Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1978 Mar 1;71(3):269–284. doi: 10.1085/jgp.71.3.269

Electrically silent anion transport through lipid bilayer membranes containing a long-chain secondary amine

PMCID: PMC2215725  PMID: 650168

Abstract

The permeability properties of planar lipid bilayers made from egg lecithin, n-decane and a long-chain secondary amine (n-lauryl [trialkylmethyl]amine) are described. Membranes containing the secondary amine show halide selectivity and high conductance at pH less than 6, as estimated by measurements of zero-current potentials generated by NaBr activity gradients. In the absence of halide ions, the membranes show H+ selectivity, although the total membrane conductance is relatively low. In 0.1 M NaBr both the membrane conductance (Gm) and the Br- self-exchange flux (JBr) are proportional to H+ concentration over the pH range of 7 to 4, and both JBr and Gm saturate at pH less than 4. However, JBr is always more than 100 times the flux predicted from Gm and the transference number for Br-. Thus, greater than 99% of the observed (tracer) flux is electrically silent and is not a Br2 or HBrO flux because the reducing agent, S2O3=, has no effect on JBr. At pH 7, JBr is proportional to Br- concentration over the range of 1-340 mM, with no sign of saturation kinetics. Both urea and sulfate tracer permeabilities are low and are unaffected by pH. The results can be explained by a model in which the secondary amine behaves as a monovalent, titratable carrier which exists in three chemical forms (C, CH+, and CHBr). Br- crosses the membrane primarily as the neurtal complex (CHBr). The positively charged carrier (CH+) crosses the membrane slowly compared to CHBr, but CH+ is the principal charge carrier in the membrane. At neurtal pH greater than 99% of the amine is in the nonfunctional form (C), which can be converted to CH+ or CHBr by increasing the H+ or Br- concentrations. The permeability properties of these lipid bilayers resemble in many respects the permeability properties of red cell membranes.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andreoli T. E., Bangham J. A., Tosteson D. C. The formation and properties of thin lipid membranes from HK and LK sheep red cell lipids. J Gen Physiol. 1967 Jul;50(6):1729–1749. doi: 10.1085/jgp.50.6.1729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bangham A. D., Standish M. M., Watkins J. C. Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol. 1965 Aug;13(1):238–252. doi: 10.1016/s0022-2836(65)80093-6. [DOI] [PubMed] [Google Scholar]
  3. Brahm J. Temperature-dependent changes of chloride transport kinetics in human red cells. J Gen Physiol. 1977 Sep;70(3):283–306. doi: 10.1085/jgp.70.3.283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brazy P. C., Gunn R. B. Furosemide inhibition of chloride transport in human red blood cells. J Gen Physiol. 1976 Dec;68(6):583–599. doi: 10.1085/jgp.68.6.583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cherry R. J., Bürkli A., Busslinger M., Schneider G., Parish G. R. Rotational diffusion of band 3 proteins in the human erythrocyte membrane. Nature. 1976 Sep 30;263(5576):389–393. doi: 10.1038/263389a0. [DOI] [PubMed] [Google Scholar]
  6. Funder J., Wieth J. O. Chloride transport in human erythrocytes and ghosts: a quantitative comparison. J Physiol. 1976 Nov;262(3):679–698. doi: 10.1113/jphysiol.1976.sp011615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ginsburg H., Stark G. Facilitated transport of di- and trinitrophenolate ions across lipid membranes by valinomycin and nonactin. Biochim Biophys Acta. 1976 Dec 14;455(3):685–700. doi: 10.1016/0005-2736(76)90041-9. [DOI] [PubMed] [Google Scholar]
  8. Gunn R. B., Tosteson D. C. The effect of 2,4,6-trinitro-m-cresol on cation and anion transport in sheep red blood cells. J Gen Physiol. 1971 May;57(5):593–609. doi: 10.1085/jgp.57.5.593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gutknecht J., Bruner L. J., Tosteson D. C. The permeability of thin lipid membranes to bromide and bromine. J Gen Physiol. 1972 Apr;59(4):486–592. doi: 10.1085/jgp.59.4.486. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gutknecht J., Tosteson D. C. Diffusion of weak acids across lipid bilayer membranes: effects of chemical reactions in the unstirred layers. Science. 1973 Dec 21;182(4118):1258–1261. doi: 10.1126/science.182.4118.1258. [DOI] [PubMed] [Google Scholar]
  11. Gutknecht J., Tosteson D. C. Ionic peremability of thin lipid membranes. Effects of n-alkyl alcohols, polyvalent cations, and a secondary amine. J Gen Physiol. 1970 Mar;55(3):359–374. doi: 10.1085/jgp.55.3.359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hauser H., Phillips M. C., Stubbs M. Ion permeability of phospholipid bilayers. Nature. 1972 Oct 6;239(5371):342–344. doi: 10.1038/239342a0. [DOI] [PubMed] [Google Scholar]
  13. Hunter M. J. Human erythrocyte anion permeabilities measured under conditions of net charge transfer. J Physiol. 1977 Jun;268(1):35–49. doi: 10.1113/jphysiol.1977.sp011845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jennings M. L. Proton fluxes associated with erythrocyte membrane anion exchange. J Membr Biol. 1976 Aug 26;28(2-3):187–205. doi: 10.1007/BF01869697. [DOI] [PubMed] [Google Scholar]
  15. Knauf P. A., Fuhrmann G. F., Rothstein S., Rothstein A. The relationship between anion exchange and net anion flow across the human red blood cell membrane. J Gen Physiol. 1977 Mar;69(3):363–386. doi: 10.1085/jgp.69.3.363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kuiper P. J. Ion transport characteristics of grape root lipids in relation to chloride transport. Plant Physiol. 1968 Sep;43(9):1372–1374. doi: 10.1104/pp.43.9.1372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Läuger P. Carrier-mediated ion transport. Science. 1972 Oct 6;178(4056):24–30. doi: 10.1126/science.178.4056.24. [DOI] [PubMed] [Google Scholar]
  18. Nicholls P., Miller N. Chloride diffusion from liposomes. Biochim Biophys Acta. 1974 Jul 31;356(2):184–198. doi: 10.1016/0005-2736(74)90282-x. [DOI] [PubMed] [Google Scholar]
  19. Pagano R., Thompson T. E. Spherical lipid bilayer membranes: electrical and isotopic studies of ion permeability. J Mol Biol. 1968 Nov 28;38(1):41–57. doi: 10.1016/0022-2836(68)90127-7. [DOI] [PubMed] [Google Scholar]
  20. Papahadjopoulos D. Surface properties of acidic phospholipids: interaction of monolayers and hydrated liquid crystals with uni- and bi-valent metal ions. Biochim Biophys Acta. 1968 Sep 17;163(2):240–254. doi: 10.1016/0005-2736(68)90103-x. [DOI] [PubMed] [Google Scholar]
  21. Papahadjopoulos D., Watkins J. C. Phospholipid model membranes. II. Permeability properties of hydrated liquid crystals. Biochim Biophys Acta. 1967 Sep 9;135(4):639–652. doi: 10.1016/0005-2736(67)90095-8. [DOI] [PubMed] [Google Scholar]
  22. Redwood W. R., Pfeiffer F. R., Weisbach J. A., Thompson T. E. Physical properties of bilayer membranes formed from a synthetic saturated phospholipid in n-decane. Biochim Biophys Acta. 1971 Mar 9;233(1):1–6. doi: 10.1016/0005-2736(71)90351-8. [DOI] [PubMed] [Google Scholar]
  23. Robertson R. N., Thompson T. E. The function of phospholipid polar groups in membranes. FEBS Lett. 1977 Apr 1;76(1):16–19. doi: 10.1016/0014-5793(77)80111-7. [DOI] [PubMed] [Google Scholar]
  24. Rothstein A., Cabantchik Z. I., Knauf P. Mechanism of anion transport in red blood cells: role of membrane proteins. Fed Proc. 1976 Jan;35(1):3–10. [PubMed] [Google Scholar]
  25. Sandblom J., Orme F. Liquid membranes as electrodes and biological models. Membranes. 1972;1:125–177. [PubMed] [Google Scholar]
  26. Sha'afi R. I., Gary-Bobo C. M., Solomon A. K. Permeability of red cell membranes to small hydrophilic and lipophilic solutes. J Gen Physiol. 1971 Sep;58(3):238–258. doi: 10.1085/jgp.58.3.238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Shean G. M., Sollner K. Carrier mechanisms in the movement of ions across porous and liquid ion exchanger membranes. Ann N Y Acad Sci. 1966 Jul 14;137(2):759–776. doi: 10.1111/j.1749-6632.1966.tb50198.x. [DOI] [PubMed] [Google Scholar]
  28. Steck T. L. The organization of proteins in the human red blood cell membrane. A review. J Cell Biol. 1974 Jul;62(1):1–19. doi: 10.1083/jcb.62.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Toyoshima Y., Thompson T. E. Chloride flux in bilayer membranes: chloride permeability in aqueous dispersions of single-walled, bilayer vesicles. Biochemistry. 1975 Apr 8;14(7):1525–1531. doi: 10.1021/bi00678a028. [DOI] [PubMed] [Google Scholar]
  30. Toyoshima Y., Thompson T. E. Chloride flux in bilayer membranes: the electrically silent chloride flux in semispherical bilayers. Biochemistry. 1975 Apr 8;14(7):1518–1524. doi: 10.1021/bi00678a027. [DOI] [PubMed] [Google Scholar]
  31. White S. H. Phase transitions in planar bilayer membranes. Biophys J. 1975 Feb;15(2 Pt 1):95–117. doi: 10.1016/s0006-3495(75)85795-x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES