Abstract
The spectral properties of the fluorescent probe laurdan (6-dodecanoyl-2-dimethylaminonaphthalene) were exploited to learn about the physical state of the lipids in the nicotinic acetylcholine receptor (AChR)-rich membrane and compare them with those in reconstituted liposomes prepared from lipids extracted from the native membrane and those formed with synthetic phosphatidylcholines. In all cases redshifts of 50 to 60 nm were observed as a function of temperature in the spectral emission maximum of laurdan embedded in these membranes. The so-called generalized polarization of laurdan exhibited high values (0.6 at 5 degrees C) in AChR-rich membranes, diminishing by approximately 85% as temperature increased, but no phase transitions with a clear Tm were observed. A still unexploited property of laurdan, namely its ability to act as a fluorescence energy transfer acceptor from tryptophan emission, has been used to measure properties of the protein-vicinal lipid. Energy transfer from the protein in the AChR-rich membrane to laurdan molecules could be observed upon excitation at 290 nm. The efficiency of this process was approximately 55% for 1 microM laurdan. A minimum donor-acceptor distance r of 14 +/- 1 A could be calculated considering a distance 0 < H < 10 A for the separation of the planes containing donor and acceptor molecules, respectively. This value of r corresponds closely to the diameter of the first-shell protein-associated lipid. A value of approximately 1 was calculated for Kr, the apparent dissociation constant of laurdan, indicating no preferential affinity for the protein-associated probe, i.e., random distribution in the membrane. From the spectral characteristics of laurdan in the native AChR-rich membrane, differences in the structural and dynamic properties of water penetration in the protein-vicinal and bulk bilayer lipid regions can be deduced. We conclude that 1) the physical state of the bulk lipid in the native AChR-rich membrane is similar to that of the total lipids reconstituted in liposomes, exhibiting a decreasing polarity and an increased solvent dipolar relaxation at the hydrophilic/hydrophobic interface upon increasing the temperature; 2) the wavelength dependence of laurdan generalized polarization spectra indicates the presence of a single, ordered (from the point of view of molecular axis rotation)-liquid (from the point of view of lateral diffusion) lipid phase in the native AChR membrane; 3) laurdan molecules within energy transfer distance of the protein sense protein-associated lipid, which differs structurally and dynamically from the bulk bilayer lipid in terms of polarity and molecular motion and is associated with a lower degree of water penetration.
Full text
PDF









Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barrantes F. J. Agonist-mediated changes of the acetylcholine receptor in its membrane environment. J Mol Biol. 1978 Sep 5;124(1):1–26. doi: 10.1016/0022-2836(78)90144-4. [DOI] [PubMed] [Google Scholar]
- Barrantes F. J. Structural-functional correlates of the nicotinic acetylcholine receptor and its lipid microenvironment. FASEB J. 1993 Dec;7(15):1460–1467. doi: 10.1096/fasebj.7.15.8262330. [DOI] [PubMed] [Google Scholar]
- Barrantes F. J. The lipid environment of the nicotinic acetylcholine receptor in native and reconstituted membranes. Crit Rev Biochem Mol Biol. 1989;24(5):437–478. doi: 10.3109/10409238909086961. [DOI] [PubMed] [Google Scholar]
- Castuma C. E., Brenner R. R., DeLucca-Gattás E. A., Schreier S., Lamy-Freund M. T. Cholesterol modulation of lipid-protein interactions in liver microsomal membrane: a spin label study. Biochemistry. 1991 Oct 1;30(39):9492–9497. doi: 10.1021/bi00103a015. [DOI] [PubMed] [Google Scholar]
- Chattopadhyay A., McNamee M. G. Average membrane penetration depth of tryptophan residues of the nicotinic acetylcholine receptor by the parallax method. Biochemistry. 1991 Jul 23;30(29):7159–7164. doi: 10.1021/bi00243a017. [DOI] [PubMed] [Google Scholar]
- Chong P. L. Effects of hydrostatic pressure on the location of PRODAN in lipid bilayers and cellular membranes. Biochemistry. 1988 Jan 12;27(1):399–404. doi: 10.1021/bi00401a060. [DOI] [PubMed] [Google Scholar]
- Criado M., Vaz W. L., Barrantes F. J., Jovin T. M. Translational diffusion of acetylcholine receptor (monomeric and dimeric forms) of Torpedo marmorata reconstituted into phospholipid bilayers studied by fluorescence recovery after photobleaching. Biochemistry. 1982 Nov 9;21(23):5750–5755. doi: 10.1021/bi00266a004. [DOI] [PubMed] [Google Scholar]
- East J. M., Jones O. T., Simmonds A. C., Lee A. G. Membrane fluidity is not an important physiological regulator of the (Ca2+-Mg2+)-dependent ATPase of sarcoplasmic reticulum. J Biol Chem. 1984 Jul 10;259(13):8070–8071. [PubMed] [Google Scholar]
- FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
- Fong T. M., McNamee M. G. Correlation between acetylcholine receptor function and structural properties of membranes. Biochemistry. 1986 Feb 25;25(4):830–840. doi: 10.1021/bi00352a015. [DOI] [PubMed] [Google Scholar]
- Fung B. K., Stryer L. Surface density determination in membranes by fluorescence energy transfer. Biochemistry. 1978 Nov 28;17(24):5241–5248. doi: 10.1021/bi00617a025. [DOI] [PubMed] [Google Scholar]
- Gutierrez-Merino C., Centeno F., Garcia-Martin E., Merino J. M. Fluorescence energy transfer as a tool to locate functional sites in membrane proteins. Biochem Soc Trans. 1994 Aug;22(3):784–788. doi: 10.1042/bst0220784. [DOI] [PubMed] [Google Scholar]
- Gutierrez-Merino C., Munkonge F., Mata A. M., East J. M., Levinson B. L., Napier R. M., Lee A. G. The position of the ATP binding site on the (Ca2+ + Mg2+)-ATPase. Biochim Biophys Acta. 1987 Feb 26;897(2):207–216. doi: 10.1016/0005-2736(87)90417-2. [DOI] [PubMed] [Google Scholar]
- Gutierrez-Merino C. Quantitation of the Förster energy transfer for two-dimensional systems. II. Protein distribution and aggregation state in biological membranes. Biophys Chem. 1981 Nov;14(3):259–266. doi: 10.1016/0301-4622(81)85026-0. [DOI] [PubMed] [Google Scholar]
- Gutiérrez-Merino C., Bonini de Romanelli I. C., Pietrasanta L. I., Barrantes F. J. Preferential distribution of the fluorescent phospholipid probes NBD-phosphatidylcholine and rhodamine-phosphatidylethanolamine in the exofacial leaflet of acetylcholine receptor-rich membranes from Torpedo marmorata. Biochemistry. 1995 Apr 11;34(14):4846–4855. doi: 10.1021/bi00014a042. [DOI] [PubMed] [Google Scholar]
- Homan R., Eisenberg M. A fluorescence quenching technique for the measurement of paramagnetic ion concentrations at the membrane/water interface. Intrinsic and X537A-mediated cobalt fluxes across lipid bilayer membranes. Biochim Biophys Acta. 1985 Jan 25;812(2):485–492. doi: 10.1016/0005-2736(85)90323-2. [DOI] [PubMed] [Google Scholar]
- Marsh D., Barrantes F. J. Immobilized lipid in acetylcholine receptor-rich membranes from Torpedo marmorata. Proc Natl Acad Sci U S A. 1978 Sep;75(9):4329–4333. doi: 10.1073/pnas.75.9.4329. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Narayanaswami V., McNamee M. G. Protein-lipid interactions and Torpedo californica nicotinic acetylcholine receptor function. 2. Membrane fluidity and ligand-mediated alteration in the accessibility of gamma subunit cysteine residues to cholesterol. Biochemistry. 1993 Nov 23;32(46):12420–12427. doi: 10.1021/bi00097a021. [DOI] [PubMed] [Google Scholar]
- Parasassi T., Conti F., Gratton E. Time-resolved fluorescence emission spectra of Laurdan in phospholipid vesicles by multifrequency phase and modulation fluorometry. Cell Mol Biol. 1986;32(1):103–108. [PubMed] [Google Scholar]
- Parasassi T., De Stasio G., Ravagnan G., Rusch R. M., Gratton E. Quantitation of lipid phases in phospholipid vesicles by the generalized polarization of Laurdan fluorescence. Biophys J. 1991 Jul;60(1):179–189. doi: 10.1016/S0006-3495(91)82041-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parasassi T., De Stasio G., d'Ubaldo A., Gratton E. Phase fluctuation in phospholipid membranes revealed by Laurdan fluorescence. Biophys J. 1990 Jun;57(6):1179–1186. doi: 10.1016/S0006-3495(90)82637-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parasassi T., Di Stefano M., Loiero M., Ravagnan G., Gratton E. Influence of cholesterol on phospholipid bilayers phase domains as detected by Laurdan fluorescence. Biophys J. 1994 Jan;66(1):120–132. doi: 10.1016/S0006-3495(94)80763-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parasassi T., Loiero M., Raimondi M., Ravagnan G., Gratton E. Absence of lipid gel-phase domains in seven mammalian cell lines and in four primary cell types. Biochim Biophys Acta. 1993 Dec 12;1153(2):143–154. doi: 10.1016/0005-2736(93)90399-k. [DOI] [PubMed] [Google Scholar]
- Parasassi T., Ravagnan G., Rusch R. M., Gratton E. Modulation and dynamics of phase properties in phospholipid mixtures detected by Laurdan fluorescence. Photochem Photobiol. 1993 Mar;57(3):403–410. doi: 10.1111/j.1751-1097.1993.tb02309.x. [DOI] [PubMed] [Google Scholar]
- Rand R. P. Interacting phospholipid bilayers: measured forces and induced structural changes. Annu Rev Biophys Bioeng. 1981;10:277–314. doi: 10.1146/annurev.bb.10.060181.001425. [DOI] [PubMed] [Google Scholar]
- Rouser G., Fkeischer S., Yamamoto A. Two dimensional then layer chromatographic separation of polar lipids and determination of phospholipids by phosphorus analysis of spots. Lipids. 1970 May;5(5):494–496. doi: 10.1007/BF02531316. [DOI] [PubMed] [Google Scholar]
- Sunshine C., McNamee M. G. Lipid modulation of nicotinic acetylcholine receptor function: the role of membrane lipid composition and fluidity. Biochim Biophys Acta. 1994 Apr 20;1191(1):59–64. doi: 10.1016/0005-2736(94)90233-x. [DOI] [PubMed] [Google Scholar]
- Unwin N. Nicotinic acetylcholine receptor at 9 A resolution. J Mol Biol. 1993 Feb 20;229(4):1101–1124. doi: 10.1006/jmbi.1993.1107. [DOI] [PubMed] [Google Scholar]
- Valenzuela C. F., Weign P., Yguerabide J., Johnson D. A. Transverse distance between the membrane and the agonist binding sites on the Torpedo acetylcholine receptor: a fluorescence study. Biophys J. 1994 Mar;66(3 Pt 1):674–682. doi: 10.1016/s0006-3495(94)80841-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weber G., Farris F. J. Synthesis and spectral properties of a hydrophobic fluorescent probe: 6-propionyl-2-(dimethylamino)naphthalene. Biochemistry. 1979 Jul 10;18(14):3075–3078. doi: 10.1021/bi00581a025. [DOI] [PubMed] [Google Scholar]
