Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1983 May 1;211(2):333–340. doi: 10.1042/bj2110333

Quantification of NADPH: cytochrome P-450 reductase in liver microsomes by a specific radioimmunoassay technique.

E A Shephard, I R Phillips, R M Bayney, S F Pike, B R Rabin
PMCID: PMC1154364  PMID: 6409093

Abstract

We have developed a specific radioimmunoassay to quantify NADPH: cytochrome P-450 reductase. The assay is based on the use of 125I-labelled NADPH: cytochrome P-450 reductase as the radiolabelled antigen and can detect quantities of this protein in amounts as low as 30 pg. The results of the radioimmunoassay demonstrates that the 2.7-fold increase in enzyme activity in rat liver microsomal membranes after phenobarbital treatment is due to increased amounts of the protein. beta-Naphthoflavone treatment, however, did not alter the activity or the quantity of this enzyme in microsomes. The quantification of NADPH: cytochrome P-450 reductase in the microsomes isolated from control and phenobarbital- and beta-naphthoflavone-treated animals permits the calculation of the ratio of this protein to that of total cytochromes P-450. A molar ratio of 15:1 (cytochromes P-450/NADPH: cytochrome P-450 reductase) was calculated for control and phenobarbital-treated animals. This ratio increased to 21:1 after beta-naphthoflavone treatment. Thus the molar ratio of these proteins in liver microsomes can vary with exposure of the animals to particular xenobiotics.

