Abstract
The synthesis of two biotinylated affinity labels for chymotrypsin and trypsin-like serine proteinases is described, along with their kinetic characterization and application to the detection of these proteinases after PAGE and Western blotting. Thus the chloromethane analogues biotinylphenylalanylchloromethane (Bio-Phe-CH2Cl; reagent 1) and biotinylarginylchloromethane (Bio-Arg-CH2Cl, reagent 2), have been shown to be potent active-site-directed inactivators of chymotrypsin and trypsin respectively. The apparent overall second-order rate constants (kobs./[I]) for the inactivation of chymotrypsin and trypsin by reagent 1 (approximately 4.9 x 10(3) M-1.min-1) and reagent 2 (approximately 1.0 x 10(5) M-1.min-1) respectively are comparable with those obtained by other workers with simple urethane-protected analogues and demonstrates that the presence of the bulky biotinyl moiety is compatible with inhibitor effectiveness. Samples of chymotrypsin and trypsin that have been inactivated by reagents 1 and 2 respectively and which have been subjected to SDS/PAGE and Western blotting can be revealed with a streptavidin/alkaline phosphatase label. We can presently detect down to 20 ng of inactivated proteinase by using this system. The utility of the arginine derivative for the detection of the plasma trypsin-like proteinases plasmin and thrombin has also been demonstrated, thus holding out the possibility that this reagent may find general application as an active-site-directed label for this class of proteinase.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Angliker H., Wikstrom P., Kirschke H., Shaw E. The inactivation of the cysteinyl exopeptidases cathepsin H and C by affinity-labelling reagents. Biochem J. 1989 Aug 15;262(1):63–68. doi: 10.1042/bj2620063. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Aplin R. T., Christiansen J., Young G. T. Amino-acids and peptides. Part 48. Synthesis of bradykinyl-chloromethane. Int J Pept Protein Res. 1983 May;21(5):555–561. [PubMed] [Google Scholar]
- Berger M., Gaither T. A., Cole R. M., Chused T. M., Hammer C. H., Frank M. M. Biotinylation of human C3. Mol Immunol. 1982 Jul;19(7):857–864. doi: 10.1016/0161-5890(82)90351-0. [DOI] [PubMed] [Google Scholar]
- Childs G., Unabia G. Application of the avidin-biotin-peroxidase complex (ABC) method to the light microscopic localization of pituitary hormones. J Histochem Cytochem. 1982 Jul;30(7):713–716. doi: 10.1177/30.7.6286753. [DOI] [PubMed] [Google Scholar]
- Cromlish J. A., Seidah N. G., Chrétien M. Isolation and characterization of four proteases from porcine pituitary neurointermediate lobes: relationship to the maturation enzyme of prohormones. Neuropeptides. 1985 Feb;5(4-6):493–496. doi: 10.1016/0143-4179(85)90062-9. [DOI] [PubMed] [Google Scholar]
- Docherty K., Carroll R. J., Steiner D. F. Conversion of proinsulin to insulin: involvement of a 31,500 molecular weight thiol protease. Proc Natl Acad Sci U S A. 1982 Aug;79(15):4613–4617. doi: 10.1073/pnas.79.15.4613. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Green G. D., Shaw E. Peptidyl diazomethyl ketones are specific inactivators of thiol proteinases. J Biol Chem. 1981 Feb 25;256(4):1923–1928. [PubMed] [Google Scholar]
- Guesdon J. L., Ternynck T., Avrameas S. The use of avidin-biotin interaction in immunoenzymatic techniques. J Histochem Cytochem. 1979 Aug;27(8):1131–1139. doi: 10.1177/27.8.90074. [DOI] [PubMed] [Google Scholar]
- Horwitz J. P., Chua J., Noel M., Donatti J. T., Freisler J. Substrates for cytochemical demonstration of enzyme activity. II. Some dihalo-3-indolyl phosphates and sulfates. J Med Chem. 1966 May;9(3):447–447. doi: 10.1021/jm00321a059. [DOI] [PubMed] [Google Scholar]
- Jameson G. W., Roberts D. V., Adams R. W., Kyle W. S., Elmore D. T. Determination of the operational molarity of solutions of bovine alpha-chymotrypsin, trypsin, thrombin and factor Xa by spectrofluorimetric titration. Biochem J. 1973 Jan;131(1):107–117. doi: 10.1042/bj1310107. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KITZ R., WILSON I. B. Esters of methanesulfonic acid as irreversible inhibitors of acetylcholinesterase. J Biol Chem. 1962 Oct;237:3245–3249. [PubMed] [Google Scholar]
- Kato H., Adachi N., Ohno Y., Iwanaga S., Takada K., Sakakibara S. New fluorogenic peptide substrates for plasmin. J Biochem. 1980 Jul;88(1):183–190. [PubMed] [Google Scholar]
- Kozlowski K. A., Wezeman F. H., Schultz R. M. Tumor cell proteinase visualization and quantification using a fluorescent transition-state analog probe. Proc Natl Acad Sci U S A. 1984 Feb;81(4):1135–1139. doi: 10.1073/pnas.81.4.1135. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Leary R., Larsen D., Watanabe H., Shaw E. Diazomethyl ketone substrate derivatives as active-site-directed inhibitors of thiol proteases. Papain. Biochemistry. 1977 Dec 27;16(26):5857–5861. doi: 10.1021/bi00645a033. [DOI] [PubMed] [Google Scholar]
- Linner J. G., Livesey S. A., Harrison D. S., Steiner A. L. A new technique for removal of amorphous phase tissue water without ice crystal damage: a preparative method for ultrastructural analysis and immunoelectron microscopy. J Histochem Cytochem. 1986 Sep;34(9):1123–1135. doi: 10.1177/34.9.2426340. [DOI] [PubMed] [Google Scholar]
- Lottenberg R., Christensen U., Jackson C. M., Coleman P. L. Assay of coagulation proteases using peptide chromogenic and fluorogenic substrates. Methods Enzymol. 1981;80(Pt 100):341–361. doi: 10.1016/s0076-6879(81)80030-4. [DOI] [PubMed] [Google Scholar]
- Mason R. W., Wilcox D., Wikstrom P., Shaw E. N. The identification of active forms of cysteine proteinases in Kirsten-virus-transformed mouse fibroblasts by use of a specific radiolabelled inhibitor. Biochem J. 1989 Jan 1;257(1):125–129. doi: 10.1042/bj2570125. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O'Connor C. G., Ashman L. K. Application of the nitrocellulose transfer technique and alkaline phosphatase conjugated anti-immunoglobulin for determination of the specificity of monoclonal antibodies to protein mixtures. J Immunol Methods. 1982 Oct 29;54(2):267–271. doi: 10.1016/0022-1759(82)90068-0. [DOI] [PubMed] [Google Scholar]
- Rauber P., Wikstrom P., Shaw E. Iodination of peptidyl chloromethyl ketones for protease affinity labels. Anal Biochem. 1988 Feb 1;168(2):259–264. doi: 10.1016/0003-2697(88)90316-8. [DOI] [PubMed] [Google Scholar]
- Shaw E., Ruscica J. The reactivity of His-57 in chymotrypsin to alkylation. Arch Biochem Biophys. 1971 Aug;145(2):484–489. doi: 10.1016/s0003-9861(71)80008-5. [DOI] [PubMed] [Google Scholar]
- Steven F. S., Griffin M. M., Al-Ahmad R. K. Design of fluorescent probes for an enzyme on the surface of tumour cells. J Chromatogr. 1986 Apr 11;376:211–219. doi: 10.1016/s0378-4347(00)80838-5. [DOI] [PubMed] [Google Scholar]
- Tian W. X., Tsou C. L. Determination of the rate constant of enzyme modification by measuring the substrate reaction in the presence of the modifier. Biochemistry. 1982 Mar 2;21(5):1028–1032. doi: 10.1021/bi00534a031. [DOI] [PubMed] [Google Scholar]
- Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walker B., Cullen B. M., Kay G., Halliday I. M., McGinty A., Nelson J. The synthesis, kinetic characterization and application of a novel biotinylated affinity label for cathepsin B. Biochem J. 1992 Apr 15;283(Pt 2):449–453. doi: 10.1042/bj2830449. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walker B., Elmore D. T. The irreversible inhibition of urokinase, kidney-cell plasminogen activator, plasmin and beta-trypsin by 1-(N-6-amino-n-hexyl)carbamoylimidazole. Biochem J. 1984 Jul 1;221(1):277–280. doi: 10.1042/bj2210277. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Williams E. B., Krishnaswamy S., Mann K. G. Zymogen/enzyme discrimination using peptide chloromethyl ketones. J Biol Chem. 1989 May 5;264(13):7536–7545. [PubMed] [Google Scholar]
- Yolken R. H., Leister F. J., Whitcomb L. S., Santosham M. Enzyme immunoassays for the detection of bacterial antigens utilizing biotin-labeled antibody and peroxidase biotin--avidin complex. J Immunol Methods. 1983 Feb 11;56(3):319–327. doi: 10.1016/s0022-1759(83)80021-0. [DOI] [PubMed] [Google Scholar]
- Zimmerman M., Ashe B., Yurewicz E. C., Patel G. Sensitive assays for trypsin, elastase, and chymotrypsin using new fluorogenic substrates. Anal Biochem. 1977 Mar;78(1):47–51. doi: 10.1016/0003-2697(77)90006-9. [DOI] [PubMed] [Google Scholar]