Abstract
Prostaglandin E1 (PGE1) covalently linked to omega-NH2-hexyl-agarose (PGE1-hexyl-agarose) stimulates the activity of human platelet adenylate cyclase [ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1] 3-fold over control level at 60 sec when stirred at 1200 rpm at 37 degrees C. The time course exhibited a lag phase of 20 sec, a rapid increase to a maximum plateau between 60 and 80 sec, and a more gradual decrease to basal level at about 120 sec. During this entire period of incubation PGE1-hexyl-agarose could be easily separated; therefore it bound only transiently to the platelet. No prostaglandin(s) were found to be released into plasma. The stimulation of adenylate cyclase activity by the insolubilized hormone was dependent on the rate of collision as influenced by the speed of stirring. Removal of the insoluble PGE1 before the end of the lag period (10 sec) prevented the increase of adenylate cyclase. In contrast, separation of PGE1-hexyl-agarose from platelets by filtration after the lag period (at 30 or 40 sec) allowed the stimulation of the enzymatic activity to continue to completion in the absence of the hormone. The results suggest that PGE1 initiates molecular events leading to an increase of adenylate cyclase that do not require its continued presence for maintenance of the stimulated state.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ball G., Brereton G. G., Fulwood M., Ireland D. M., Yates P. Effet of prostaglandin E1 alone and in combination with theophylline or aspirin on collagen-induced platelet aggregation and on platelet nucleotides including adenosine 3':5'-cyclic monophosphate. Biochem J. 1970 Dec;120(4):709–718. doi: 10.1042/bj1200709. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brunton L. L., Wiklund R. A., Van Arsdale P. M., Gilman A. G. Binding of (3H)prostaglandin E1 to putative receptors linked to adenylate cyclase of cultured cell clones. J Biol Chem. 1976 May 25;251(10):3037–3044. [PubMed] [Google Scholar]
- Droller M. J. Thrombin-induced platelet prostaglandin and cyclic AMP production and a possible intrinsic modulation of platelet function. Scand J Haematol. 1976 Sep;17(3):167–178. doi: 10.1111/j.1600-0609.1976.tb01172.x. [DOI] [PubMed] [Google Scholar]
- Gorman R. R., Bunting S., Miller O. V. Modulation of human platelet adenylate cyclase by prostacyclin (PGX). Prostaglandins. 1977 Mar;13(3):377–388. doi: 10.1016/0090-6980(77)90018-1. [DOI] [PubMed] [Google Scholar]
- Kaufman B. T. Methotrexate-agarose in the purification of dihydrofolate reductase. Methods Enzymol. 1974;34:272–281. doi: 10.1016/s0076-6879(74)34025-6. [DOI] [PubMed] [Google Scholar]
- Kinlough-Rathbone R. L., Packham M. A., Mustard J. F. The effect of prostaglandin E1 on platelet function in vitro and in vivo. Br J Haematol. 1970 Nov;19(5):559–571. doi: 10.1111/j.1365-2141.1970.tb01639.x. [DOI] [PubMed] [Google Scholar]
- Krishna G., Weiss B., Brodie B. B. A simple, sensitive method for the assay of adenyl cyclase. J Pharmacol Exp Ther. 1968 Oct;163(2):379–385. [PubMed] [Google Scholar]
- Lefkowitz R. J., Mullikin D., Wood C. L., Gore T. B., Mukherjee C. Regulation of prostaglandin receptors by prostaglandins and guanine nucleotides in frog erythrocytes. J Biol Chem. 1977 Aug 10;252(15):5295–5303. [PubMed] [Google Scholar]
- Levitzki A., Sevilla N., Steer M. L. The regulatory control of beta-receptor dependent adenylate cyclase. J Supramol Struct. 1976;4(3):405–418. doi: 10.1002/jss.400040311. [DOI] [PubMed] [Google Scholar]
- Rodbell M., Birnbaumer L., Pohl S. L., Krans H. M. The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. V. An obligatory role of guanylnucleotides in glucagon action. J Biol Chem. 1971 Mar 25;246(6):1877–1882. [PubMed] [Google Scholar]
- Salzman E. W., Levine L. Cyclic 3',5'-adenosine monophosphate in human blood platelets. II. Effect of N6-2'-o-dibutyryl cyclic 3',5'-adenosine monophosphate on platelet function. J Clin Invest. 1971 Jan;50(1):131–141. doi: 10.1172/JCI106467. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shaltiel S. Hydrophobic chromatography. Methods Enzymol. 1974;34:126–140. doi: 10.1016/s0076-6879(74)34012-8. [DOI] [PubMed] [Google Scholar]
- Sinha A. K., Colman R. W. A simple assay for adenylate cyclase in intact cells by affinity elution chromatography. Biochem J. 1978 Sep 15;174(3):699–702. doi: 10.1042/bj1740699. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sinha A. K., Colman R. W. Prostaglandin E1 inhibitis platelet aggregation by a pathway independent of adenosine 3',5'-monophosphate. Science. 1978 Apr 14;200(4338):202–203. doi: 10.1126/science.204997. [DOI] [PubMed] [Google Scholar]
- Sinha A. K., Colman R. W. Use of affinity elution chromatography for the microassay of adenosine 3':5'-monophosphate. Eur J Biochem. 1977 Mar 1;73(2):367–371. doi: 10.1111/j.1432-1033.1977.tb11327.x. [DOI] [PubMed] [Google Scholar]
- Spector A. A., Fletcher J. E., Ashbrook J. D. Analysis of long-chain free fatty acid binding to bovine serum albumin by determination of stepwise equilibrium constants. Biochemistry. 1971 Aug 17;10(17):3229–3232. doi: 10.1021/bi00793a011. [DOI] [PubMed] [Google Scholar]
- Wolfe S. M., Shulman N. R. Adenyl cyclase activity in human platelets. Biochem Biophys Res Commun. 1969 Apr 29;35(2):265–272. doi: 10.1016/0006-291x(69)90277-0. [DOI] [PubMed] [Google Scholar]