Full text

PDF
333

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bolton A. E., Hunter W. M. The labelling of proteins to high specific radioactivities by conjugation to a 125I-containing acylating agent. Biochem J. 1973 Jul;133(3):529–539. doi: 10.1042/bj1330529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Conney A. H. Pharmacological implications of microsomal enzyme induction. Pharmacol Rev. 1967 Sep;19(3):317–366. [PubMed] [Google Scholar]
  3. Estabrook R. W., Franklin M. R., Cohen B., Shigamatzu A., Hildebrandt A. G. Biochemical and genetic factors influencing drug metabolism. Influence of hepatic microsomal mixed function oxidation reactions on cellular metabolic control. Metabolism. 1971 Feb;20(2):187–199. doi: 10.1016/0026-0495(71)90091-6. [DOI] [PubMed] [Google Scholar]
  4. French J. S., Guengerich F. P., Coon M. J. Interactions of cytochrome P-450, NADPH-cytochrome P-450 reductase, phospholipid, and substrate in the reconstituted liver microsomal enzyme system. J Biol Chem. 1980 May 10;255(9):4112–4119. [PubMed] [Google Scholar]
  5. Gelboin H. V. Carcinogens, enzyme induction, and gene action. Adv Cancer Res. 1967;10:1–81. doi: 10.1016/s0065-230x(08)60076-7. [DOI] [PubMed] [Google Scholar]
  6. Gonzalez F. J., Kasper C. B. Cloning of DNA complementary to rat liver NADPH-cytochrome c (P-450) oxidoreductase and cytochrome P-450b mRNAs. Evidence that phenobarbital augments transcription of specific genes. J Biol Chem. 1982 May 25;257(10):5962–5968. [PubMed] [Google Scholar]
  7. Gonzalez F. J., Kasper C. B. Phenobarbital induction of NADPH-cytochrome c (P-450) oxidoreductase messenger ribonucleic acid. Biochemistry. 1980 Apr 29;19(9):1790–1796. doi: 10.1021/bi00550a010. [DOI] [PubMed] [Google Scholar]
  8. Guengerich F. P. Isolation and purification of cytochrome P-450, and the existence of multiple forms. Pharmacol Ther. 1979;6(1):99–121. doi: 10.1016/0163-7258(79)90057-3. [DOI] [PubMed] [Google Scholar]
  9. Guengerich F. P., Martin M. V. Purification of cytochrome P-450, NADPH-cytochrome P-450 reductase, and epoxide hydratase from a single preparation of rat liver microsomes. Arch Biochem Biophys. 1980 Dec;205(2):365–379. doi: 10.1016/0003-9861(80)90119-8. [DOI] [PubMed] [Google Scholar]
  10. Imai Y. The use of 8-aminooctyl sepharose for the separation of some components of the hepatic microsomal electron transfer system. J Biochem. 1976 Aug;80(2):267–276. doi: 10.1093/oxfordjournals.jbchem.a131273. [DOI] [PubMed] [Google Scholar]
  11. Kuriyama Y., Omura T., Siekevitz P., Palade G. E. Effects of phenobarbital on the synthesis and degradation of the protein components of rat liver microsomal membranes. J Biol Chem. 1969 Apr 25;244(8):2017–2026. [PubMed] [Google Scholar]
  12. Lu A. Y., West S. B. Multiplicity of mammalian microsomal cytochromes P-45. Pharmacol Rev. 1979 Dec;31(4):277–295. [PubMed] [Google Scholar]
  13. Mitani F., Shephard E. A., Phillips I. R., Rabin B. R. Complexes of cytochrome P450 with metyrapone. A convenient method for the quantitative analysis of phenobarbital-inducible cytochrome P450 in rat liver microsomes. FEBS Lett. 1982 Nov 8;148(2):302–306. doi: 10.1016/0014-5793(82)80829-6. [DOI] [PubMed] [Google Scholar]
  14. Miwa G. T., West S. B., Lu A. Y. Studies on the rate-limiting enzyme component in the microsomal monooxygenase system. Incorporation of purified NADPH-cytochrome c reductase and cytochrome P-450 into rat liver microsomes. J Biol Chem. 1978 Mar 25;253(6):1921–1929. [PubMed] [Google Scholar]
  15. Noshiro M., Omura T. Immunochemical study on the electron pathway from NADH to cytochrome P-450 of liver microsomes. J Biochem. 1978 Jan;83(1):61–77. doi: 10.1093/oxfordjournals.jbchem.a131913. [DOI] [PubMed] [Google Scholar]
  16. OMURA T., SATO R. THE CARBON MONOXIDE-BINDING PIGMENT OF LIVER MICROSOMES. II. SOLUBILIZATION, PURIFICATION, AND PROPERTIES. J Biol Chem. 1964 Jul;239:2379–2385. [PubMed] [Google Scholar]
  17. Orrenius S., Ericsson J. L., Ernster L. Phenobarbital-induced synthesis of the microsomal drug-metabolizing enzyme system and its relationship to the proliferation of endoplasmic membranes. A morphological and biochemical study. J Cell Biol. 1965 Jun;25(3):627–639. doi: 10.1083/jcb.25.3.627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Orrenius S., Ernster L. Phenobarbital-induced synthesis of the oxidative demethylating enzymes of rat liver microsomes. Biochem Biophys Res Commun. 1964 May 22;16(1):60–65. doi: 10.1016/0006-291x(64)90211-6. [DOI] [PubMed] [Google Scholar]
  19. Phillips I. R., Shephard E. A., Mitani F., Rabin B. R. Induction by phenobarbital of the mRNA for a specific variant of rat liver microsomal cytochrome P-450. Biochem J. 1981 Jun 15;196(3):839–851. doi: 10.1042/bj1960839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Shephard E. A., Phillips I. R., Pike S. F., Ashworth A., Rabin B. R. Differential effect of phenobarbital and beta-naphthoflavone on the mRNAs coding for cytochrome P450 and NADPH cytochrome P450 reductase. FEBS Lett. 1982 Dec 27;150(2):375–380. doi: 10.1016/0014-5793(82)80771-0. [DOI] [PubMed] [Google Scholar]
  21. Thomas P. E., Korzeniowski D., Ryan D., Levin W. Preparation of monospecific antibodies against two forms of rat liver cytochrome P-450 and quantitation of these antigens in microsomes. Arch Biochem Biophys. 1979 Feb;192(2):524–532. doi: 10.1016/0003-9861(79)90122-x. [DOI] [PubMed] [Google Scholar]
  22. Thomas P. E., Reik L. M., Ryan D. E., Levin W. Regulation of three forms of cytochrome P-450 and epoxide hydrolase in rat liver microsomes. Effects of age, sex, and induction. J Biol Chem. 1981 Jan 25;256(2):1044–1052. [PubMed] [Google Scholar]
  23. Vermilion J. L., Coon M. J. Highly purified detergent-solubilized NADPH-cytochrome P-450 reductase from phenobarbital-induced rat liver microsomes. Biochem Biophys Res Commun. 1974 Oct 23;60(4):1315–1322. doi: 10.1016/0006-291x(74)90341-6. [DOI] [PubMed] [Google Scholar]
  24. West S. B., Levin W., Ryan D., Vore M., Lu A. Y. Liver microsomal electron transport systems. II. The involvement of cytochrome b5 in the NADH-dependent hydroxylation of 3,4-benzpyrene by a reconstituted cytochrome P-448-containing system. Biochem Biophys Res Commun. 1974 May 20;58(2):516–522. doi: 10.1016/0006-291x(74)90395-7. [DOI] [PubMed] [Google Scholar]
  25. van der Hoeven T. A., Coon M. J. Preparation and properties of partially purified cytochrome P-450 and reduced nicotinamide adenine dinucleotide phosphate-cytochrome P-450 reductase from rabbit liver microsomes. J Biol Chem. 1974 Oct 10;249(19):6302–6310. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES