Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Feb 15;330(Pt 1):345–351. doi: 10.1042/bj3300345

Ageing and zonal variation in post-translational modification of collagen in normal human articular cartilage. The age-related increase in non-enzymatic glycation affects biomechanical properties of cartilage.

R A Bank 1, M T Bayliss 1, F P Lafeber 1, A Maroudas 1, J M Tekoppele 1
PMCID: PMC1219146  PMID: 9461529

Abstract

A biomechanical failure of the collagen network is postulated in many hypotheses of the development of osteoarthritis with advancing age. Here we investigate the accumulation of non-enzymatic glycation (NEG) products in healthy human articular cartilage, its relation to tissue remodelling and its role in tissue stiffening. Pentosidine levels were low up to age 20 years, and increased linearly after this age. This indicates extensive tissue remodelling at young age, and slow turnover of collagen after maturity has been reached. The slow remodelling is supported by the finding that enzymatic modifications of collagen (hydroxylysine, hydroxylysylpyridinoline, and lysylpyridinoline) were not related to age. The high remodelling is supported by levels of the crosslink lysylpyridinoline (LP) as a function of distance from the articular surface. LP was highest at the surface in mature cartilage (>20 years), whereas in young cartilage (<10 years) the opposite was seen; highest levels were close to the bone. LP levels in cartilage sections at age 14 years are high at the surface and close to the bone, but they are low in the middle region. This indicates that maturation of cartilage in the second decade of life starts in the upper half of the tissue, and occurs last in the tissue close to the bone. The effect of NEG products on instantaneous deformation of cartilage was investigated as a functional of topographical variations in pentosidine levels in vivo and in relation to in vitro induced NEG. Consistently, higher pentosidine levels were associated with a stiffer collagen network. A stiffer and more crosslinked collagen network may become more brittle and more prone to fatigue.

Full Text

The Full Text of this article is available as a PDF (432.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bader D. L., Kempson G. E., Barrett A. J., Webb W. The effects of leucocyte elastase on the mechanical properties of adult human articular cartilage in tension. Biochim Biophys Acta. 1981 Sep 18;677(1):103–108. doi: 10.1016/0304-4165(81)90150-1. [DOI] [PubMed] [Google Scholar]
  2. Bailey A. J., Sims T. J., Avery N. C., Miles C. A. Chemistry of collagen cross-links: glucose-mediated covalent cross-linking of type-IV collagen in lens capsules. Biochem J. 1993 Dec 1;296(Pt 2):489–496. doi: 10.1042/bj2960489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bank R. A., Beekman B., Verzijl N., de Roos J. A., Sakkee A. N., TeKoppele J. M. Sensitive fluorimetric quantitation of pyridinium and pentosidine crosslinks in biological samples in a single high-performance liquid chromatographic run. J Chromatogr B Biomed Sci Appl. 1997 Dec 5;703(1-2):37–44. doi: 10.1016/s0378-4347(97)00391-5. [DOI] [PubMed] [Google Scholar]
  4. Bank R. A., Jansen E. J., Beekman B., te Koppele J. M. Amino acid analysis by reverse-phase high-performance liquid chromatography: improved derivatization and detection conditions with 9-fluorenylmethyl chloroformate. Anal Biochem. 1996 Sep 5;240(2):167–176. doi: 10.1006/abio.1996.0346. [DOI] [PubMed] [Google Scholar]
  5. Broom N. D. The altered biomechanical state of human femoral head osteoarthritic articular cartilage. Arthritis Rheum. 1984 Sep;27(9):1028–1039. doi: 10.1002/art.1780270910. [DOI] [PubMed] [Google Scholar]
  6. Eyre D. R., Dickson I. R., Van Ness K. Collagen cross-linking in human bone and articular cartilage. Age-related changes in the content of mature hydroxypyridinium residues. Biochem J. 1988 Jun 1;252(2):495–500. doi: 10.1042/bj2520495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Eyre D. R., Koob T. J., Van Ness K. P. Quantitation of hydroxypyridinium crosslinks in collagen by high-performance liquid chromatography. Anal Biochem. 1984 Mar;137(2):380–388. doi: 10.1016/0003-2697(84)90101-5. [DOI] [PubMed] [Google Scholar]
  8. Eyre D. R., Paz M. A., Gallop P. M. Cross-linking in collagen and elastin. Annu Rev Biochem. 1984;53:717–748. doi: 10.1146/annurev.bi.53.070184.003441. [DOI] [PubMed] [Google Scholar]
  9. Eyre D. R., Wu J. J. Collagen structure and cartilage matrix integrity. J Rheumatol Suppl. 1995 Feb;43:82–85. [PubMed] [Google Scholar]
  10. Grushko G., Schneiderman R., Maroudas A. Some biochemical and biophysical parameters for the study of the pathogenesis of osteoarthritis: a comparison between the processes of ageing and degeneration in human hip cartilage. Connect Tissue Res. 1989;19(2-4):149–176. doi: 10.3109/03008208909043895. [DOI] [PubMed] [Google Scholar]
  11. Kempson G. E. Age-related changes in the tensile properties of human articular cartilage: a comparative study between the femoral head of the hip joint and the talus of the ankle joint. Biochim Biophys Acta. 1991 Oct 31;1075(3):223–230. doi: 10.1016/0304-4165(91)90270-q. [DOI] [PubMed] [Google Scholar]
  12. Kempson G. E., Muir H., Pollard C., Tuke M. The tensile properties of the cartilage of human femoral condyles related to the content of collagen and glycosaminoglycans. Biochim Biophys Acta. 1973 Feb 28;297(2):456–472. doi: 10.1016/0304-4165(73)90093-7. [DOI] [PubMed] [Google Scholar]
  13. Kempson G. E. Relationship between the tensile properties of articular cartilage from the human knee and age. Ann Rheum Dis. 1982 Oct;41(5):508–511. doi: 10.1136/ard.41.5.508. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Knott L., Whitehead C. C., Fleming R. H., Bailey A. J. Biochemical changes in the collagenous matrix of osteoporotic avian bone. Biochem J. 1995 Sep 15;310(Pt 3):1045–1051. doi: 10.1042/bj3101045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. LIBBY W. F., BERGER R., MEAD J. F., ALEXANDER G. V., ROSS J. F. REPLACEMENT RATES FOR HUMAN TISSUE FROM ATMOSPHERIC RADIOCARBON. Science. 1964 Nov 27;146(3648):1170–1172. doi: 10.1126/science.146.3648.1170. [DOI] [PubMed] [Google Scholar]
  16. Maroudas A., Palla G., Gilav E. Racemization of aspartic acid in human articular cartilage. Connect Tissue Res. 1992;28(3):161–169. doi: 10.3109/03008209209015033. [DOI] [PubMed] [Google Scholar]
  17. Miller E. J., Narkates A. J., Niemann M. A. Amino acid analysis of collagen hydrolysates by reverse-phase high-performance liquid chromatography of 9-fluorenylmethyl chloroformate derivatives. Anal Biochem. 1990 Oct;190(1):92–97. doi: 10.1016/0003-2697(90)90139-z. [DOI] [PubMed] [Google Scholar]
  18. Mizrahi J., Maroudas A., Lanir Y., Ziv I., Webber T. J. The "instantaneous" deformation of cartilage: effects of collagen fiber orientation and osmotic stress. Biorheology. 1986;23(4):311–330. doi: 10.3233/bir-1986-23402. [DOI] [PubMed] [Google Scholar]
  19. Oxlund H., Barckman M., Ortoft G., Andreassen T. T. Reduced concentrations of collagen cross-links are associated with reduced strength of bone. Bone. 1995 Oct;17(4 Suppl):365S–371S. doi: 10.1016/8756-3282(95)00328-b. [DOI] [PubMed] [Google Scholar]
  20. Palokangas H., Kovanen V., Duncan A., Robins S. P. Age-related changes in the concentration of hydroxypyridinium crosslinks in functionally different skeletal muscles. Matrix. 1992 Aug;12(4):291–296. doi: 10.1016/s0934-8832(11)80081-8. [DOI] [PubMed] [Google Scholar]
  21. Prockop D. J., Kivirikko K. I. Collagens: molecular biology, diseases, and potentials for therapy. Annu Rev Biochem. 1995;64:403–434. doi: 10.1146/annurev.bi.64.070195.002155. [DOI] [PubMed] [Google Scholar]
  22. Reiser K. M. Nonenzymatic glycation of collagen in aging and diabetes. Proc Soc Exp Biol Med. 1991 Jan;196(1):17–29. doi: 10.3181/00379727-196-43158c. [DOI] [PubMed] [Google Scholar]
  23. Sell D. R., Monnier V. M. Structure elucidation of a senescence cross-link from human extracellular matrix. Implication of pentoses in the aging process. J Biol Chem. 1989 Dec 25;264(36):21597–21602. [PubMed] [Google Scholar]
  24. Sell D. R., Nagaraj R. H., Grandhee S. K., Odetti P., Lapolla A., Fogarty J., Monnier V. M. Pentosidine: a molecular marker for the cumulative damage to proteins in diabetes, aging, and uremia. Diabetes Metab Rev. 1991 Dec;7(4):239–251. doi: 10.1002/dmr.5610070404. [DOI] [PubMed] [Google Scholar]
  25. Sims T. J., Rasmussen L. M., Oxlund H., Bailey A. J. The role of glycation cross-links in diabetic vascular stiffening. Diabetologia. 1996 Aug;39(8):946–951. doi: 10.1007/BF00403914. [DOI] [PubMed] [Google Scholar]
  26. Takahashi M., Hoshino H., Kushida K., Inoue T. Direct measurement of crosslinks, pyridinoline, deoxypyridinoline, and pentosidine, in the hydrolysate of tissues using high-performance liquid chromatography. Anal Biochem. 1995 Dec 10;232(2):158–162. doi: 10.1006/abio.1995.0002. [DOI] [PubMed] [Google Scholar]
  27. Uchiyama A., Ohishi T., Takahashi M., Kushida K., Inoue T., Fujie M., Horiuchi K. Fluorophores from aging human articular cartilage. J Biochem. 1991 Nov;110(5):714–718. doi: 10.1093/oxfordjournals.jbchem.a123646. [DOI] [PubMed] [Google Scholar]
  28. Vlassara H., Bucala R., Striker L. Pathogenic effects of advanced glycosylation: biochemical, biologic, and clinical implications for diabetes and aging. Lab Invest. 1994 Feb;70(2):138–151. [PubMed] [Google Scholar]
  29. Weightman B., Chappell D. J., Jenkins E. A. A second study of tensile fatigue properties of human articular cartilage. Ann Rheum Dis. 1978 Feb;37(1):58–63. doi: 10.1136/ard.37.1.58. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Weightman B. Tensile fatigue of human articular cartilage. J Biomech. 1976;9(4):193–200. doi: 10.1016/0021-9290(76)90004-x. [DOI] [PubMed] [Google Scholar]
  31. Wu J. J., Eyre D. R. Cartilage type IX collagen is cross-linked by hydroxypyridinium residues. Biochem Biophys Res Commun. 1984 Sep 28;123(3):1033–1039. doi: 10.1016/s0006-291x(84)80237-5. [DOI] [PubMed] [Google Scholar]
  32. Wu J. J., Eyre D. R. Structural analysis of cross-linking domains in cartilage type XI collagen. Insights on polymeric assembly. J Biol Chem. 1995 Aug 11;270(32):18865–18870. doi: 10.1074/jbc.270.32.18865. [DOI] [PubMed] [Google Scholar]
  33. Wu J. J., Woods P. E., Eyre D. R. Identification of cross-linking sites in bovine cartilage type IX collagen reveals an antiparallel type II-type IX molecular relationship and type IX to type IX bonding. J Biol Chem. 1992 Nov 15;267(32):23007–23014. [PubMed] [Google Scholar]
  34. Yang C., Niu C., Bodo M., Gabriel E., Notbohm H., Wolf E., Müller P. K. Fulvic acid supplementation and selenium deficiency disturb the structural integrity of mouse skeletal tissue. An animal model to study the molecular defects of Kashin-Beck disease. Biochem J. 1993 Feb 1;289(Pt 3):829–835. doi: 10.1042/bj2890829. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES