Abstract
1. Twitch contractions were elicited in human anterior tibial muscle by intramuscular microstimulation of single motor axons with a bipolar needle electrode. The population of stimulated motor units studied was fairly representative for the muscle. 2. The conduction velocity of the fibres in the motor unit was calculated as the ratio between the electrode separation (15 mm) in a tripolar array of surface electrodes and the conduction delay of the motor unit potential along the electrode array. The motor unit conduction velocity ranged from 2.6 to 5.3 m/s with a mean of 3.7 m/s. 3. The contractile properties of the motor units were obtained by averaging the torque developed around the ankle joint. Twitch torques ranged from less than 10(-3) to 16 x 10(-3) N m, with a mean of 5.7 x 10(-3) N m. The twitch torque of the whole anterior tibial muscle was approximately 5 N m. Rise times were 47-80 m/s with a mean of 61 m/s, and half-relaxation times were 40-78 ms with a mean of 60 ms. 4. The mechanical properties of individual motor units were highly correlated (rise time and twitch torque: r = -0.81; rise time and half-relaxation time: r = 0.75; twitch torque and half-relaxation time: r = -0.81). 5. The motor unit conduction velocity was highly correlated to twitch torque (r = 0.87), rise time (r = -0.75) and half-relaxation time (r = -0.66). This indicates that the motor unit conduction velocity can be included in the family of interrelated 'size principle parameters'.
Full text
PDF










Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BUCHTHAL F., GULD C., ROSENFALCK P. Propagation velocity in electrically activated muscle fibres in man. Acta Physiol Scand. 1955 Sep 20;34(1):75–89. doi: 10.1111/j.1748-1716.1955.tb01227.x. [DOI] [PubMed] [Google Scholar]
- Broman H., Bilotto G., De Luca C. J. Myoelectric signal conduction velocity and spectral parameters: influence of force and time. J Appl Physiol (1985) 1985 May;58(5):1428–1437. doi: 10.1152/jappl.1985.58.5.1428. [DOI] [PubMed] [Google Scholar]
- Brooke M. H., Engel W. K. The histographic analysis of human muscle biopsies with regard to fiber types. 1. Adult male and female. Neurology. 1969 Mar;19(3):221–233. doi: 10.1212/wnl.19.3.221. [DOI] [PubMed] [Google Scholar]
- Burke R. E., Levine D. N., Tsairis P., Zajac F. E., 3rd Physiological types and histochemical profiles in motor units of the cat gastrocnemius. J Physiol. 1973 Nov;234(3):723–748. doi: 10.1113/jphysiol.1973.sp010369. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eberstein A., Goodgold J. Muscle fiber conduction velocity calculated from EMG power spectra. Electromyogr Clin Neurophysiol. 1985 Nov-Dec;25(7-8):533–538. [PubMed] [Google Scholar]
- FEINSTEIN B., LINDEGARD B., NYMAN E., WOHLFART G. Morphologic studies of motor units in normal human muscles. Acta Anat (Basel) 1955;23(2):127–142. doi: 10.1159/000140989. [DOI] [PubMed] [Google Scholar]
- Garnett R. A., O'Donovan M. J., Stephens J. A., Taylor A. Motor unit organization of human medial gastrocnemius. J Physiol. 1979 Feb;287:33–43. doi: 10.1113/jphysiol.1979.sp012643. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldberg L. J., Derfler B. Relationship among recruitment order, spike amplitude, and twitch tension of single motor units in human masseter muscle. J Neurophysiol. 1977 Jul;40(4):879–890. doi: 10.1152/jn.1977.40.4.879. [DOI] [PubMed] [Google Scholar]
- Gydikov A., Dimitrova N., Kosarov D., Dimitrov G. Influence of frequency and duration of firing on the shape of potentials from different types of motor units in human muscles. Exp Neurol. 1976 Sep;52(3):345–355. doi: 10.1016/0014-4886(76)90210-7. [DOI] [PubMed] [Google Scholar]
- Gydikov A., Kosarov D. Volume conduction of the potentials from separate motor units in human muscle. Electromyogr Clin Neurophysiol. 1972 Apr-Jun;12(2):127–147. [PubMed] [Google Scholar]
- HAKANSSON C. H. Conduction velocity and amplitude of the action potential as related to circumference in the isolated fibre of frog muscle. Acta Physiol Scand. 1956 Jul 17;37(1):14–34. doi: 10.1111/j.1748-1716.1956.tb01338.x. [DOI] [PubMed] [Google Scholar]
- HENNEMAN E. Relation between size of neurons and their susceptibility to discharge. Science. 1957 Dec 27;126(3287):1345–1347. doi: 10.1126/science.126.3287.1345. [DOI] [PubMed] [Google Scholar]
- HENNEMAN E., SOMJEN G., CARPENTER D. O. FUNCTIONAL SIGNIFICANCE OF CELL SIZE IN SPINAL MOTONEURONS. J Neurophysiol. 1965 May;28:560–580. doi: 10.1152/jn.1965.28.3.560. [DOI] [PubMed] [Google Scholar]
- Henneman E., Somjen G., Carpenter D. O. Excitability and inhibitability of motoneurons of different sizes. J Neurophysiol. 1965 May;28(3):599–620. doi: 10.1152/jn.1965.28.3.599. [DOI] [PubMed] [Google Scholar]
- Hopf H. C., Herbort R. L., Gnass M., Günther H., Lowitzsch K. Fast and slow contraction times associated with fast and slow spike conduction of skeletal muscle fibres in normal subjects and in spastic hemiparesis. Z Neurol. 1974 Mar 29;206(3):193–202. doi: 10.1007/BF00316533. [DOI] [PubMed] [Google Scholar]
- Lindstrom L., Magnusson R., Petersén I. Muscular fatigue and action potential conduction velocity changes studied with frequency analysis of EMG signals. Electromyography. 1970 Nov-Dec;10(4):341–356. [PubMed] [Google Scholar]
- MCPHEDRAN A. M., WUERKER R. B., HENNEMAN E. PROPERTIES OF MOTOR UNITS IN A HETEROGENEOUS PALE MUSCLE (M. GASTROCNEMIUS) OF THE CAT. J Neurophysiol. 1965 Jan;28:85–99. doi: 10.1152/jn.1965.28.1.85. [DOI] [PubMed] [Google Scholar]
- MCPHEDRAN A. M., WUERKER R. B., HENNEMAN E. PROPERTIES OF MOTOR UNITS IN A HOMOGENEOUS RED MUSCLE (SOLEUS) OF THE CAT. J Neurophysiol. 1965 Jan;28:71–84. doi: 10.1152/jn.1965.28.1.71. [DOI] [PubMed] [Google Scholar]
- Milner-Brown H. S., Stein R. B., Yemm R. The orderly recruitment of human motor units during voluntary isometric contractions. J Physiol. 1973 Apr;230(2):359–370. doi: 10.1113/jphysiol.1973.sp010192. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Naeije M., Zorn H. Estimation of the action potential conduction velocity in human skeletal muscle using the surface EMG cross-correlation technique. Electromyogr Clin Neurophysiol. 1983 Jan-Feb;23(1-2):73–80. [PubMed] [Google Scholar]
- Nishizono H., Saito Y., Miyashita M. The estimation of conduction velocity in human skeletal muscle in situ with surface electrodes. Electroencephalogr Clin Neurophysiol. 1979 Jun;46(6):659–664. doi: 10.1016/0013-4694(79)90103-2. [DOI] [PubMed] [Google Scholar]
- Rowland V., Gluck H., Sumergrad S., Dines G. Slow and multiple unit potentials in trace and temporal conditioning controlled by electrical reward in the rat. Electroencephalogr Clin Neurophysiol. 1985 Dec;61(6):559–568. doi: 10.1016/0013-4694(85)90975-7. [DOI] [PubMed] [Google Scholar]
- Sica R. E., McComas A. J. Fast and slow twitch units in a human muscle. J Neurol Neurosurg Psychiatry. 1971 Apr;34(2):113–120. doi: 10.1136/jnnp.34.2.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stalberg E. Propagation velocity in human muscle fibers in situ. Acta Physiol Scand Suppl. 1966;287:1–112. [PubMed] [Google Scholar]
- Stephens J. A., Usherwood T. P. The mechanical properties of human motor units with special reference to their fatiguability and recruitment threshold. Brain Res. 1977 Apr 8;125(1):91–97. doi: 10.1016/0006-8993(77)90361-4. [DOI] [PubMed] [Google Scholar]
- Taylor A., Stephens J. A. Study of human motor unit contractions by controlled intramuscular microstimulation. Brain Res. 1976 Nov 26;117(2):331–335. doi: 10.1016/0006-8993(76)90742-3. [DOI] [PubMed] [Google Scholar]

