Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1979 Jul 15;182(1):181–188. doi: 10.1042/bj1820181

The subcellular distribution and some properties of the cytochrome b component of the microbicidal oxidase system of human neutrophils.

A W Segal, O T Jones
PMCID: PMC1161247  PMID: 496906

Abstract

A novel cytochrome b has recently been described in human neutrophils. The subcellular distribution of this cytochrome was investigated by analytical fractionation on continuous sucrose gradients and it was found to have a dual localization, the major component having a similar distribution to the plasma-membrane marker [3H]concanavalin A, and a denser peak located with the specific granules. The two components were separated on discontinuous gradients and studied independently.

Full text

PDF
181

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. COOPERSTEIN S. J., LAZAROW A. A microspectrophotometric method for the determination of cytochrome oxidase. J Biol Chem. 1951 Apr;189(2):665–670. [PubMed] [Google Scholar]
  2. Colbeau A., Nachbaur J., Vignais P. M. Enzymic characterization and lipid composition of rat liver subcellular membranes. Biochim Biophys Acta. 1971 Dec 3;249(2):462–492. doi: 10.1016/0005-2736(71)90123-4. [DOI] [PubMed] [Google Scholar]
  3. Curnutte J. T., Whitten D. M., Babior B. M. Defective superoxide production by granulocytes from patients with chronic granulomatous disease. N Engl J Med. 1974 Mar 14;290(11):593–597. doi: 10.1056/NEJM197403142901104. [DOI] [PubMed] [Google Scholar]
  4. DeChatelet L. R., McPhail L. C., Mullikin D., McCall C. E. Reduced nicotinamide adenine dinucleotide and reduced nicotinamide adenine dinucleotide phosphate diaphorase activity in human polymorphonuclear leukocytes. Infect Immun. 1974 Sep;10(3):528–534. doi: 10.1128/iai.10.3.528-534.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dewald B., Rindler-Ludwig R., Bretz U., Baggiolini M. Subcellular localization and heterogeneity of neutral proteases in neutrophilic polymorphonuclear leukocytes. J Exp Med. 1975 Apr 1;141(4):709–723. doi: 10.1084/jem.141.4.709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dutton P. L. Redox potentiometry: determination of midpoint potentials of oxidation-reduction components of biological electron-transfer systems. Methods Enzymol. 1978;54:411–435. doi: 10.1016/s0076-6879(78)54026-3. [DOI] [PubMed] [Google Scholar]
  7. Ginsburg I., Sela M. N. The role of leukocytes and their hydrolases in the persistence, degradation, and transport of bacterial constituents in tissues: relation to chronic inflammatory processes in staphylococcal, streptococcal, and mycobacterial infections and in chronic periodontal disease. CRC Crit Rev Microbiol. 1976 Mar;4(3):249–322. doi: 10.3109/10408417609106944. [DOI] [PubMed] [Google Scholar]
  8. Green M. R., Hill H. A., Okolow-Zubkowska M. J., Segal A. W. The production of hydroxyl and superoxide radicals by stimulated human neutrophils- measurements by EPR spectroscopy. FEBS Lett. 1979 Apr 1;100(1):23–26. doi: 10.1016/0014-5793(79)81123-0. [DOI] [PubMed] [Google Scholar]
  9. HATTORI H. Studies on the labile, stable Nadi oxidase and peroxidase staining reactions in the isolated particles of horse granulocyte. Nagoya J Med Sci. 1961 May;23:362–378. [PubMed] [Google Scholar]
  10. HERS H. G., DE DUVE C. Le système hexose-phosphatasique. II. Répartition de l'activité glucose-6-phosphatasique dans les tissus. Bull Soc Chim Biol (Paris) 1950;32(1-2):20–29. [PubMed] [Google Scholar]
  11. HIRSCH J. G. Phagocytin: a bactericidal substance from polymorphonuclear leucocytes. J Exp Med. 1956 May 1;103(5):589–611. doi: 10.1084/jem.103.5.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. HIRSCH J. G. Studies of the bactericidal action of phagocytin. J Exp Med. 1956 May 1;103(5):613–621. doi: 10.1084/jem.103.5.613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. HUEBSCHER G., WEST G. R. SPECIFIC ASSAYS OF SOME PHOSPHATASES IN SUBCELLULAR FRACTIONS OF SMALL INTESTINAL MUCOSA. Nature. 1965 Feb 20;205:799–800. doi: 10.1038/205799a0. [DOI] [PubMed] [Google Scholar]
  14. Holmes B., Page A. R., Good R. A. Studies of the metabolic activity of leukocytes from patients with a genetic abnormality of phagocytic function. J Clin Invest. 1967 Sep;46(9):1422–1432. doi: 10.1172/JCI105634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jones O. T., Saunders V. A. Energy-linked electron transfer reactions in Rhodopseudomonas viridis. Biochim Biophys Acta. 1972 Sep 20;275(3):427–436. doi: 10.1016/0005-2728(72)90223-x. [DOI] [PubMed] [Google Scholar]
  16. Kane S. P., Peters T. J. Analytical subcellular fractionation of human granulocytes with reference to the localization of vitamin B12-binding proteins. Clin Sci Mol Med. 1975 Aug;49(2):171–182. doi: 10.1042/cs0490171. [DOI] [PubMed] [Google Scholar]
  17. Klass H. J., Hopkins J., Neale G., Peters T. J. The estimation of serum lysozyme: a comparison of four assay methods. Biochem Med. 1977 Aug;18(1):52–57. doi: 10.1016/0006-2944(77)90048-5. [DOI] [PubMed] [Google Scholar]
  18. LAURELL C. B. ANTIGEN-ANTIBODY CROSSED ELECTROPHORESIS. Anal Biochem. 1965 Feb;10:358–361. doi: 10.1016/0003-2697(65)90278-2. [DOI] [PubMed] [Google Scholar]
  19. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  20. MITCHELL P. Metabolism, transport, and morphogenesis: which drives which? J Gen Microbiol. 1962 Sep;29:25–37. doi: 10.1099/00221287-29-1-25. [DOI] [PubMed] [Google Scholar]
  21. Mandell G. L. Bactericidal activity of aerobic and anaerobic polymorphonuclear neutrophils. Infect Immun. 1974 Feb;9(2):337–341. doi: 10.1128/iai.9.2.337-341.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mandell G. L. Intraphagosomal pH of human polymorphonuclear neutrophils. Proc Soc Exp Biol Med. 1970 Jun;134(2):447–449. doi: 10.3181/00379727-134-34810. [DOI] [PubMed] [Google Scholar]
  23. Meerov G. I., Ryzhkova Y. P. Radiometric method for determination of glucose 6-phosphatase activity in liver. Anal Biochem. 1969 Mar;27(3):419–423. doi: 10.1016/0003-2697(69)90055-4. [DOI] [PubMed] [Google Scholar]
  24. Mitchell P. Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol Rev Camb Philos Soc. 1966 Aug;41(3):445–502. doi: 10.1111/j.1469-185x.1966.tb01501.x. [DOI] [PubMed] [Google Scholar]
  25. Morgan D. M., Vint S., Rideout J. M. Continuous flow fluorimetric assay of lysosomal enzymes. Med Lab Sci. 1978 Oct;35(4):335–341. [PubMed] [Google Scholar]
  26. Odajima T., Yamazaki I. Myeloperoxidase of the leukocyte of normal blood. IV. Some physicochemical properties. Biochim Biophys Acta. 1972 Oct 12;284(2):360–367. doi: 10.1016/0005-2744(72)90131-3. [DOI] [PubMed] [Google Scholar]
  27. Omura T., Siekevitz P., Palade G. E. Turnover of constituents of the endoplasmic reticulum membranes of rat hepatocytes. J Biol Chem. 1967 May 25;242(10):2389–2396. [PubMed] [Google Scholar]
  28. Ota H., Takahashi H., Hattori H., Yamada H., Takikawa K. Some oxidative enzymes and cytochrome in the specific granules of neutrophile leukocytes. Nihon Ketsueki Gakkai Zasshi. 1966 Nov;29(6):799–808. [PubMed] [Google Scholar]
  29. SBARRA A. J., KARNOVSKY M. L. The biochemical basis of phagocytosis. I. Metabolic changes during the ingestion of particles by polymorphonuclear leukocytes. J Biol Chem. 1959 Jun;234(6):1355–1362. [PubMed] [Google Scholar]
  30. Segal A. W., Coade S. B. Kinetics of oxygen consumption by phagocytosing human neutrophils. Biochem Biophys Res Commun. 1978 Oct 16;84(3):611–617. doi: 10.1016/0006-291x(78)90749-0. [DOI] [PubMed] [Google Scholar]
  31. Segal A. W., Jones O. T. Identification of a previously undescribed cytochrome b in human neutrophils and its relationship to phagocytosis-induced oxidase activity [proceedings]. Biochem Soc Trans. 1979 Feb;7(1):187–188. doi: 10.1042/bst0070187. [DOI] [PubMed] [Google Scholar]
  32. Segal A. W., Jones O. T. Novel cytochrome b system in phagocytic vacuoles of human granulocytes. Nature. 1978 Nov 30;276(5687):515–517. doi: 10.1038/276515a0. [DOI] [PubMed] [Google Scholar]
  33. Segal A. W., Jones O. T., Webster D., Allison A. C. Absence of a newly described cytochrome b from neutrophils of patients with chronic granulomatous disease. Lancet. 1978 Aug 26;2(8087):446–449. doi: 10.1016/s0140-6736(78)91445-9. [DOI] [PubMed] [Google Scholar]
  34. Segal A. W., Meshulam T. Production of superoxide by neutrophils: a reappraisal. FEBS Lett. 1979 Apr 1;100(1):27–32. doi: 10.1016/0014-5793(79)81124-2. [DOI] [PubMed] [Google Scholar]
  35. Segal A. W., Peters T. J. Analytical subcellular fractionation of human granulocytes with special reference to the localization of enzymes involved in microbicidal mechanisms. Clin Sci Mol Med. 1977 Apr;52(4):429–442. doi: 10.1042/cs0520429. [DOI] [PubMed] [Google Scholar]
  36. Shinagawa Y., Tanaka C., Teraoka A. [Electron microscopic and biochemical study of the neutrophilic granules from leucocytes]. J Electron Microsc (Tokyo) 1966;15(2):81–85. [PubMed] [Google Scholar]
  37. Silverstein S. C., Steinman R. M., Cohn Z. A. Endocytosis. Annu Rev Biochem. 1977;46:669–722. doi: 10.1146/annurev.bi.46.070177.003321. [DOI] [PubMed] [Google Scholar]
  38. Spitznagel J. K., Dalldorf F. G., Leffell M. S., Folds J. D., Welsh I. R., Cooney M. H., Martin L. E. Character of azurophil and specific granules purified from human polymorphonuclear leukocytes. Lab Invest. 1974 Jun;30(6):774–785. [PubMed] [Google Scholar]
  39. Turner J. C. Triton X-100 scintillant for carbon-14 labelled materials. Int J Appl Radiat Isot. 1968 Jul;19(7):557–563. doi: 10.1016/0020-708x(68)90065-3. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES