Abstract
The synthesis of the pyrimidinyl amino acids willardiine and isowillardiine was studied in vivo and in vitro. Uracil derivatives stimulate the biosynthesis of both compounds; the free base is the most effective. Significant incorporation of [2-14C]uracil and [6-14C]orotate into willardiine and isowillardiine was found. Incorporation of [6-14C]orotate was substantially decreased in the presence of uracil, and to a lesser extent by uridine and UMP. [3-14C]Serine was incorporated into the alanine side chain of the two uracilylalanines but not into the ring. The effect of a number of uracil analogues and inhibitors of pyrimidine metabolism was examined. Some were shown to stimulate the biosynthesis; the most noticeable effects were obtained with 6-azauracil and 2-thiouracil. Attempts to obtain extracts capable of synthesizing the uracilylalanines from uracil and serine were unsuccessful, but weak activity was observed when serine was replaced by O-acetylserine.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BELL E. A. A NEW AMINO ACID, GAMMA-HYDROXYHOMOARGININE, IN LATHYRUS. Nature. 1963 Jul 6;199:70–71. doi: 10.1038/199070a0. [DOI] [PubMed] [Google Scholar]
- BELL E. A. The isolation of L-homoarginine from seeds of Lathyrus cicera. Biochem J. 1962 Oct;85:91–93. doi: 10.1042/bj0850091. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BUCHOWICZ J., REIFER I., GERIC I. [14C] carbamoyl-beta-alanine as precursor of pyrimidines in higher plants. Acta Biochim Pol. 1963;10:157–162. [PubMed] [Google Scholar]
- Bell E. A. The isolation of gamma-hydroxyhomoarginine, as its lactone, from seeds of Lathyrus tingitanus, its biosynthesis and distribution. Biochem J. 1964 May;91(2):358–361. doi: 10.1042/bj0910358. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown E. G., Mangat B. S. Structure of a pyrimidine amino acid from pea seedlings. Biochim Biophys Acta. 1969 May 6;177(3):427–433. doi: 10.1016/0304-4165(69)90305-5. [DOI] [PubMed] [Google Scholar]
- Brown E. G., Silver A. V. The natural occurrence of a uracil-5-peptide and its metabolic relationship to guanosine-5'-monophosphate. Biochim Biophys Acta. 1966 Apr 18;119(1):1–10. doi: 10.1016/0005-2787(66)90031-1. [DOI] [PubMed] [Google Scholar]
- GMELIN R. [The free amino acids in the seeds of Acacia willardiana (Mimosaceae). Isolation of willardiin, a new plant amino acid which is probably L-beta-(3-uracil)-alpha-aminopropionic acid]. Hoppe Seylers Z Physiol Chem. 1959 Oct 30;316:164–169. doi: 10.1515/bchm2.1959.316.1.164. [DOI] [PubMed] [Google Scholar]
- Greenberg J. B., Galston A. W. Tryptophan Synthetase Activity in Pea Seedling Extracts. Plant Physiol. 1959 Sep;34(5):489–494. doi: 10.1104/pp.34.5.489. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HANDSCHUMACHER R. E. Orotidylic acid decarboxylase: inhibition studies with azauridine 5'-phosphate. J Biol Chem. 1960 Oct;235:2917–2919. [PubMed] [Google Scholar]
- HANDSCHUMACHER R. E., PASTERNAK C. A. Inhibition of orotidylic acid decarboxylase, a primary site of carcinostasis by 6-azauracil. Biochim Biophys Acta. 1958 Nov;30(2):451–452. doi: 10.1016/0006-3002(58)90088-x. [DOI] [PubMed] [Google Scholar]
- Kochetkov N. K., Budowsky E. I. The chemical modification of nucleic acids. Prog Nucleic Acid Res Mol Biol. 1969;9:403–438. doi: 10.1016/s0079-6603(08)60773-4. [DOI] [PubMed] [Google Scholar]
- Lambein F., Schamp N., Vandendriessche L., Van Parijs R. A new UV-sensitive heterocyclic amino acid from pea seedlings: 2-alanyl-3-isoxazolin-5-one. Biochem Biophys Res Commun. 1969 Oct 22;37(3):375–382. doi: 10.1016/0006-291x(69)90925-5. [DOI] [PubMed] [Google Scholar]
- Larson L. A., Beevers H. Amino Acid Metabolism in Young Pea Seedlings. Plant Physiol. 1965 May;40(3):424–432. doi: 10.1104/pp.40.3.424. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lembein F., Van Parijs R. Isolation and characterization of 1-ananyl-uracil (willardiine) and 3-alanyl-uracil (iso-willardiine) from Pisum sativum. Biochem Biophys Res Commun. 1968 Aug 13;32(3):474–479. doi: 10.1016/0006-291x(68)90686-4. [DOI] [PubMed] [Google Scholar]
- NAIR P. M., VAIDYANATHAN C. S. A STUDY OF THE PURIFICATION AND PROPERTIES OF TRYPTOPHAN SYNTHETASE OF BENGAL GRAM (CICER ARIETINUM). Arch Biochem Biophys. 1964 Mar;104:405–415. doi: 10.1016/0003-9861(64)90482-5. [DOI] [PubMed] [Google Scholar]
- NEWMARK P., STEPHENS J. D., BARRETT H. W. Substrate specificity of the dihydro-uracil dhydrogenase and uridine phosphorylase of rat liver. Biochim Biophys Acta. 1962 Aug 13;62:414–416. doi: 10.1016/0006-3002(62)90272-x. [DOI] [PubMed] [Google Scholar]
- PASTERNAK C. A., HANDSCHUMACHER R. E. The biochemical activity of 6-azauridine: interference with pyrimidine metabolism in transplantable mouse tumors. J Biol Chem. 1959 Nov;234:2992–2997. [PubMed] [Google Scholar]
- RAO S. L., RAMACHANDRAN L. K., ADIGA P. R. The isolation and characterization of l-homoarginine from seeds of Lathyrus sativus. Biochemistry. 1963 Mar-Apr;2:298–300. doi: 10.1021/bi00902a019. [DOI] [PubMed] [Google Scholar]
- REIFER I., BUCHOWICZ J., TOCZKO K. The synthesis of the pyrimidine ring from 1-carbamylaspartic acid in excised blades of wheat seedlings. Acta Biochim Pol. 1960;7:29–38. [PubMed] [Google Scholar]