Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 May 1;355(Pt 3):653–661. doi: 10.1042/bj3550653

Reactive oxygen species involved in trichosanthin-induced apoptosis of human choriocarcinoma cells.

C Zhang 1, Y Gong 1, H Ma 1, C An 1, D Chen 1, Z L Chen 1
PMCID: PMC1221780  PMID: 11311127

Abstract

The type-I ribosome-inactivating protein trichosanthin (TCS) has a broad spectrum of biological and pharmacological activities, including abortifacient, anti-tumour and anti-HIV activities. We have found for the first time that TCS stimulated the production of reactive oxygen species (ROS) in JAR cells (a human choriocarcinoma cell line) in a time- and concentration-dependent manner by using the fluorescent probe 2',7'-dichlorofluorescein diacetate with confocal laser scanning microscopy. ESR spectral studies and the inhibition of ROS formation by the superoxide radical anion (O(2)(-.)) scavenger superoxide dismutase, the H(2)O(2) scavenger catalase and the hydroxyl radical (OH(.)) scavenger mannitol suggested the involvement of O(2)(-.), H(2)O(2) and OH(.). TCS-induced ROS formation was shown to be dependent on the presence of both extracellular and intracellular Ca(2+); moreover, ROS production paralleled the intracellular Ca(2+) elevation induced by TCS, suggesting that ROS production might be a consequence of Ca(2+) signalling. TCS-induced activation of caspase-3 was initiated within 2 h; however, TCS-induced production of ROS was initiated within 5 min, suggesting that the production of ROS preceded the activation of caspase-3. Simultaneous observation of the nuclear morphological changes via two-photon laser scanning microscopy and ROS production via confocal laser scanning microscopy revealed that ROS is involved in the apoptosis of JAR cells. The involvement of ROS was also confirmed by the inhibition of TCS-induced cell death by the antioxidant Trolox and the ROS scavengers catalase and mannitol. Diethylenetriaminepenta-acetic acid, an inhibitor of metal-facilitated OH(.) formation, markedly inhibited TCS-induced cell death, suggesting that TCS induced OH(.) formation via the Fenton reaction. The finding that ROS is involved in the TCS-induced apoptosis of JAR cells might provide new insight into the anti-tumour and anti-HIV mechanism of TCS.

Full Text

The Full Text of this article is available as a PDF (289.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alnemri E. S., Litwack G. Activation of internucleosomal DNA cleavage in human CEM lymphocytes by glucocorticoid and novobiocin. Evidence for a non-Ca2(+)-requiring mechanism(s). J Biol Chem. 1990 Oct 5;265(28):17323–17333. [PubMed] [Google Scholar]
  2. Ames B. N., Shigenaga M. K., Hagen T. M. Mitochondrial decay in aging. Biochim Biophys Acta. 1995 May 24;1271(1):165–170. doi: 10.1016/0925-4439(95)00024-x. [DOI] [PubMed] [Google Scholar]
  3. Au T. K., Collins R. A., Lam T. L., Ng T. B., Fong W. P., Wan D. C. The plant ribosome inactivating proteins luffin and saporin are potent inhibitors of HIV-1 integrase. FEBS Lett. 2000 Apr 14;471(2-3):169–172. doi: 10.1016/s0014-5793(00)01389-2. [DOI] [PubMed] [Google Scholar]
  4. Burlando B., Viarengo A., Pertica M., Ponzano E., Orunesu M. Effects of free oxygen radicals on Ca2+ release mechanisms in the sarcoplasmic reticulum of scallop (Pecten jacobaeus) adductor muscle. Cell Calcium. 1997 Aug;22(2):83–90. doi: 10.1016/s0143-4160(97)90108-1. [DOI] [PubMed] [Google Scholar]
  5. Byers V. S., Levin A. S., Waites L. A., Starrett B. A., Mayer R. A., Clegg J. A., Price M. R., Robins R. A., Delaney M., Baldwin R. W. A phase I/II study of trichosanthin treatment of HIV disease. AIDS. 1990 Dec;4(12):1189–1196. doi: 10.1097/00002030-199012000-00002. [DOI] [PubMed] [Google Scholar]
  6. Bygrave F. L., Roberts H. R. Regulation of cellular calcium through signaling cross-talk involves an intricate interplay between the actions of receptors, G-proteins, and second messengers. FASEB J. 1995 Oct;9(13):1297–1303. doi: 10.1096/fasebj.9.13.7557019. [DOI] [PubMed] [Google Scholar]
  7. Chan W. L., Shaw P. C., Tam S. C., Jacobsen C., Gliemann J., Nielsen M. S. Trichosanthin interacts with and enters cells via LDL receptor family members. Biochem Biophys Res Commun. 2000 Apr 13;270(2):453–457. doi: 10.1006/bbrc.2000.2441. [DOI] [PubMed] [Google Scholar]
  8. Chen Y. C., Lin-Shiau S. Y., Lin J. K. Involvement of reactive oxygen species and caspase 3 activation in arsenite-induced apoptosis. J Cell Physiol. 1998 Nov;177(2):324–333. doi: 10.1002/(SICI)1097-4652(199811)177:2<324::AID-JCP14>3.0.CO;2-9. [DOI] [PubMed] [Google Scholar]
  9. Clapham D. E. Calcium signaling. Cell. 1995 Jan 27;80(2):259–268. doi: 10.1016/0092-8674(95)90408-5. [DOI] [PubMed] [Google Scholar]
  10. De Keulenaer G. W., Alexander R. W., Ushio-Fukai M., Ishizaka N., Griendling K. K. Tumour necrosis factor alpha activates a p22phox-based NADH oxidase in vascular smooth muscle. Biochem J. 1998 Feb 1;329(Pt 3):653–657. doi: 10.1042/bj3290653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dreher D., Junod A. F. Role of oxygen free radicals in cancer development. Eur J Cancer. 1996 Jan;32A(1):30–38. doi: 10.1016/0959-8049(95)00531-5. [DOI] [PubMed] [Google Scholar]
  12. Ellis R. E., Yuan J. Y., Horvitz H. R. Mechanisms and functions of cell death. Annu Rev Cell Biol. 1991;7:663–698. doi: 10.1146/annurev.cb.07.110191.003311. [DOI] [PubMed] [Google Scholar]
  13. Finkel T. Oxygen radicals and signaling. Curr Opin Cell Biol. 1998 Apr;10(2):248–253. doi: 10.1016/s0955-0674(98)80147-6. [DOI] [PubMed] [Google Scholar]
  14. Garcia P. A., Bredesen D. E., Vinters H. V., Graefin von Einsiedel R., Williams R. L., Kahn J. O., Byers V. S., Levin A. S., Waites L. A., Messing R. O. Neurological reactions in HIV-infected patients treated with trichosanthin. Neuropathol Appl Neurobiol. 1993 Oct;19(5):402–405. doi: 10.1111/j.1365-2990.1993.tb00461.x. [DOI] [PubMed] [Google Scholar]
  15. Goldman R., Moshonov S., Zor U. Calcium-dependent PAF-stimulated generation of reactive oxygen species in a human keratinocyte cell line. Biochim Biophys Acta. 1999 Jun 10;1438(3):349–358. doi: 10.1016/s1388-1981(99)00066-9. [DOI] [PubMed] [Google Scholar]
  16. Goldman R., Moshonov S., Zor U. Generation of reactive oxygen species in a human keratinocyte cell line: role of calcium. Arch Biochem Biophys. 1998 Feb 1;350(1):10–18. doi: 10.1006/abbi.1997.0478. [DOI] [PubMed] [Google Scholar]
  17. Henderson L. M., Chappel J. B. NADPH oxidase of neutrophils. Biochim Biophys Acta. 1996 Feb 15;1273(2):87–107. doi: 10.1016/0005-2728(95)00140-9. [DOI] [PubMed] [Google Scholar]
  18. Huang Y. L. [Treatment of malignant trophoblastic neoplasia with trichosanthin]. Zhong Xi Yi Jie He Za Zhi. 1987 Mar;7(3):154-5, 132. [PubMed] [Google Scholar]
  19. Kahn J. O., Gorelick K. J., Gatti G., Arri C. J., Lifson J. D., Gambertoglio J. G., Bostrom A., Williams R. Safety, activity, and pharmacokinetics of GLQ223 in patients with AIDS and AIDS-related complex. Antimicrob Agents Chemother. 1994 Feb;38(2):260–267. doi: 10.1128/aac.38.2.260. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kahn J. O., Kaplan L. D., Gambertoglio J. G., Bredesen D., Arri C. J., Turin L., Kibort T., Williams R. L., Lifson J. D., Volberding P. A. The safety and pharmacokinetics of GLQ223 in subjects with AIDS and AIDS-related complex: a phase I study. AIDS. 1990 Dec;4(12):1197–1204. doi: 10.1097/00002030-199012000-00003. [DOI] [PubMed] [Google Scholar]
  21. Kawakami M., Okabe E. Superoxide anion radical-triggered Ca2+ release from cardiac sarcoplasmic reticulum through ryanodine receptor Ca2+ channel. Mol Pharmacol. 1998 Mar;53(3):497–503. doi: 10.1124/mol.53.3.497. [DOI] [PubMed] [Google Scholar]
  22. Kerr J. F. Shrinkage necrosis: a distinct mode of cellular death. J Pathol. 1971 Sep;105(1):13–20. doi: 10.1002/path.1711050103. [DOI] [PubMed] [Google Scholar]
  23. Kerr J. F., Winterford C. M., Harmon B. V. Apoptosis. Its significance in cancer and cancer therapy. Cancer. 1994 Apr 15;73(8):2013–2026. doi: 10.1002/1097-0142(19940415)73:8<2013::aid-cncr2820730802>3.0.co;2-j. [DOI] [PubMed] [Google Scholar]
  24. Kothakota S., Azuma T., Reinhard C., Klippel A., Tang J., Chu K., McGarry T. J., Kirschner M. W., Koths K., Kwiatkowski D. J. Caspase-3-generated fragment of gelsolin: effector of morphological change in apoptosis. Science. 1997 Oct 10;278(5336):294–298. doi: 10.1126/science.278.5336.294. [DOI] [PubMed] [Google Scholar]
  25. Li M. X., Yeung H. W., Pan L. P., Chan S. I. Trichosanthin, a potent HIV-1 inhibitor, can cleave supercoiled DNA in vitro. Nucleic Acids Res. 1991 Nov 25;19(22):6309–6312. doi: 10.1093/nar/19.22.6309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. McConkey D. J., Hartzell P., Nicotera P., Wyllie A. H., Orrenius S. Stimulation of endogenous endonuclease activity in hepatocytes exposed to oxidative stress. Toxicol Lett. 1988 Aug;42(2):123–130. doi: 10.1016/0378-4274(88)90069-0. [DOI] [PubMed] [Google Scholar]
  27. McConkey D. J., Nicotera P., Hartzell P., Bellomo G., Wyllie A. H., Orrenius S. Glucocorticoids activate a suicide process in thymocytes through an elevation of cytosolic Ca2+ concentration. Arch Biochem Biophys. 1989 Feb 15;269(1):365–370. doi: 10.1016/0003-9861(89)90119-7. [DOI] [PubMed] [Google Scholar]
  28. McGrath M. S., Hwang K. M., Caldwell S. E., Gaston I., Luk K. C., Wu P., Ng V. L., Crowe S., Daniels J., Marsh J. GLQ223: an inhibitor of human immunodeficiency virus replication in acutely and chronically infected cells of lymphocyte and mononuclear phagocyte lineage. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2844–2848. doi: 10.1073/pnas.86.8.2844. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Muschel R. J., Bernhard E. J., Garza L., McKenna W. G., Koch C. J. Induction of apoptosis at different oxygen tensions: evidence that oxygen radicals do not mediate apoptotic signaling. Cancer Res. 1995 Mar 1;55(5):995–998. [PubMed] [Google Scholar]
  30. Pieper G. M., Langenstroer P., Siebeneich W. Diabetic-induced endothelial dysfunction in rat aorta: role of hydroxyl radicals. Cardiovasc Res. 1997 Apr;34(1):145–156. doi: 10.1016/s0008-6363(96)00237-4. [DOI] [PubMed] [Google Scholar]
  31. Rajagopalan S., Kurz S., Münzel T., Tarpey M., Freeman B. A., Griendling K. K., Harrison D. G. Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone. J Clin Invest. 1996 Apr 15;97(8):1916–1923. doi: 10.1172/JCI118623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sen C. K., Packer L. Antioxidant and redox regulation of gene transcription. FASEB J. 1996 May;10(7):709–720. doi: 10.1096/fasebj.10.7.8635688. [DOI] [PubMed] [Google Scholar]
  33. Simizu S., Takada M., Umezawa K., Imoto M. Requirement of caspase-3(-like) protease-mediated hydrogen peroxide production for apoptosis induced by various anticancer drugs. J Biol Chem. 1998 Oct 9;273(41):26900–26907. doi: 10.1074/jbc.273.41.26900. [DOI] [PubMed] [Google Scholar]
  34. Simizu S., Umezawa K., Takada M., Arber N., Imoto M. Induction of hydrogen peroxide production and Bax expression by caspase-3(-like) proteases in tyrosine kinase inhibitor-induced apoptosis in human small cell lung carcinoma cells. Exp Cell Res. 1998 Jan 10;238(1):197–203. doi: 10.1006/excr.1997.3823. [DOI] [PubMed] [Google Scholar]
  35. Stefanis L., Park D. S., Friedman W. J., Greene L. A. Caspase-dependent and -independent death of camptothecin-treated embryonic cortical neurons. J Neurosci. 1999 Aug 1;19(15):6235–6247. doi: 10.1523/JNEUROSCI.19-15-06235.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Stennicke H. R., Salvesen G. S. Biochemical characteristics of caspases-3, -6, -7, and -8. J Biol Chem. 1997 Oct 10;272(41):25719–25723. doi: 10.1074/jbc.272.41.25719. [DOI] [PubMed] [Google Scholar]
  37. Suzuki Y. J., Forman H. J., Sevanian A. Oxidants as stimulators of signal transduction. Free Radic Biol Med. 1997;22(1-2):269–285. doi: 10.1016/s0891-5849(96)00275-4. [DOI] [PubMed] [Google Scholar]
  38. Takahashi S., Maecker H. T., Levy R. DNA fragmentation and cell death mediated by T cell antigen receptor/CD3 complex on a leukemia T cell line. Eur J Immunol. 1989 Oct;19(10):1911–1919. doi: 10.1002/eji.1830191023. [DOI] [PubMed] [Google Scholar]
  39. Takemoto D. J. Effect of trichosanthin an anti-leukemia protein on normal mouse spleen cells. Anticancer Res. 1998 Jan-Feb;18(1A):357–361. [PubMed] [Google Scholar]
  40. Thornberry N. A., Lazebnik Y. Caspases: enemies within. Science. 1998 Aug 28;281(5381):1312–1316. doi: 10.1126/science.281.5381.1312. [DOI] [PubMed] [Google Scholar]
  41. Tsao S. W., Yan K. T., Yeung H. W. Selective killing of choriocarcinoma cells in vitro by trichosanthin, a plant protein purified from root tubers of the Chinese medicinal herb Trichosanthes kirilowii. Toxicon. 1986;24(8):831–840. doi: 10.1016/0041-0101(86)90108-x. [DOI] [PubMed] [Google Scholar]
  42. Volk T., Hensel M., Kox W. J. Transient Ca2+ changes in endothelial cells induced by low doses of reactive oxygen species: role of hydrogen peroxide. Mol Cell Biochem. 1997 Jun;171(1-2):11–21. doi: 10.1023/a:1006886215193. [DOI] [PubMed] [Google Scholar]
  43. Zhang J. S., Liu W. Y. The mechanism of action of trichosanthin on eukaryotic ribosomes--RNA N-glycosidase activity of the cytotoxin. Nucleic Acids Res. 1992 Mar 25;20(6):1271–1275. doi: 10.1093/nar/20.6.1271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Zhang X. J., Wang J. H. Homology of trichosanthin and ricin A chain. 1986 May 29-Jun 4Nature. 321(6069):477–478. doi: 10.1038/321477b0. [DOI] [PubMed] [Google Scholar]
  45. Zhao J., Ben L. H., Wu Y. L., Hu W., Ling K., Xin S. M., Nie H. L., Ma L., Pei G. Anti-HIV agent trichosanthin enhances the capabilities of chemokines to stimulate chemotaxis and G protein activation, and this is mediated through interaction of trichosanthin and chemokine receptors. J Exp Med. 1999 Jul 5;190(1):101–111. doi: 10.1084/jem.190.1.101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Zhu H., Bannenberg G. L., Moldéus P., Shertzer H. G. Oxidation pathways for the intracellular probe 2',7'-dichlorofluorescein. Arch Toxicol. 1994;68(9):582–587. doi: 10.1007/s002040050118. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES