Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1995 May;177(9):2436–2441. doi: 10.1128/jb.177.9.2436-2441.1995

Purification and structural characterization of a flavoprotein induced by iron limitation in Methanobacterium thermoautotrophicum Marburg.

A Wasserfallen 1, K Huber 1, T Leisinger 1
PMCID: PMC176902  PMID: 7730275

Abstract

Cells of Methanobacterium thermoautotrophicum (strain Marburg) grown under iron-limiting conditions were found to synthesize a soluble polypeptide as one of the major cell proteins. This polypeptide purified as a homotetramer (170 kDa [subunit molecular mass, 43 kDa]) had a UV-visible spectrum typical of flavoproteins and contained 0.7 mol of flavin mononucleotide per mol of monomer. Quantitative analysis by immunoblotting with polyclonal antibodies indicated that the flavoprotein, which amounts to about 0.6% of soluble cell protein under iron-sufficient conditions (> or = 50 microM Fe2+), was induced fivefold by iron limitation (< 12 microM Fe2+). The flavoprotein-encoding gene, fprA, was cloned and sequenced. Sequence analysis revealed a well-conserved archaebacterial consensus promoter upstream of fprA, a flavodoxin signature within fprA, and 28% amino acid identity with a putative flavin mononucleotide-containing protein of Rhodobacter capsulatus which is found within an operon involved in nitrogen fixation. A possible physiological function for the flavoprotein is discussed.

Full Text

The Full Text of this article is available as a PDF (426.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bairoch A. PROSITE: a dictionary of sites and patterns in proteins. Nucleic Acids Res. 1992 May 11;20 (Suppl):2013–2018. doi: 10.1093/nar/20.suppl.2013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berghöfer Y., Agha-Amiri K., Klein A. Selenium is involved in the negative regulation of the expression of selenium-free [NiFe] hydrogenases in Methanococcus voltae. Mol Gen Genet. 1994 Feb;242(4):369–373. doi: 10.1007/BF00281785. [DOI] [PubMed] [Google Scholar]
  3. Bertram P. A., Schmitz R. A., Linder D., Thauer R. K. Tungstate can substitute for molybdate in sustaining growth of Methanobacterium thermoautotrophicum. Identification and characterization of a tungsten isoenzyme of formylmethanofuran dehydrogenase. Arch Microbiol. 1994;161(3):220–228. doi: 10.1007/BF00248696. [DOI] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  5. Brown J. W., Daniels C. J., Reeve J. N. Gene structure, organization, and expression in archaebacteria. Crit Rev Microbiol. 1989;16(4):287–338. doi: 10.3109/10408418909105479. [DOI] [PubMed] [Google Scholar]
  6. Fuchs G., Stupperich E., Thauer R. K. Acetate assimilation and the synthesis of alanine, aspartate and glutamate in Methanobacterium thermoautotrophicum. Arch Microbiol. 1978 Apr 27;117(1):61–66. doi: 10.1007/BF00689352. [DOI] [PubMed] [Google Scholar]
  7. Hedderich R., Albracht S. P., Linder D., Koch J., Thauer R. K. Isolation and characterization of polyferredoxin from Methanobacterium thermoautotrophicum. The mvhB gene product of the methylviologen-reducing hydrogenase operon. FEBS Lett. 1992 Feb 17;298(1):65–68. doi: 10.1016/0014-5793(92)80023-a. [DOI] [PubMed] [Google Scholar]
  8. Hedderich R., Koch J., Linder D., Thauer R. K. The heterodisulfide reductase from Methanobacterium thermoautotrophicum contains sequence motifs characteristic of pyridine-nucleotide-dependent thioredoxin reductases. Eur J Biochem. 1994 Oct 1;225(1):253–261. doi: 10.1111/j.1432-1033.1994.00253.x. [DOI] [PubMed] [Google Scholar]
  9. Jouanneau Y., Richaud P., Grabau C. The nucleotide sequence of a flavodoxin-like gene which precedes two ferredoxin genes in Rhodobacter capsulatus. Nucleic Acids Res. 1990 Sep 11;18(17):5284–5284. doi: 10.1093/nar/18.17.5284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  11. Makowski G. S., Ramsby M. L. pH modification to enhance the molecular sieving properties of sodium dodecyl sulfate-10% polyacrylamide gels. Anal Biochem. 1993 Jul;212(1):283–285. doi: 10.1006/abio.1993.1324. [DOI] [PubMed] [Google Scholar]
  12. Meile L., Stettler R., Banholzer R., Kotik M., Leisinger T. Tryptophan gene cluster of Methanobacterium thermoautotrophicum Marburg: molecular cloning and nucleotide sequence of a putative trpEGCFBAD operon. J Bacteriol. 1991 Aug;173(16):5017–5023. doi: 10.1128/jb.173.16.5017-5023.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Reeve J. N., Beckler G. S., Cram D. S., Hamilton P. T., Brown J. W., Krzycki J. A., Kolodziej A. F., Alex L., Orme-Johnson W. H., Walsh C. T. A hydrogenase-linked gene in Methanobacterium thermoautotrophicum strain delta H encodes a polyferredoxin. Proc Natl Acad Sci U S A. 1989 May;86(9):3031–3035. doi: 10.1073/pnas.86.9.3031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Saeki K., Tokuda K., Fujiwara T., Matsubara H. Nucleotide sequence and genetic analysis of the region essential for functional expression of the gene for ferredoxin I, fdxN, in Rhodobacter capsulatus: sharing of one upstream activator sequence in opposite directions by two operons related to nitrogen fixation. Plant Cell Physiol. 1993 Mar;34(2):185–199. [PubMed] [Google Scholar]
  15. Schmehl M., Jahn A., Meyer zu Vilsendorf A., Hennecke S., Masepohl B., Schuppler M., Marxer M., Oelze J., Klipp W. Identification of a new class of nitrogen fixation genes in Rhodobacter capsulatus: a putative membrane complex involved in electron transport to nitrogenase. Mol Gen Genet. 1993 Dec;241(5-6):602–615. doi: 10.1007/BF00279903. [DOI] [PubMed] [Google Scholar]
  16. Schmitz R. A., Richter M., Linder D., Thauer R. K. A tungsten-containing active formylmethanofuran dehydrogenase in the thermophilic archaeon Methanobacterium wolfei. Eur J Biochem. 1992 Jul 15;207(2):559–565. doi: 10.1111/j.1432-1033.1992.tb17082.x. [DOI] [PubMed] [Google Scholar]
  17. Steigerwald V. J., Pihl T. D., Reeve J. N. Identification and isolation of the polyferredoxin from Methanobacterium thermoautotrophicum strain delta H. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):6929–6933. doi: 10.1073/pnas.89.15.6929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Wasserfallen A. Formylmethanofuran synthesis by formylmethanofuran dehydrogenase from Methanobacterium thermoautotrophicum Marburg. Biochem Biophys Res Commun. 1994 Mar 30;199(3):1256–1261. doi: 10.1006/bbrc.1994.1366. [DOI] [PubMed] [Google Scholar]
  19. White W. B., Ferry J. G. Identification of formate dehydrogenase-specific mRNA species and nucleotide sequence of the fdhC gene of Methanobacterium formicicum. J Bacteriol. 1992 Aug;174(15):4997–5004. doi: 10.1128/jb.174.15.4997-5004.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Zeikus J. G., Ben-Bassat A., Hegge P. W. Microbiology of methanogenesis in thermal, volcanic environments. J Bacteriol. 1980 Jul;143(1):432–440. doi: 10.1128/jb.143.1.432-440.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES