (AB1) was then scrutinised using Mutation Surveyor software, version 5.2.0 (SoftGenetics, State College, PA) to detect any mutations or variations in the target sequence.

NGS has transformed genomics by granting scientists unparalleled access to extensive genetic information. An essential stage in this procedure involves preparing the sequencing library, which entails converting the desired DNA into a suitable format for the sequencing platform. For this reason, we transferred the DNA samples to the Istanbul Laboratory, in Istanbul, Turkey. After checking the quality and purity of the DNA samples through nanodrop analysis, we proceeded to the next library preparation step. The library preparation process typically commences with fragmentation of the target DNA, followed by adapter ligation and PCR amplification. During the library preparation and sequencing process, numerous sequence artefacts negatively affect raw data quality for downstream analyses. Therefore, quality control and preprocessing of the raw data are crucial steps to ensure the accuracy and reliability of the sequencing results. Various tactics, such as paired-end and mate-pair sequencing, can be applied, which help the assembly of short sequences into contigs and scaffolds. After preparing the library through the standard protocols, we conducted the sequencing step using the DNBSEQ-G400 flexible genome sequencer (MGI Tech Co., Ltd, Thailand), created based on a new flow cell system that could flexibly assist a range of various sequencing modes. The raw data was analyzed using the SAMtools software (Sanger Institute, Cambridgeshire, UK), and then compared with external databases (such as gnomAD, COSMIC, and cBioPortal) to annotate and visualize the results. The subsequent data analysis involved several steps: quality control, read mapping, variant calling, and annotation.

IL-6 measurement

IL-6 levels in the study samples were measured with a particular kit (catalogue no. DE4640; Demeditec Diagnostics, Kiel, Germany). The concentration was calculated using the Stat Fax ELISA reader (Awareness Technology, Inc., Palm City, FL), and statistical analysis was performed using GraphPad Prism, version 10 (GraphPad Software, Inc./Dotmatics, Boston, MA) after establishing a standard curve using MyAssays software (MyAssays Ltd., Brighton, UK). All measurements were taken in triplicate following the manufacturer's recommendations to ensure accuracy. Furthermore, thorough quality control methods were implemented throughout the experimentation phase to validate the results acquired.

Statistical analysis

Comparisons between patients with CML and healthy individuals were performed using an unpaired t-test, and values were presented as means±SEMs. The graphics, computations, and statistical analyses were generated using GraphPad Prism, version 10. A p-value of <0.05 was considered statistically significant.

Ethical considerations

Ethical considerations concerning the collection of human blood samples for research purposes were addressed in accordance with the Declaration of Helsinki. The study was approved by the Human Ethics Research Committee of the College of Science, Salahaddin University-Erbil (under reference number 4/5/439). All patients provided an informed consent to allow their blood samples to be examined.

Results

Complete blood count

The results indicated significant differences between the control group and CML patients in all examined parameters, including WBC count, granulocyte count, monocyte count, and IL-6 levels. Patients with CML showed significantly higher (p<0.0001) WBC and granulocyte counts than the control group. In addition, monocyte counts were considerably greater (p<0.05) in individuals with CML. Still, the difference was not as noticeable as in WBC and granulocyte counts, as shown in Table 1 and Figures 1A-1C.

Table 1. A comparison of hematological parameters and IL-6 levels between controls and chronic myeloid leukemia (CML) patients.

Patients with CML had significantly greater (p<0.001) total WBC and granulocyte counts. Patients with CML had a significantly higher monocyte count (p<0.05). In CML patients, IL-6 levels were significantly higher (p<0.001).

Parameters Control CML p-value
WBC (109/L) 6.56±0.38 346.9±27.66 0.0001
Granulocyte (109/L) 3.68±0.288 127.8±6.448 0.0001
Monocyte (109/L) 0.455±0.035 31.87±9.141 0.05
IL-6 (pg/mL) 1558±53.5 3888±212.8 0.0001

Figure 1. A comparison of hematological parameters and IL-6 levels between controls and chronic myeloid leukemia (CML) patients.

Figure 1

Patients with CML had significantly greater (p<0.001) total WBC (A) and granulocyte counts (B). (C) Patients with CML had a significantly higher monocyte count (p<0.05). (D) In CML patients, IL-6 levels were significantly higher (p<0.001).

*p<0.05; ****p<0.0001 vs. healthy individuals

IL-6 concentration

Patients with CML had markedly increased (p<0.0001) levels of IL-6 compared to control individuals, indicating that IL-6 may have a role in the onset or progression of CML, as shown in Table 1 and Figure 1D.

Sanger sequencing

CML mutations were found in 40 NOS3 and CTH gene-sequenced CML patients compared to external databases (gnomAD, COSMIC, and cBioPortal). CTH determined exon 12 missense, substitution, inversion, and duplication mutations (Figure 2a). All missense genes (1:70904800) replicated in multiple patients, and heterozygous mutations (28400G>GT) led to amino acid changes (serine>isoleucine) (dbSNP:1021737), and all mutations were at the end of the cys_met_meta_pp domain, as shown in Figure 3A and Appendix A.

Figure 2. Sanger sequence analysis through the cBioPortal database.

Figure 2

(A) A lollipop mutational map showing the CTH gene mutation. (B) A lollipop mutational map showing the NOS3 gene (VNTR, T786C, and G894T).

PTM, post-translational modification

Figure 3. Electropherograms showing the mutational sample with reference.

Figure 3

(A) A Sanger sequence chromatogram for the CTH gene showing the missense mutation (dbSNP:1021737), and amino acid change (serine>isoleucine) in position (28400G>GT); (B) a Sanger sequence chromatogram for the NOS3 gene showing the mutation in the splice region on T786C that changes the nucleotide (8535G>GC); (C) a Sanger sequence chromatogram for the NOS3 gene showing the mutation in the splice region on T786C that changes the nucleotide (8371 C>T); (D) a Sanger sequence chromatogram for the NOS3 gene showing the substitution mutation (dbSNP:2070744) that changes the nucleotide (2436C>T) located on G894T; (E) a Sanger sequence chromatogram for the NOS3 gene showing the duplication mutation 6725_6751het_dupAGTCTAGACCTGCTGCG GGGGTGAGGA) located in VNTR; (F) a Sanger sequence chromatogram for the NOS3 gene showing the duplication mutation 6751_6752het_INSAGTCTAGGACCTGCTGCGGGGGTGAGGA) located in VNTR.

Additionally, the NOS3 gene, which was sequenced using three primers (VNTR 4a/b, T786C, and G894T), found numerous mutations in different locations on the gene (Figure 2b) when compared to external databases (gnomAD, COSMIC, and cBioPortal). The T786C and G894T mutations were located in the NOS3 gene domain, whereas the VNTR change occurred in intron 3 of all T786C patients. These mutations included missense, substitution, synonymous, splice region, and intron mutations. In addition, the (dbSNP:1799983) variant present in many samples had a missense mutation that changed the nucleotides (8468T>TG) on the position of (7:150696111), which replicated in many samples. The other three mutations in the splice region were (7:150696187, 7:150696176, and 7:150696178) and the variants (8533, 8535G>GC, and 8544G>GA) (Figure 3b; Appendix B). However, the G894T primers were sequenced, and different types of variations were estimated, including modifications to nucleotides that mutated sequences, and substitution mutations in all patients. The 21 (dbSNP:2070744) was found through the nucleotide variants (2436C>T) on (7:150690079) (Figure 3d; Appendix C). The VNTR modification was also on NOS3, and all variations that altered nucleotides included mutation types such as substitution, duplication, and insertion. The variant (dbSNP:3918168) is produced by a nucleotide change (6714G>GA) at location (7:150694357). This variant also resulted in duplication and insertion mutations, including (6725_6751het_dupAGTCTAGACCTGCTGCG GGGGTGAGGA) at locations (7:150694368_7:150694394). The VNTR also had an insertion mutation due to a changed nucleotide (6751_6752) (Figure 3e; Appendix D).

Next-generation sequencing

Next-generation whole-genome sequencing identified 1643 somatic and sex chromosomal abnormalities and 439 gene expressions in CML patients. The results were cross-referenced to the gnomAD, COSMIC, and cBioPortal databases. Patients with CML expressed 439 genes. Figure 4A shows how all chromosomes contribute to CML. Specifically, the X chromosome carries 96 of the 106 sex differences. Ninety-four intron alterations occur during gene expression, including upregulation and downregulation. Figure 4C shows the genes CXorf36, ASB11, ZRSR2, and TENM1. The remaining two mutations (out of 96) are unidentified. There are 10 chromosomal Y variants in four genes' intronic regions. Furthermore, chromosome 1 has 98 mutations. There are 69 mutations in 29 expressed genes, and 29 remain unidentified. Among the 69 mutations, CHD1L's frameshift-deletion mutation and PIK3CD's splice region variation stand out. Finally, 67 of the 69 variations are introns. Furthermore, chromosome 2 had 163 alterations, with 95 in 44 expressed genes. The non-transcription region (AC012363.8) had 14 mutations at the same location as MTND4P26, whereas EMILIN1 gained a missense mutation. There were also mutations in the GCA gene's intron and 3' untranslated region (3'UTR). There were 53 more unidentified mutations, including 15 in non-coding areas (Table 2).

Table 2. Variation distribution on genes and chromosomes.

Chromosome no. Mutation no. Gene no.
X 96 12
Y 10 4
1 98 30
2 158 44
3 121 28
4 81 14
5 87 27
6 43 14
7 141 25
8 101 17
9 68 17
10 72 27
11 83 30
12 91 23
13 41 13
14 25 13
15 36 8
16 35 15
17 68 25
18 44 12
19 53 19
20 29 6
21 23 8
22 44 11

Figure 4. Next-generation sequencing (NGS) analysed through the SRplot database.

Figure 4

(A) The chromosome distribution map illustrates the highest concentration of chromosomes; (B) a two-dimensional Circos plot displaying four columns, with the first indicating chromosomes, the second showing starting coordinates, the third indicating end coordinates, and the fourth representing fold change reflecting gene upregulation and downregulation during cancer progression and GC content variability; (C) an RCircos diagram (version 1.2.2, an R package for Circos 2D track plots) depicting gene names to showcase expressed genes and copy number variation, and includes information on chromosome location in the first three columns, along with gene name locations, while log2fc is displayed in another column.

Furthermore, chromosome 3 revealed 121 mutations in 28 expressed genes. These 34 mutations remain unidentified, while the other two were synonymous and located on the NPRL2 gene's PLCL2 non-coding transcript exon. The FLNB and TBCCD1 genes had two identical missense mutations. The remaining alterations were intron-based. Another 14 genes with 81 variations were found on chromosome 4. There were approximately 32 unidentified mutations, totaling 49. Two synonymous mutations and one missense FGFR3 mutation were identified. The remaining alterations affected genes located in introns. Of the 87 mutations on chromosome 5, 40 were unidentified mutations. Figure 4b shows 47 of the 87 variations on 27 expressed genes. This variant had a 3'UTR mutation and a CDH9 gene missense mutation. The RP11-232L2.1 gene had exons that did not code for proteins. PPP2R2B's 5' untranslated region (5'UTR) and GM2A's frameshift mutation were also identified; intronic mutations occurred. There were 14 active genes on chromosome 6. These genes contained 43 variations, including 24 unidentified mutations. The remaining 19 mutations were distributed among 14 genes, with six occurring in similar numbers on RP11-288G3.4 and HLA-V's non-coding transcript exons. Mutations to the HLA-DOA splice region and the TULP4 3'UTR were also identified. The remaining genes were introns.

Chromosome 7 had a total of 141 different variations. Out of 141 occurrences, 79 were characterized by unidentified mutations, while 62 were associated with 25 specific genes. This investigation identified three mutations in the 3'UTR of the AQP1 gene. We also detected two MUC12 and SMO missense mutations, two STRIP2 3'UTR mutations, and a CEP41 mutation. All the remaining ones were introns.

Furthermore, chromosome 8 contained a total of 101 genetic variations; 71 variations were not known and 30 variants had an impact on 17 genes being expressed. Both genes included equal quantities of non-coding transcript exons SMARCE1P4 and RP11-468O2.1. The 5'UTR of the CTSB gene had one mutation, whereas the other mutations were located in the introns. Of the 68 variants found on chromosome 9, 17 were linked to actively expressed genes. There were at least 24 variants that contained mutations whose identity was not known, whereas 44 variations had mutations that had been identified. The 44 variations consisted of two missense mutations in the KANK1 gene, three mutations in the 3'UTR of the CDKN2A gene, a mutation in a non-coding transcript exon of the CCL27 gene, a missense and synonymous mutation in the SURF6 gene, and three mutations in the 3'UTR of the MED22 gene. The most severe mutations were found in introns. The dataset contained a total of 72 mutations located on chromosome 10. There were 22 variations with unidentified alterations, whereas 50 variants were associated with 27 genes. Three mutations were detected in the 3'UTR of the VPS26A gene, whereas the other modifications were inside introns. Out of 83 variations, 26 were linked to mutations on chromosome 11 that were now unidentified. Of the 57 modifications, 30 were associated with expressed genes in intronic regions. However, there were three missense mutations in the PIDD1 gene and three missense and synonymous mutations in the MUC6 gene. Chromosome 12 contained a total of 91 genetic variants. Approximately 36 changes were associated with unidentified mutations, while the remaining mutations were associated with 24 functional genes. The KANSL2 gene harbored two synonymous alterations in its 3'UTR. ITGA7 and NEMP1 had missense mutations, whereas HOXC-AS3 had a mutation in a non-coding transcript exon.

Additionally, chromosome 13 had 41 variants. Twenty variants were related to unexplained mutations, whereas 13 to intron mutations in four expressed genes: TPTE2, PAN3, RXFP2, and LMO7. Chromosome 14 had 25 variants, of which two were unknown mutations. Except for synonymous NEK9 mutations, the remaining 23 variants corresponded to 13 intron-expressed genes. Chromosome 15 had 36 variants, four unexplained mutations, and nine related to expressed genes. All of these changes were intronic except for an MTHFS gene missense mutation. Unknown mutations accounted for 16 of the 35 variants on chromosome 16. The other 19 variants affected nine intron-region genes, including JPT2, TRAF7, and PLCG2.

Chromosome 17 had 68 variations. Among these variations, 13 were linked to unknown mutations, while 55 were related to 25 expressed genes. The ITGAE gene had a frameshift mutation, and the SMTNL2 and CHRNE 3'UTRs were also mutated. ULK2 had a synonymous mutation, whereas WIPF2 had both insertion and synonymous mutations. Intronic areas were mutated again. Chromosome 18 had 44 variations. The introns of 12 expressed genes (AKAIN1, CDH2, and CDH7) exhibited 33 variants. The remaining variations were unknown. Also, 26 of the 53 chromosome 19 mutations contained unknown mutations. An additional 27 variants were related to 19 expressed genes. The WDR18 gene had a synonymous mutation, but DOT1L and TDRD12 had two missense variations. Intron variation continued. Of the 29 chromosome 20 variants, 18 were associated with unknown mutations. This includes 11 changes to the intron regions of six expressed genes. The MIR646HG gene contained just one non-coding transcript exon mutation. Chromosome 21 had 23 variants, two related to unexplained mutations. Except for two C2CD2 and PDXK 3'UTR mutations, the other 21 variations were found in eight expressed genes. All of these variants were found in introns. Chromosome 22 had 44 mutations, 13 of which were unknown. Another 31 variations were linked to 11 BCR-expressed genes and a mutation in FOXRED2's intronic 3'UTR, as shown in Appendix E.

Discussion

Elevated WBC counts are commonly observed in individuals diagnosed with CML [13]. The cost-effective and direct approach for detecting CML involves utilizing differential analysis and CBC techniques [14]; the parameter of CBC generally changes during cancer incidence [15] and also after chemotherapy administration [16]. During the occurrence of cancer, an increase in the total WBC count is observed. It is possible that, following treatment, the WBC counts subsequently decrease. Due to this rationale, the WBC count obtained via the CBC test has emerged as a biomarker for the detection of leukemia. This study observed a high total WBC count, granulocyte count, and MID count.

IL-6 has been postulated as a potential prognostic marker for CML [17]. As a result, IL-6 levels may rise significantly throughout CML, exceeding the baseline rate. The acquired findings were statistically significant, demonstrating an increase in IL-6 levels with the onset of cancer.

The nucleotide sequences of the NOS3 and CTH genes were determined using Sanger sequencing. In CML patient samples, different changes were found in the CTH gene. These changes were all found outside the cys-met-meta-pp domain on exon 12. However, to our knowledge, no previous study has found a relationship between the CTH gene and CML, and this is the first study to show an extensive number of mutations in the CTH gene [18].

Furthermore, the NOS3 gene exhibited distinct mutations in the VNTR, T786C, and G894T genes in colorectal cancer [19]. Notably, all these variants were found within the NOS3 gene, except for specific variants in the VNTR. Together with the tyrosine kinase activator and BCR-ABL1 genes [20], these results show that the NOS3 gene is expressed in people with leukemia.

Many genetic disorders and syndromes have been identified in recent decades using NGS technologies. The utilization of NGS is rapidly becoming standardized as a diagnostic tool and for molecular patient monitoring, enabling the evaluation of treatment effectiveness [21]. The present study's findings indicate that 1643 variations were seen across the 22 chromosomes, including the XY chromosome. Furthermore, gene expression analysis revealed that 439 genes were actively expressed. Additionally, two genes were sequenced using the Sanger method, while one gene was identified using the ELISA technique. Nevertheless, the findings indicate that, apart from BCR-ABL1, several genes are linked to CML development.

A few study limitations may impact the ability to adapt to and understand the results. The study's sample size may not represent the CML population, limiting its external validity. The study's approach relies primarily on observational and genetic analysis, which may introduce biases or confounding factors that are not adequately controlled and addressed.

Conclusions

The study thoroughly investigated the genetic landscape of CML, revealing insights into the delicate interaction between NO, H2S, gene mutations, and apoptotic genes. The NOS3 and CTH gene mutations were identified using Sanger sequencing and NGS, indicating novel interactions with CML pathogenesis. The study found previously unknown mutations in the CTH gene and expanded the understanding of its role in CML. Additionally, various mutations in the NOS3 gene, such as the VNTR, T786C, and G894T variations, revealed CML's complex genetic landscape. The NGS study found 1643 somatic and sex chromosomal abnormalities and 439 actively expressed genes, revealing CML's genomic complexity beyond the well-known BCR-ABL1 mutation. These findings highlight the potential of NGS as a diagnostic and prognostic tool, providing insights into personalized treatment approaches for CML that extend beyond BCR-ABL1 targeting strategies.

Acknowledgments

We would like to thank the Nanakaly Hospital for Hematology & Oncology and the KMCA (Kurdistan Medical Control Agency) Directorate, Iraq, for providing the samples and machinery. We also thank Govand Qader and Twana Alkasalias for designing the primers and helping us in analyzing the sequencing results.

Appendices

Appendix A

Table 3. CTH gene variation with amino acid change in chronic myeloid leukemia (CML).

Gene Chromosome position Mutation Mutation genotype Heterozygous/homozygous Variants Variant percentage Amino acid change External database
CTH                
  1:70904757 Substitution T>TA Heterozygous 28357T>TA 5.0% None Not Found
  1:70904800 Missense G>GT Heterozygous 28400G>GT 35.0% Serine>Isoleucine dbSNP:1021737
  1:70904800 Missense G>GT Heterozygous 28400G>GT 35.0% Serine>Isoleucine dbSNP:102173
  1:70905047 Inversion G>GA Heterozygous 28647G>GA 5.3% None Not Found
  1:70904800 Missense G>GT Heterozygous 28400G>GT 35.0% Serine>Isoleucine dbSNP:1021737
  1:70904800 Missense G>GT Heterozygous 28400G>GT 35.0% Serine>Isoleucine dbSNP:1021737
  1:70905019 Duplication A Heterozygous 28619het_dupA 5.0% None Not Found
  1:70904810 Substitution A>AG Heterozygous 28410A>AG 5.0% Glycin>Glycin Not Found
  1:70904811 Substitution T>TC Heterozygous 28411T>TC 5.3% None Not Found
  1:70905018 Substitution T>TA Heterozygous 28618T>TA 5.0% None Not Found
  1:70904770 Substitution C>CT Heterozygous 28370C>CT 5.3% None Not Found
  1:70904772 Substitution C>CG Heterozygous 28372C>CG 5.0% None Not Found
  1:70904800 Missense G>GT Heterozygous 28400G>GT 35.0% Serine>Isoleucine dbSNP:1021737
  1:70904758 Substitution A>AT Heterozygous 28358A>AT 4.8% None Not Found
  1:70904800 Missense G>T Homozygous 28400G>T 35.0% Serine>Isoleucine dbSNP:1021737
  1:70905045 Inversion T>TA Heterozygous 28645T>TA 5.0% None Not Found
  1:70905047 Inversion G>GA Heterozygous 28647G>GA 5.3% None Not Found
  1:70904810 Substitution G>GC Heterozygous 28410G>GC 4.3% Valine>Tyrosine Not Found
  1:70904800 Missense G>GT Heterozygous 28400G>GT 35.0% Serine>Isoleucine Not Found
  1:70905047 Inversion G>GA Heterozygous 28647G>GA 5.3% None Not Found
  1:70904758 Substitution A>AT Heterozygous 28358A>AT 4.8% None Not Found
  1:70905046 Inversion T>TA Heterozygous 28646T>TA 5.0% None Not Found
  1:70905047 Inversion G>GA Heterozygous 28647G>GA 5.3% None Not Found
  1:70904810 Substitution G>GC Heterozygous 28410G>GC 4.3% Valine>Tyrosine Not Found
  1:70904770 Substitution C>CT Heterozygous 28370C>CT 5.3% None Not Found
  1:70905019 Duplication A Heterozygous 28619het_dupA 5.0% None Not Found
  1:70905018 Substitution T>TA Heterozygous 28618T>TA 5.0% None Not Found
  1:70905046 Inversion T>TA Heterozygous 28646T>TA 5.0% None Not Found
  1:70904811 Substitution T>TC Heterozygous 28411T>TC 5.3% None Not Found
  1:70904758 Substitution A>AT Heterozygous 28358A>AT 4.8% None Not Found
  1:70905018 Substitution T>TA Heterozygous 28618T>TA 5.0% None Not Found
  1:70905045 Inversion T>TA Heterozygous 28645T>TA 5.0% None Not Found
  1:70904811 Substitution T>TC Heterozygous 28411T>TC 5.3% None Not Found
  1:70905047 Inversion G>GA Heterozygous 28647G>GA 5.3% None Not Found
  1:70904810 Substitution G>GC Heterozygous 28410G>GC 4.3% Valine>Tyrosine Not Found
  1:70904772 Substitution C>CG Heterozygous 28372C>CG 5.0% None Not Found
  1:70904811 Substitution T>TC Heterozygous 28411T>TC 5.3% None Not Found
  1:70905018 Substitution T>TA Heterozygous 28618T>TA 5.0% None Not Found
  1:70905045 Inversion T>TA Heterozygous 28645T>TA 5.0% None Not Found
  1:70904772 Substitution C>CG Heterozygous 28372C>CG 5.0% None Not Found

Appendix B

Table 4. eNOS (786) variation with different types of mutations and amino acid change in chronic myeloid leukemia (CML).

Gene Chromosome position Mutation Mutation genotype Heterozygous/homozygous Variants Variant percentage Amino acid change External database
eNOS (786)                
  7:150696098 Missense A>AG Heterozygous 8455A>AG 39.1% Gln>Arg Not Found
  7:150696111 Missense T>TG Heterozygous 8468T>TG 91.3% Asp>Glu dbSNP:1799983
  7:150696098 Missense A>AG Heterozygous 8455A>AG 39.1% Gln>Arg Not Found
  7:150696098 Missense A>AG Heterozygous 8455A>AG 39.1% Gln>Arg Not Found
  7:150696111 Missense T>TG Heterozygous 8468T>TG 91.3% Asp>Glu dbSNP:1799983
  7:150696052 No mutation T>TG Heterozygous 8409T>TG 8.7% Trp>Gly Not found
  7:150696098 Missense A>AG Heterozygous 8455A>AG 39.1% Gln>Arg Not Found
  7:150696111 Missense T>TG Heterozygous 8468T>TG 91.3% Asp>Glu dbSNP:1799983
  7:150696187 Splice region G>GA Heterozygous 8544G>GA 4.3% None Not Found
  7:150696098 Missense A>AG Heterozygous 8455A>AG 39.1% Gln>Arg Not Found
  7:150696111 Missense T>TG Heterozygous 8468T>TG 91.3% Asp>Glu dbSNP:1799983
  7:150696038 Substitution G>GC Heterozygous 8395G>GC 4.3% Cys>Ser Not Found
  7:150696039 Substitution C>A Homozygous 8396C>A 8.7% Cys>Ser Not Found
  7:150696052 Substitution T>G Homozygous 8409T>G 4.3% Trp>Gly Not Found
  7:150696111 Missense T>TG Heterozygous 8468T>TG 91.3% Asp>Glu dbSNP:1799983
  7:150696098 Missense A>AG Heterozygous 8455A>AG 39.1% Gln>Arg Not Found
  7:150696100 Substitution G>GC Heterozygous 8457G>GC 13.0% Ala>Pro Not Found
  7:150696111 Missense T>G Homozygous 8468T>G 8.7% Trp>Gly dbSNP:1799983
  7:150696038 Substitution G>GC Heterozygous 8395G>GC 4.3% Cys>Ser Not Found
  7:150696039 Synonymous C>A Homozygous 8396C>A 8.7% Cys>Ser Not Found
  7:150696098 Missense A>AG Heterozygous 8455A>AG 39.1% Gln>Arg Not Found
  7:150696111 Missense T>TG Heterozygous 8468T>TG 91.3% Asp>Glu dbSNP:1799983
  7:150696098 Missense A>AG Heterozygous 8455A>AG 39.1% Gln>Arg Not Found
  7:150696111 Missense T>TG Heterozygous 8468T>TG 91.3% Asp>Glu dbSNP:1799983
  7:150696014 Intron/deletion C>T Homozygous 8371C>T 25.0% None Not found
  7:150696098 Missense A>AG Heterozygous 8455A>AG 39.1% Gln>Arg Not Found
  7:150696111 Missense T>TG Heterozygous 8468T>TG 91.3% Asp>Glu dbSNP:1799983
  7:150696054 Substitution G>GC Heterozygous 8411G>GC 13.0% Trp>Cys Not Found
  7:150696055 Missense A>AC Heterozygous 8412A>AC 13.0% Thr>Pro Not Found
  7:150696098 Missense A>AC Heterozygous 8455A>AC 4.3% Gln>Pro Not Found
  7:150696111 Missense T>G Homozygous 8468T>G 8.7% Trp>Gly dbSNP:1799983
  7:150696061 Substitution G>GA Heterozygous 8418G>GA 4.3% Gly>Arg Not Found
  7:150696058 Substitution C>CT Heterozygous 8415C>CT 8.7% Pro>Leu Not Found
  7:150696059 Substitution C>CT Heterozygous 8416C>CT 8.7% Pro>Leu Not Found
  7:150696055 Substitution A>AC Heterozygous 8412A>AC 13.0% Thr>Pro Not Found
  7:150696098 Missense A>AC Heterozygous 8455A>AC 17.4% Gln>Pro Not Found
  7:150696111 Missense T>G Homozygous 8468T>G 8.7% Trp>Gly dbSNP:1799983
  7:150696111 Missense T>TG Heterozygous 8468T>TG 91.3% Trp>Cys dbSNP:1799983
  7:150696054 Substitution G>GC Heterozygous 8411G>GC 13.0% Trp>Cys Not Found
  7:150696055 Substitution A>AC Heterozygous 8412A>AC 13.0% Thr>Pro Not Found
  7:150696061 Substitution G>GA Heterozygous 8418G>GA 4.3% Gly>Arg Not Found
  7:150696098 Missense A>AC Heterozygous 8455A>AC 17.4% Gln>Pro Not Found
  7:150696099 Substitution G>GC Heterozygous 8456G>GC 4.3% Gln>His Not Found
  7:150696111 Missense T>G Homozygous 8468T>G 8.7% Trp>Gly dbSNP:1799983
  7:150696052 Substitution T>TC Heterozygous 8409T>TC 4.3% Trp>Arg Not Found
  7:150696053 Substitution G>GC Heterozygous 8410G>GC 4.3% Trp>Ser Not Found
  7:150696055 Missense A>AC Heterozygous 8412A>AC 13.0% Thr>Pro Not Found
  7:150696058 Substitution C>CT Heterozygous 8415C>CT 8.7% Pro>Ser Not Found
  7:150696060 Substitution A>AT Heterozygous 8417A>AT 4.3% Pro>Pro Not Found
  7:150696061 Substitution G>GA Heterozygous 8418G>GA 4.3% Gly>Arg Not Found
  7:150696111 Missense T>G Homozygous 8468T>G 8.7% Trp>Gly dbSNP:1799983
  7:150696022 Substitution C>CA Heterozygous 8379C>CA 4.3% None Not Found
  7:150696111 Missense T>G Homozygous 8468T>G 8.7% Trp>Gly dbSNP:1799983
  7:150696030 Substitution A>AT Heterozygous 8387A>AT 4.8% None Not Found
  7:150696032 Substitution A>AT Heterozygous 8389A>AT 4.8% None Not Found
  7:150696053 Substitution G>GC Heterozygous 8410G>GC 4.3% Trp>Ser Not Found
  7:150696055 Missense A>AC Heterozygous 8412A>AC 13.0% Thr>Pro Not Found
  7:150696060 Missense A>AT Heterozygous 8417A>AT 4.3% Pro>Pro Not Found
  7:150696061 Missense G>GA Heterozygous 8418G>GA 4.3% Gly>Arg Not Found
  7:150696064 Missense A>AG Heterozygous 8421A>AG 4.5% Asn>Gly Not Found
  7:150696065 Missense A>AG Heterozygous 8422A>AG 4.2% Asn>Ser Not Found
  7:150696093 Substitution G>GC Heterozygous 8450G>GC 4.3% Leu>Leu Not Found
  7:150696103 Missense C>T Homozygous 8460C>T 25.0% Pro>Ser Not Found
  7:150696107 Missense A>AG Heterozygous 8464A>AG 4.5% Asp>Gly Not Found
  7:150696108 Substitution T>TG Heterozygous 8465T>TG 91.3% Asp>Glu Not Found
  7:150696110 Missense A>AC Heterozygous 8467A>AC 4.3% Asp>Ala Not Found
  7:150696111 Missense T>TG Heterozygous 8468T>TG 91.3% Asp>Ala dbSNP:1799983
  7:150696118 Substitution G>GT Heterozygous 8475G>GT 4.3% Glu>Glu Not Found
  7:150696152 Substitution A>AC Heterozygous 8509A>AC 4.5% Glu>Ala Not Found
  7:150696054 Substitution G>GC Heterozygous 8411G>GC 13.0% Trp>Cys Not Found
  7:150696055 Missense A>AC Heterozygous 8412A>AC 13.0% Thr>Pro Not Found
  7:150696098 Missense A>AC Heterozygous 8455A>AC 17.4% Gln>Pro Not Found
  7:150696111 Missense T>G Homozygous 8468T>G 8.7% Trp>Gly dbSNP:1799983
  7:150696014 Intron/deletion C>T Homozygous 8371C>T 25.0% None Not Found
  7:150696054 Substitution G>GC Heterozygous 8411G>GC 13.0% Trp>Cys Not Found
  7:150696055 Missense A>AC Heterozygous 8412A>AC 13.0% Thr>Pro Not Found
  7:150696058 Substitution C>CT Heterozygous 8415C>CT 8.7% Pro>Ser Not Found
  7:150696059 Substitution C>CT Heterozygous 8416C>CT 8.7% Pro>Leu Not Found
  7:150696098 Missense A>AC Heterozygous 8455A>AC 17.4% Gln>Pro Not Found
  7:150696099 Substitution G>GC Heterozygous 8456G>GC 4.3% Gln>Pro Not Found
  7:150696111 Missense T>G Homozygous 8468T>G 8.7% Trp>Gly dbSNP:1799983
  7:150696049 Synonymous G>GC Heterozygous 8406G>GC 4.3% Gly>Arg Not Found
  7:150696050 Substitution G>GC Heterozygous 8407G>GC 4.3% Gly>Ala Not Found
  7:150696052 Substitution T>C Homozygous 8409T>C 4.3% Trp>Arg Not Found
  7:150696058 Substitution C>CT Heterozygous 8415C>CT 8.7% Pro>Ser Not Found
  7:150696059 Substitution C>T Homozygous 8416C>T 25.0% Pro>Leu Not Found
  7:150696063 Substitution A>AG Heterozygous 8420A>AG 4.5% Gly>Gly Not Found
  7:150696064 Substitution A>AG Heterozygous 8421A>AG 4.5% Asn>Ala Not Found
  7:150696065 Substitution A>AC Heterozygous 8422A>AC 4.5% Asn>Thr Not Found
  7:150696077 Substitution A>AC Heterozygous 8434A>AC 4.3% Asp>Ala Not Found
  7:150696052 Substitution T>TC Heterozygous 8409T>TC 4.3% Cys>Arg Not Found
  7:150696053 Substitution G>GC Heterozygous 8410G>GC 13.0% Trp>Cys Not Found
  7:150696054 Substitution G>C Heterozygous 8411G>C 8.7% Trp>Cys Not Found
  7:150696059 Substitution C>T Heterozygous 8416C>T 25.0% Pro>Leu Not Found
  7:150696061 Substitution G>GA Heterozygous 8418G>GA 4.3% Gly>Arg Not Found
  7:150696069 Substitution T>TC Heterozygous 8426T>TC 4.2% Gly>Gly Not Found
  7:150696096 Substitution G>GC Heterozygous 8453G>GC 4.3% Leu>Leu Not Found
  7:150696099 Substitution G>C Heterozygous 8456G>C 8.7% Gln>His Not Found
  7:150696100 Substitution G>C Heterozygous 8457G>C 8.7% Ala>Pro Not Found
  7:150696111 Missense T>TG Heterozygous 8468T>TG 91.3% Asp>Ala dbSNP:1799983
  7:150696176 Splice region G>GC Heterozygous 8533G>GC 10.0% None Not Found
  7:150696177 Substitution A>AC Heterozygous 8534A>AC 4.5% None Not Found
  7:150696178 Splice region G>GC Heterozygous 8535G>GC 10.0% None Not Found
  7:150696052 Substitution T>TC Heterozygous 8409T>TC 4.3% Cys>Arg Not Found
  7:150696053 Substitution G>GC Heterozygous 8410G>GC 13.0% Trp>Cys Not Found
  7:150696054 Substitution G>C Heterozygous 8411G>C 8.7% Trp>Cys Not Found
  7:150696061 Substitution G>GA Heterozygous 8418G>GA 4.3% Gly>Arg Not Found
  7:150696062 Substitution G>GA Heterozygous 8419G>GA 4.3% Gly>Lys Not Found
  7:150696096 Substitution G>GC Heterozygous 8453G>GC 4.3% Leu>Leu Not Found
  7:150696099 Substitution G>C Heterozygous 8456G>C 8.7% Gln>His Not Found
  7:150696100 Substitution G>C Heterozygous 8457G>C 8.7% Ala>Pro Not Found
  7:150696052 Substitution T>TC Heterozygous 8409T>TC 4.3% Trp>Arg Not Found
  7:150696053 Substitution G>GC Heterozygous 8410G>GC 4.3% Trp>Ser Not Found
  7:150696055 Missense A>AC Heterozygous 8412A>AC 13.0% Thr>Pro Not Found
  7:150696054 Substitution G>GC Heterozygous 8411G>GC 13.0% Trp>Cys Not Found
  7:150696059 Substitution C>T Homozygous 8416C>T 25.0% Pro>Leu Not Found
  7:150696061 Substitution G>GT Heterozygous 8418G>GT 4.3% Gly>Gly Not Found
  7:150696096 Substitution G>GC Heterozygous 8453G>GC 4.3% Leu>Leu Not Found
  7:150696098 Missense A>AC Heterozygous 8455A>AC 17.4% Gln>Pro Not Found
  7:150696099 Substitution G>C Heterozygous 8456G>C 8.7% Gln>His Not Found
  7:150696111 Missense T>TG Heterozygous 8468T>TG 91.3% Asp>Ala dbSNP:1799983

Appendix C

Table 5. eNOS (894) variation with mutations in chronic myeloid leukemia (CML).

Gene Chromosome position Mutation Mutation genotype Heterozygous/homozygous Variants Variant percentage Amino acid change External database
eNOS (894)                
  7:150690102 Other G>GT Heterozygous 2459G>GT 4.0% None Not found
  7:150690119 Other C>CG Heterozygous 2476C>CG 3.8% None Not found
  7:150690120 Other G>GT Heterozygous 2477G>GT 4.0% None Not found
  7:150690121 Substitution G>GT Heterozygous 2478G>GT 4.0% None Not found
  7:150690079 Substitution C>T Homozygous 2436C>T 4.2% None dbSNP:2070744
  7:150690079 Substitution C>CT Heterozygous 2436C>CT 4.0% None dbSNP:2070744
  7:150690118 Substitution G>GT Heterozygous 2475G>GT 4.0% None Not found
  7:150690079 Substitution C>T Homozygous 2436C>T 4.2% None dbSNP:2070744
  7:150690079 Substitution C>T Homozygous 2436C>T 4.2% None dbSNP:2070744
  7:150689998 Substitution G>GT Heterozygous 2355G>GT 4.0% None Not found
  7:150690079 Substitution C>T Homozygous 2436C>T 4.2% None dbSNP:2070744
  7:150689996 Substitution C>CT Heterozygous 2353C>CT 4.0% None Not found
  7:150690079 Substitution C>T Homozygous 2436C>T 91.3% None dbSNP:2070744
  7:150689998 Substitution G>GT Heterozygous 2355G>GT 4.0% None Not found
  7:150690079 Substitution C>CT Homozygous 2436C>CT 91.3% None dbSNP:2070744
  7:150690079 Substitution C>CT Homozygous 2436C>CT 91.3% None dbSNP:2070744
  7:150690079 Substitution C>T Homozygous 2436C>T 91.3% None dbSNP:2070744
  7:150690102 Substitution G>GT Heterozygous 2459G>GT 4.0% None Not found
  7:150690079 Substitution C>T Homozygous 2436C>T 91.3% None dbSNP:2070744
  7:150689998 Substitution G>GT Heterozygous 2355G>GT 4.0% None Not found
  7:150690079 Substitution C>T Homozygous 2436C>T 91.3% None dbSNP:2070744
  7:150690060 Substitution C>CA Heterozygous 2417C>CA 4.3% None Not found
  7:150690062 Substitution T>TA Heterozygous 2419T>TA 7.0% None Not found
  7:150690063 Substitution C>CA Heterozygous 2420C>CA 4.3% None Not found
  7:150690065 Substitution A>AG Heterozygous 2422A>AG 6.2% None Not found
  7:150690067 Substitution C>CG Heterozygous 2424C>CG 100.0% None Not found
  7:150690079 Substitution C>T Homozygous 2436C>T 91.3% None dbSNP:2070744
  7:150690079 Substitution C>T Homozygous 2436C>T 91.3% None dbSNP:2070744
  7:150689998 Substitution G>GT Heterozygous 2355G>GT 4.0% None Not found
  7:150689998 Substitution G>GT Heterozygous 2355G>GT 4.0% None Not found
  7:150690079 Substitution C>CT Homozygous 2436C>CT 91.3% None dbSNP:2070744
  7:150690079 Substitution C>T Homozygous 2436C>T 91.3% None dbSNP:2070744
  7:150690079 Substitution C>CT Homozygous 2436C>CT 91.3% None dbSNP:2070744
  7:150690079 Substitution C>T Homozygous 2436C>T 91.3% None dbSNP:2070744
  7:150690047 Substitution G>GC Heterozygous 2404G>GC 25.0% None Not found
  7:150690048 Substitution C>T Homozygous 2405C>T 4.0% None Not found
  7:150690062 Substitution T>TG Heterozygous 2419T>TG 4.2% None Not found
  7:150690078 Substitution C>CA Heterozygous 2435C>CA 4.3% None Not found
  7:150690079 Substitution C>T Homozygous 2436C>T 91.3% None dbSNP:2070744
  7:150689998 Substitution G>GT Heterozygous 2355G>GT 4.0% None Not found
  7:150690079 Substitution C>CT Heterozygous 2436C>CT 91.3% None dbSNP:2070744
  7:150690079 Substitution C>T Homozygous 2436C>T 91.3% None dbSNP:2070744
  7:150690079 Substitution C>T Homozygous 2436C>T 91.3% None dbSNP:2070744

Appendix D

Table 6. eNOS (VNTR) variation with different types of mutations in chronic myeloid leukemia (CML).

Gene Chromosome position Mutation Mutation genotype Heterozygous/homozygous Variants Variant percentage Amino acid change External database
eNOS (VNTR)                
  7:150694357 Substitution G>GA Heterozygous 6714G>GA 16.7% None dbSNP:3918168
  7:150694570 Substitution C>CA Heterozygous 6927C>CA 4.3% None Not Found
  7:150694571 Substitution C>CA Heterozygous 6928C>CA 4.3% None Not Found
  7:150694598 Substitution C>CG Heterozygous 6955C>CG 7.1% None Not Found
  7:150694617 Substitution C>CA Heterozygous 6974C>CA 4.3% None Not Found
  7:150694619 Substitution C>CA Heterozygous 6976C>CA 4.3% None Not Found
  7:150694620 Substitution C>CA Heterozygous 6977C>CA 4.3% None Not Found
  7:150694621 Substitution T>TA Heterozygous 6978T>TA 4.5% None Not Found
  7:150694622 Substitution G>GA Heterozygous 6979G>GA 16.7% None Not Found
  7:150694624 Substitution G>GA Heterozygous 6981G>GA 16.7% None Not Found
  7:150694357 Substitution G>GA Heterozygous 6714G>GA 16.7% None dbSNP:3918168
  7:150694368_ 7:150694394 Duplication AGTCTA GACCTG CTGCGG GGGTGA GGA Heterozygous 6725_6751het_ dupAGTCTAG ACCTGCTGCG GGGGTGAGGA 5.6% None Not Found
  7:150694395 Substitution C>CA Heterozygous 6752C>CA 4.3% None Not Found
  7:150694606 Substitution A>G Homozygous 6963A>G 7.1% None Not Found
  7:150694619 Substitution C>CA Heterozygous 6976C>CA 4.3% None Not Found
  7:150694620 Substitution C>CA Heterozygous 6977C>CA 4.3% None Not Found
  7:150694357 Substitution G>GA Heterozygous 6714G>GA 16.7% None dbSNP:3918168
  7:150694394_ 7:150694395 Insertion AGTCTA GGACCT GCTGCG GGGGTG AGGA Heterozygous 6751_6752het_ insAGTCTAGG ACCTGCTGCGG GGGTGAGGA 5.6% None Not Found
  7:150694619 Substitution C>CA Heterozygous 6976C>CA 4.3% None Not Found
  7:150694620 Substitution C>CA Heterozygous 6977C>CA 4.3% None Not Found
  7:150694621 Substitution C>CA Heterozygous 6978T>TA 4.5% None Not Found
  7:150694620 Substitution C>CA Heterozygous 6977C>CA 4.3% None Not Found
  7:150694622 Substitution G>GA Heterozygous 6979G>GA 16.7% None Not Found
  7:150694623 Substitution T>TA Heterozygous 6980T>TA 4.5% None Not Found
  7:150694620 Substitution C>CA Heterozygous 6977C>CA 4.3% None Not Found
  7:150694622 Substitution G>GA Heterozygous 6979G>GA 16.7% None Not Found
  7:150694346_ 7:150694347 Insertion SACCTG MTGCA GGGGT GAGGA GTCTA Heterozygous 6703_6704ins SACCTGMTG CAGGGGTGA GGAGTCTA 10.5% None Not Found
  7:150694337 Substitution A>AT Heterozygous 6694A>AT 5.3% None Not Found
  7:150694348 Substitution A>AT Heterozygous 6705A>AC 7.1% None Not Found
  7:150694348_ 7:150694349 Insertion TTGMTG CAGGGG TGAGGA AGTCTAG A Heterozygous 6705_6706ins TTGMTGCAG GGGTGAGGA AGTCTAGA 10.5% None Not Found
  7:150694325 Substitution G>GC Heterozygous 6682G>GC 5.3% None Not Found
  7:150694328 Substitution G>GT Heterozygous 6685G>GT 7.1% None Not Found
  7:150694385_ 7:150694386 Insertion TGGAGC CTGCCCA GTATAGA ACTGCTG CGG Heterozygous 6742_6743het_ insTGGAGCCT GCCCAGTATA GAACTGCTGC GG 5.6% None Not Found
  7:150694318 Substitution T>TC Heterozygous 6675T>TC 5.4% None Not Found
  7:150694321 Substitution A>C Homozygous 6678A>C 7.1% None Not Found
  7:150694328 Substitution G>GT Heterozygous 6685G>GT 4.3% None Not Found

Appendix E

Table 7. NGS with all variations and mutation types and expressed genes in chronic myeloid leukemia (CML).

Chr. Chr. mutation Mutation Unknown mutation Expressed gene Mutation no. Mutation position Mutation type
X 96 94 2 CXorf36 7 INTRON 0
        GYG2 1 INTRON 0
        ASB11 1 INTRON 0
        CA5B 2 INTRON 0
        ZRSR2 3 INTRON 0
        CASK 1 INTRON 0
        RP11-342D14. 7 INTRON 0
        CYSLTR1 9 INTRON 0
        TENM1 23 INTRON 0
        ENOX2 7 INTRON 0
        LINC01201 1 INTRON 0
        MTCP1 3 INTRON 0
Chr. Chr. mutation Mutation Unknown mutation Expressed gene Mutation no. Mutation position Mutation type
Y 10 10   DUX4L16 2 INTRON 0
        DUX4L17 2 INTRON 0
        DUX4L18 2 INTRON 0
        MED14P1 4 INTRON 0
Chr. Chr. mutation Mutation Unknown mutation Expressed gene Mutation no. Mutation position Mutation type
1 98 69 29 LINC01786 2 INTRON 0
        CAMTA1 2 INTRON 0
        PIK3CD 1 INTRON/Splice region 0
        CASZ1 1 INTRON 0
        C1orf127 1 INTRON 0
        HMGCL 1 INTRON 0
        NCMAP 1 INTRON 0
        ZCCHC17 1 INTRON 0
        AGO3 1 INTRON 0
        PTPRF 1 INTRON 0
        PODN 1 INTRON 0
        DAB1 3 INTRON 0
        AK5 1 INTRON 0
        BCL10-AS1 1 INTRON 0
        RP11-421L21.3 2 INTRON 0
        RAP1A 1 INTRON 0
        MAGI3 2 INTRON 0
        SPAG17 1 INTRON 0
        CHD1L 1   Frameshift/deletion
        CHD1L 1 INTRON 0
        FCRL4 1 INTRON 0
        RP11-550P17.5 1 INTRON 0
        TBX19 1 INTRON 0
        PAPPA2 1 INTRON 0
        LHX4 4 INTRON 0
        LHX4 2 3UTR 0
        ACBD6 9 INTRON 0
        PLEKHA6 2 INTRON 0
        LAMB3 2 INTRON 0
        HHAT 1 INTRON 0
        HEATR1 1 INTRON 0
        CHRM3 1 INTRON 0
Chr. Chr. mutation Mutation Unknown mutation Expressed gene Mutation no. Mutation position Mutation type
2 166 95 68 DNAJC27-AS1 7 INTRON 0
        HAAO 1 INTRON 0
        SNTG2 1 INTRON 0
        TSSC1 1 INTRON 0
        RNF144A 1 INTRON 0
        FAM228A 1 INTRON 0
        EFR3B 1 INTRON 0
        EMILIN1 1 0 Missense
        FAM179A 2 INTRON 0
        ALK 1 INTRON 0
        AC009499.1 2 INTRON 0
        THADA 1 INTRON 0
        CAMKMT 1 INTRON 0
        PRKCE 2 INTRON 0
        AC007682.1 1 INTRON 0
        ACYP2 1 INTRON 0
        PNPT1 1 INTRON 0
        ZNF638 4 INTRON 0
        STARD7-AS1 1 INTRON 0
        AC021188.4 1 INTRON 0
        ANKRD36 1 INTRON 0
        RANBP2 1 INTRON 0
        MERTK 1 INTRON 0
        EPB41L5 2 INTRON 0
        AC012363.4 13 INTRON 0
        AC012363.8 1 Non-coding transcription 0
        MTND4P26 14 Non-coding transcription 0
        RALB 2 INTRON 0
        AC018866.1 1 INTRON 0
        CNTNAP5 1 INTRON 0
        FAM168B 2 INTRON 0
        ITGB6 1 INTRON 0
        GCA 1 3utr 0
        ABCB11 2 INTRON 0
        MTX2 1 INTRON 0
        LINC01473 2 INTRON 0
        HECW2 1 INTRON 0
        PLCL1 1 INTRON 0
        LINC01877 2 INTRON 0
        PTH2R 1 INTRON 0
        XRCC5 1 INTRON 0
        RPL37A 1 INTRON 0
        UGT1A10 1 INTRON 0
        UBE2F 1 INTRON 0
Chr. Chr. mutation Mutation Unknown mutation Expressed gene Mutation no. Mutation position Mutation type
3 121 87 34 PLCL2 2   Synonymous
        GRM7 1 INTRON  
        SGO1-AS1 1 INTRON  
        RBMS3 1 INTRON  
        LINC00693 3 INTRON  
        KRBOX1 1 INTRON  
        CDCP1 1 INTRON  
        CCR5AS 3 INTRON  
        NPRL2 1   Non-coding transcript exon
        BAP1 1 INTRON  
        CACNA2D3 1 INTRON  
        IL17RD 4 INTRON  
        FLNB 54 INTRON  
        FLNB 2   Missense
        CFAP20DC 1 INTRON  
        MAGI1 1 INTRON  
        SLC25A26 2 INTRON  
        FRMD4B 21 INTRON  
        RAB7A 6 INTRON  
        EPHB1 1 INTRON  
        CP 1 INTRON  
        SSR3 1 INTRON  
        SI 1 INTRON  
        PEX5L 1 INTRON  
        LINC01206 1 INTRON  
        MAP3K13 1 INTRON  
        TBCCD1 1 0 Missense
        TBCCD1 1 0 Missense
        P3H2 1 INTRON  
        PAK2 1 3UTR  
Chr. Chr. mutation Mutation Unknown mutation Expressed gene Mutation no. Mutation position Mutation type
4 81 49 32 FGFR3 2 0 Synonymous
        FGFR3 1 0 Missense
        LRPAP1 1 INTRON  
        PPP2R2C 1 INTRON  
        SORCS2 1 INTRON  
        SORCS2 1 INTRON  
        QDPR 22 INTRON  
        RBM47 1 INTRON  
        FIP1L1 5 INTRON  
        DRID2 3 INTRON  
        RP11-729M20.1 7 INTRON  
        GSTCD 2 INTRON  
        ZGRF1 1 INTRON  
        LINC01098 1 INTRON  
        TENM3 1 INTRON  
        SORBS2 1 INTRON  
Chr. Chr. mutation Mutation Unknown mutation Expressed gene Mutation no. Mutation position Mutation type
5 87 47 40 MYO10 3 INTRON  
        ADCY2 1 INTRON  
        SEMA5A 2 INTRON  
        LINC02150 1 INTRON  
        CDH9 1 3'UTR  
        CDH9 1 0 Missense
        RP11-232L2.1 1 0 Non-coding transcript exon
        LINC01340 2 INTRON  
        LINC02113 1 INTRON  
        FBXL17 1 INTRON  
        FER 1 INTRON  
        NREP 1 INTRON  
        YTHDC2 3 INTRON  
        KIF3A 1 INTRON  
        PITX1-AS1 1 INTRON  
        ANKHD1 2 INTRON  
        PPP2R2B 1 5' UTR  
        GM2A 1 0 Frameshift
        GRIA1 1 INTRON  
        GEMIN5 2 INTRON  
        CLINT1 1 INTRON  
        CTC-535M15.2 1 INTRON  
        FBXW11 4 INTRON  
        CTB-32H22.1 1 INTRON  
        CPEB4 1 INTRON  
        NSG2 2 INTRON  
        COL23A1 8 INTRON  
        ZFP2 1 INTRON  
Chr. Chr. mutation Mutation Unknown mutation Expressed gene Mutation no. Mutation position Mutation type
6 43 19 24 LINC02525 1 INTRON  
        RP11-288G3.4 3 0 Non-coding transcript exon
        CASC15 1 INTRON  
        ZKSCAN3 1 INTRON  
        HLA-V 3 0 Non-coding transcript exon
        HLA-DOA 1 0 Splice region
        PKHD1 1 INTRON  
        DST 1 INTRON  
        EYS 1 INTRON  
        KCNQ5 1 INTRON  
        PLAGL1 1 INTRON  
        TULP4 1 3'UTR  
        FNDC1 1 INTRON  
        PDE10A 1 INTRON  
Chr. Chr. mutation Mutation Unknown mutation Expressed gene Mutation no. Mutation position Mutation type
7 141 62 79 AQP1 1 INTRON  
          3 3'UTR  
        NME8 1 INTRON  
        VPS41 1 INTRON  
        DBNL 1 INTRON  
        SEPT7P2 2 INTRON  
        AC004870.3 5 INTRON  
        SEC61G-DT 1 INTRON  
        LANCL2 1 INTRON  
        CACNA2D1 1 INTRON  
        PPP1R9A 1 INTRON  
        MUC12 1 0 Missense
        CUX1 1 INTRON  
        PRKRIP1 10 INTRON  
        ALKBH4 4 INTRON  
        AC002463.3 1 INTRON  
        COMETT 1 INTRON  
        CFTR 1 INTRON  
        SMO 3 INTRON  
        SMO 1   Missense
        STRIP2 2 3'UTR  
        CEP41 1 3'UTR  
        CALD1 2 INTRON  
        ZNF425 7 INTRON  
        ZNF398 5 INTRON  
        RP4-555L14.4 3 INTRON  
        PTPRN2 1 INTRON  
Chr. Chr. mutation Mutation Unknown mutation Expressed gene Mutation no. Mutation position Mutation type
8 101 30 71 ERICH1-AS1 1 INTRON  
        ARHGEF10 2 INTRON  
        FAM167A 1 INTRON  
        CTSB 1 5'UTR  
        EPHX2 1 INTRON  
        DCTN6 2 INTRON  
        SMARCE1P4 1   Non-coding transcript exon
        RP11-56A10.1 1 INTRON  
        CHD7 1 INTRON  
        NCOA2 10 INTRON  
        RP11-463D19.2 1 INTRON  
        OSGIN2 1 INTRON  
        CDH17 1 INTRON  
        RP11-468O2.1 1   Non-coding transcript exon
        TRAPPC9 1 INTRON  
        DENND3 1 INTRON  
        LNCOC1 1 INTRON  
Chr. Chr. mutation Mutation Unknown mutation Expressed gene Mutation no. Mutation position Mutation type
9 68 47 22 KANK1 2   Missense
        SLC24A1 1 INTRON  
        CDKN2A 3 3'UTR  
        CDKN2A 3 INTRON  
        CCL27 1 0 Non-coding transcript exon
        TRPM6 1 INTRON  
        VPS13A 2 INTRON  
        PSAT1 1 INTRON  
        CENPP 1 INTRON  
        GSN 1 INTRON  
        NR6A1 2 INTRON  
        LMX1B 1 INTRON  
        NIBAN2 2 INTRON  
        NIBAN2 1 INTRON  
        SLC25A25-AS1 1 INTRON  
        SURF6 13 INTRON  
        SURF6 1 INTRON  
        SURF6 1 0 Missense
        SURF6 1 0 Synonymous
        MED22 2 3'UTR  
        MED22 1 3'UTR  
        LL09NC01-254D11.1 1 INTRON  
        VAV2 1 INTRON  
Chr. Chr. mutation Mutation Unknown mutation Expressed gene Mutation no. Mutation position Mutation type
10 72 50 22 LARP48 2 INTRON  
        FRMD4A 1 INTRON  
        ST8SIA6 2 INTRON  
        NEBL 1 INTRON  
        ABL1 4 INTRON  
        C10orf68 2 INTRON  
        ZNF33B 5 INTRON  
        AGAP9 1 INTRON  
        ASAH2 1 INTRON  
        ANK3 1 INTRON  
        JMJD1C 1 INTRON  
        CTNNA3 4 INTRON  
        VPS26A 3 3'UTR  
        VPS26A 2 INTRON  
        LINC02622 1 INTRON  
        NRG3 3 INTRON  
        CCSER2 2 INTRON  
        GRID1 3 INTRON  
        SNCG 1 INTRON  
        FRA10AC1 1 INTRON  
        ENTPD1 2 INTRON  
        BTRC 1 INTRON  
        SUFU 2 INTRON  
        LINC02661 6 INTRON  
        VTI1A 1 INTRON  
        ATRNL1 4 INTRON  
        ATE1 1 INTRON  
        TACC2 6 INTRON  
Chr. Chr. mutation Mutation Unknown mutation Expressed gene Mutation no. Mutation position Mutation type
11 83 57 26 HRAS 1 INTRON  
        PIDD1 1 INTRON  
        PIDD1 3 0 Missense
        MUC6 1 0 Synonymous
        MUC6 1 0 Missense
        CTSD 3 INTRON  
        KIF18A 2 INTRON  
        RCN1 7 INTRON  
        WT1 3 INTRON  
        ALX4 1 INTRON  
        OR9Q1 2 INTRON  
        AHNAK 1 INTRON  
        SLC22A6 1 INTRON  
        EHBP1L1 4 INTRON  
        KDM2A 2 INTRON  
        LINC02754 8 INTRON  
        CAPN5 2 INTRON  
        TENM4 1 INTRON  
        DLG2 3 INTRON  
        DISC1FP1 5 INTRON  
        HEPHL1 2 INTRON  
        DYNC2H1 1 INTRON  
        RP11-144G7.2 1 INTRON  
        C11orf65 1 INTRON  
        ALG6 1 INTRON  
        LINC02762 5 INTRON  
        PHLDB1 2 INTRON  
        CBL 3 INTRON  
        USP2-AS1 6 INTRON  
        NECTIN1 1 INTRON  
        GRIK4 1 INTRON  
        RP11-744N12.3 1 INTRON  
Chr. Chr. mutation Mutation Unknown mutation Expressed gene Mutation no. Mutation position Mutation type
12 91 55 36 DYRK4 24 INTRON  
        ANO2 1 INTRON  
        ETV6 7 INTRON  
        PTPRO 1 INTRON  
        IRAG2 1 INTRON  
        KIF21A 1 INTRON  
        ADAMTS20 2 INTRON  
        OR8S1 3 INTRON  
        KANSL2 2 3'UTR  
        KANSL2 6 INTRON  
        KANSL2 1   Synonymous
        CCDC65 1 INTRON  
        CCDC65 1 INTRON  
        BIN2 1 INTRON  
        SLC4A8 1 INTRON  
        HOXC-AS3 1 0 Non-coding transcript exon
        RP11-968A15.8 1 INTRON  
        ITGA7 1 INTRON  
        ITGA7 1 0 Missense
        NEMP1 1 0 Missense
        NEMP1 1 INTRON  
        TAFA2 1 INTRON  
        CAPS2-AS1 2 INTRON  
        E2F7 1 INTRON  
        ANKS1B 1 INTRON  
        IGF1 14 INTRON  
        RNF10 1 INTRON  
        CABP1 1 INTRON  
        ADGRD1 1 INTRON  
Chr. Chr. mutation Mutation Unknown mutation Expressed gene Mutation no. Mutation position Mutation type
13 41 20 21 TPTE2 2 INTRON  
        PAN3 1 INTRON  
        RXFP2 1 INTRON  
        NBEA 1 INTRON  
        ELF1 1 INTRON  
        GUCY1B2 1 INTRON  
        TPTE2P3 1 INTRON  
        LINC00458 1 INTRON  
        LMO7 1 INTRON  
        MYCBP2 5 INTRON  
        GPC6 1 INTRON  
        GPC6 1 INTRON  
        NALF1 2 INTRON  
        PCID2 1 INTRON  
Chr. Chr. mutation Mutation Unknown mutation Expressed gene Mutation no. Mutation position Mutation type
14 25 20 5 NF1P4 3 INTRON  
        SLC7A7 4 INTRON  
        PRKD1 1 INTRON  
        CDKL1 1 INTRON  
        CNIH1 2 INTRON  
        LINC02284 4 INTRON  
        NEK9 1   Synonymous
        GALC 1 INTRON  
        RIN3 2 INTRON  
        PAPOLA 1 INTRON  
        MOK 1 INTRON  
        RCOR1 1 INTRON  
        TDRD1 1 INTRON  
Chr. Chr. mutation Mutation Unknown mutation Expressed gene Mutation no. Mutation position Mutation type
15 36 32 4 CCDC32 1 INTRON  
        EBP42 1 INTRON  
        TRIM69 1 INTRON  
        WDR72 1 INTRON  
        KIF23 1 INTRON  
        MTHFS 1 INTRON  
        MTHFS 23 INTRON  
        MTHFS 1   Missense
        FANCI 1 INTRON  
        CTD-2544M6.1 1 INTRON  
Chr. Chr. mutation Mutation Unknown mutation Expressed gene Mutation no. Mutation position Mutation type
16 35 19 16 RAB11FIP3 1 INTRON  
          2    
        JPT2 1 INTRON  
        NDUFB10 1 INTRON  
        TRAF7 1 INTRON  
        AJ003147.9 1 INTRON  
        LA16c-306E5.3 1 INTRON  
        SRL 2 INTRON  
          13    
          1    
        VPS35 1 INTRON  
        ADCY7 1 INTRON  
        CMTM4 3 INTRON  
        RFWD3 1 INTRON  
        ADAMTS18 1 INTRON  
        WWOX 1 INTRON  
        PLCG2 1 INTRON  
        SPG7 2 INTRON  
Chr. Chr. mutation Mutation Unknown mutation Expressed gene Mutation no. Mutation position Mutation type
17 68 55 13 RAP1GAP2 1 INTRON  
        ITGAE 1   Frameshift
        ITGAE 1 INTRON  
        SMTNL2 1 3'UTR  
        CHRNE 1 3'UTR  
        INCA1 1 INTRON  
        DNAH2 12 INTRON  
        DNAH2 2 INTRON  
        ULK2 1   Synonymous
        LINC02002 1 INTRON  
        PIGS 3 INTRON  
        MYO1D 1 INTRON  
        ASIC2 1 INTRON  
        CDK12 1 INTRON  
        WIPF2 1   Synonymous
        WIPF2 1   Inframe insertion
        BRCA1 1 INTRON  
        RP11-1072C15.7 1 INTRON  
        MSI2 1 INTRON  
        TANC2 1 INTRON  
        CEP112 9 INTRON  
        ABCA9 1 INTRON  
        RAB37 2 INTRON  
        CYTH 4 INTRON  
        CEP131 2 INTRON  
        SLC38A10 1 INTRON  
        SLC25A10 1 INTRON  
        AC139099.4 1 INTRON  
Chr. Chr. mutation Mutation Unknown mutation Expressed gene Mutation no. Mutation position Mutation type
18 44 33 11 RP11-172F10.1 1 INTRON  
        AKAIN1 1 INTRON  
        EBP41L3 1 INTRON  
        RP11-805F19.2 1 INTRON  
        CDH2 1 INTRON  
        KIAA1328 1 INTRON  
        MIR4527HG 6 INTRON  
        MAPK4 1 INTRON  
        RP11-671P2.1 1 INTRON  
        RP11-795H16.3 1 INTRON  
        CDH7 1 INTRON  
        LINC00908 14 INTRON  
        LINC00908 1 INTRON  
        LINC00908 1 INTRON  
        LINC00908 1 INTRON  
Chr. Chr. mutation Mutation Unknown mutation Expressed gene Mutation no. Mutation position Mutation type
19 53 41 12 WDR18 1 INTRON  
        WDR18 1 0 Synonymous
        DOT1L 1 0 Missense
        TLE2 1 INTRON  
        CACTIN 1 INTRON  
        CHAF1A 1 INTRON  
        LONP1 11 INTRON  
        NFIX 2 INTRON  
        NFIX 2 INTRON  
        NCAN 1 INTRON  
        CTD-2043I16.1 2 INTRON  
        URI1 1 INTRON  
        TDRD12 2 INTRON  
        TDRD12 1 0 Missense
        TDRD12 14 0  
        ZNF540 1 INTRON  
        PCAT19 1 INTRON  
        ZNF227 1 INTRON  
        ZNF235 1 INTRON  
        ZNF285 1 INTRON  
        PVR 1 INTRON  
        CBLC 1 INTRON  
        MARK4 5 INTRON  
Chr. Chr. mutation Mutation Unknown mutation Expressed gene Mutation no. Mutation position Mutation type
20 29 11 18 C20orf27 1 INTRON  
        SLC23A2 1 INTRON  
        CHMP4B 5 INTRON  
        DHX35 2 INTRON  
        SLC2A10 1 INTRON  
        MIR646HG 1   Non-coding transcript exon
Chr. Chr. mutation Mutation Unknown mutation Expressed gene Mutation no. Mutation position Mutation type
21 23 21 2 IFNGR2 8 INTRON  
        CHODL 2 INTRON  
        IFNAR1 1 INTRON  
        TMEM50B 3 INTRON  
        TMEM50B 3 INTRON  
        GART 1 INTRON  
        RUNX1 1 INTRON  
        C2CD2 1 3'UTR  
        PDXK 1 3'UTR  
Chr. Chr. mutation Mutation Unknown mutation Expressed gene Mutation no. Mutation position Mutation type
22 44 29 15 TPTEP1 3 INTRON  
        SMPD4P1 2 INTRON  
        BCR 1 INTRON  
        MYO188 1 INTRON  
        DEPDC5 1 INTRON  
        FOXRED2 1 3'UTR  
        ELFN2 2 INTRON  
        XPNPEP3 1 INTRON  
        TCF20 15 INTRON  
        CYB5R3 1 INTRON  
        TAFA5 1 INTRON  

Disclosures

Human subjects: Consent was obtained or waived by all participants in this study. Human Ethics Research Committee of the College of Science, Salahaddin University-Erbil issued approval 4/5/439.

Animal subjects: All authors have confirmed that this study did not involve animal subjects or tissue.

Conflicts of interest: In compliance with the ICMJE uniform disclosure form, all authors declare the following:

Payment/services info: All authors have declared that no financial support was received from any organization for the submitted work.

Financial relationships: All authors have declared that they have no financial relationships at present or within the previous three years with any organizations that might have an interest in the submitted work.

Other relationships: All authors have declared that there are no other relationships or activities that could appear to have influenced the submitted work.

Author Contributions

Acquisition, analysis, or interpretation of data:  Bahaaddin A. Saber

Drafting of the manuscript:  Bahaaddin A. Saber, Abbas Salihi

Critical review of the manuscript for important intellectual content:  Bahaaddin A. Saber, Abbas Salihi, Ashabil Aygan

Concept and design:  Abbas Salihi, Ashabil Aygan

Supervision:  Abbas Salihi, Ashabil Aygan

References

  • 1.Sulfurtransferases and cystathionine beta-synthase expression in different human leukemia cell lines. Jurkowska H, Wróbel M, Jasek-Gajda E, Rydz L. Biomolecules. 2022;12:148. doi: 10.3390/biom12020148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.WHO 2016 definition of chronic myeloid leukemia and tyrosine kinase inhibitors. Haznedaroğlu İC, Kuzu I, İlhan O. Turk J Haematol. 2020;37:42–47. doi: 10.4274/tjh.galenos.2019.2019.0241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Measuring the symptom burden associated with the treatment of chronic myeloid leukemia. Williams LA, Garcia Gonzalez AG, Ault P, et al. Blood. 2013;122:641–647. doi: 10.1182/blood-2013-01-477687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.BCR-ABL1 tyrosine kinase complex signaling transduction: challenges to overcome resistance in chronic myeloid leukemia. Amarante-Mendes GP, Rana A, Datoguia TS, Hamerschlak N, Brumatti G. Pharmaceutics. 2022;14:215. doi: 10.3390/pharmaceutics14010215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.dbLGL: an online leukemia gene and literature database for the retrospective comparison of adult and childhood leukemia genetics with literature evidence. Liu Y, Luo M, Jin Z, Zhao M, Qu H. Database (Oxford) 2018;2018:0. doi: 10.1093/database/bay062. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Cystathionine β-synthase in physiology and cancer. Zhu H, Blake S, Chan KT, Pearson RB, Kang J. Biomed Res Int. 2018;2018:3205125. doi: 10.1155/2018/3205125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Gasotransmitters in the tumor microenvironment: impacts on cancer chemotherapy (review) Salihi A, Al-Naqshabandi MA, Khudhur ZO, et al. Mol Med Rep. 2022;26:233. doi: 10.3892/mmr.2022.12749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.The yin and yang of nitric oxide in cancer progression. Burke AJ, Sullivan FJ, Giles FJ, Glynn SA. Carcinogenesis. 2013;34:503–512. doi: 10.1093/carcin/bgt034. [DOI] [PubMed] [Google Scholar]
  • 9.Molecular mechanisms of nitric oxide in cancer progression, signal transduction, and metabolism. Somasundaram V, Basudhar D, Bharadwaj G, et al. Antioxid Redox Signal. 2019;30:1124–1143. doi: 10.1089/ars.2018.7527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Nitric oxide (NO) and NO synthases (NOS)-based targeted therapy for colon cancer. Wang H, Wang L, Xie Z, Zhou S, Li Y, Zhou Y, Sun M. Cancers (Basel) 2020;12:1881. doi: 10.3390/cancers12071881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.In vitro anticancer activity of hydrogen sulfide and nitric oxide alongside nickel nanoparticle and novel mutations in their genes in CRC patients. Housein Z, Kareem TS, Salihi A. Sci Rep. 2021;11:2536. doi: 10.1038/s41598-021-82244-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Pan-cancer analysis of NOS3 identifies its expression and clinical relevance in gastric cancer. Zou D, Li Z, Lv F, et al. Front Oncol. 2021;11:592761. doi: 10.3389/fonc.2021.592761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Preleukemic phase of chronic myelogenous leukemia: morphologic and immunohistochemical characterization of 7 cases. Aye le L, Loghavi S, Young KH, et al. Ann Diagn Pathol. 2016;21:53–58. doi: 10.1016/j.anndiagpath.2015.12.004. [DOI] [PubMed] [Google Scholar]
  • 14.Acute myeloid leukemia in the real world: why population-based registries are needed. Juliusson G, Lazarevic V, Horstedt AS, et al. Blood. 2012;119:3890–3899. doi: 10.1182/blood-2011-12-379008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Baseline blood count levels increase odds of cytopenia among CML patients in Kenya: a case control study. McLigeyo A, Rajab J, Oyiro P, et al. BMC Cancer. 2022;22:128. doi: 10.1186/s12885-021-09162-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Interleukin 6 and disease transformation in chronic myeloid leukemia: a northeast Indian population study. Sharma K, Singh U, Rai M, Shukla J, Gupta V, Narayan G, Kumar S. J Cancer Res Ther. 2020;16:30–33. doi: 10.4103/jcrt.JCRT_137_17. [DOI] [PubMed] [Google Scholar]
  • 17.Hydrogen sulfide, an endogenous stimulator of mitochondrial function in cancer cells. Szabo C. Cells. 2021;10:220. doi: 10.3390/cells10020220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.A relationship between endothelial nitric oxide synthetase gene variants and substance use disorder. Pehlivan S, Aydin PC, Nursal AF, Pehlivan M, Oyaci Y, Yazici AB. Endocr Metab Immune Disord Drug Targets. 2021;21:1679–1684. doi: 10.2174/1871530320666201013154917. [DOI] [PubMed] [Google Scholar]
  • 19.Clinical interpretation of genomic variations. Sayitoğlu M. Turk J Haematol. 2016;33:172–179. doi: 10.4274/tjh.2016.0149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Chronic myeloid leukemia, from pathophysiology to treatment-free remission: a narrative literature review. Rinaldi I, Winston K. J Blood Med. 2023;14:261–277. doi: 10.2147/JBM.S382090. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Identification of prognostic and susceptibility markers in chronic myeloid leukemia using next generation sequencing. Shokeen Y, Sharma NR, Vats A, et al. Ethiop J Health Sci. 2018;28:135–146. doi: 10.4314/ejhs.v28i2.5. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Cureus are provided here courtesy of Cureus Inc.

RESOURCES