Abstract
Mutation at a locus (HPDR) on the X chromosome (McKusick 30780 [HPDR1]; 30781 [HPDR2]) causes impaired renal phosphate transport, hypophosphatemia, and an associated impairment in the process of mineralization in bone and teeth (X-linked hypophosphatemia [XLH]). We measured the dental pulp profile area (PRATIO [= pulp area/tooth area]) and serum phosphorus (Pi) values in uniformly treated XLH patients (six males, 81 teeth, 1,457 Pi values; 11 females, 129 teeth, 1,439 Pi values). Serum Pi values, reflecting the metabolic environment of tooth development, were obtained by repeated measurement between 1 mo and 26 years of age during treatment. PRATIO values calculated from standardized Rinn radiographs were used as outcome measurements of tooth development in XLH patients and in age-matched controls (12 males, 100 teeth; 27 females, 275 teeth). Age-dependent serum Pi values were not different in the treated XLH males and females. In teeth forming primary dentin there was no gene dosage effect on PRATIO values apparent in subjects below 15 years of age. However, in teeth forming secondary dentin a gene dosage was found in the subjects aged 15 to 25 years: XLH male teeth (n = 65) mean +/- SD = 0.163 +/- 0.046; XLH female teeth (n = 75) mean +/- SD = 0.137 +/- 0.039; control teeth (n = 209) mean +/- SD = 0.116 +/- 0.023; (higher PRATIO values mean less development or mineralization of secondary dentin); differences in these PRATIO values (males vs. female and XLH vs. control) were significant by mixed-model analysis of variance.(ABSTRACT TRUNCATED AT 250 WORDS)
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BURNETT C. H., DENT C. E., HARPER C., WARLAND B. J. VITAMIN D-RESISTANT RICKETS. ANALYSIS OF TWENTY-FOUR PEDIGREES WITH HEREDITARY AND SPORADIC CASES. Am J Med. 1964 Feb;36:222–232. doi: 10.1016/0002-9343(64)90085-3. [DOI] [PubMed] [Google Scholar]
- Bell C. L., Tenenhouse H. S., Scriver C. R. Primary cultures of renal epithelial cells from X-linked hypophosphatemic (Hyp) mice express defects in phosphate transport and vitamin D metabolism. Am J Hum Genet. 1988 Sep;43(3):293–303. [PMC free article] [PubMed] [Google Scholar]
- Berkman M. D., Singer A. Demonstration of the lyon hypothesis in X-linked dominant hypoplastic amelogenesis imperfecta. Birth Defects Orig Artic Ser. 1971 Jun;7(7):204–209. [PubMed] [Google Scholar]
- Bhakdinaronk A., Manson-Hing L. R. Effect of radiographic technique upon prediction of tooth length in intraoral radiography. Oral Surg Oral Med Oral Pathol. 1981 Jan;51(1):100–107. doi: 10.1016/0030-4220(81)90132-8. [DOI] [PubMed] [Google Scholar]
- Boneh A., Reade T. M., Scriver C. R., Rishikof E. Audiometric evidence for two forms of X-linked hypophosphatemia in humans, apparent counterparts of Hyp and Gy mutations in mouse. Am J Med Genet. 1987 Aug;27(4):997–1003. doi: 10.1002/ajmg.1320270434. [DOI] [PubMed] [Google Scholar]
- Costa T., Marie P. J., Scriver C. R., Cole D. E., Reade T. M., Nogrady B., Glorieux F. H., Delvin E. E. X-linked hypophosphatemia: effect of calcitriol on renal handling of phosphate, serum phosphate, and bone mineralization. J Clin Endocrinol Metab. 1981 Mar;52(3):463–472. doi: 10.1210/jcem-52-3-463. [DOI] [PubMed] [Google Scholar]
- Couve E. Ultrastructural changes during the life cycle of human odontoblasts. Arch Oral Biol. 1986;31(10):643–651. doi: 10.1016/0003-9969(86)90093-2. [DOI] [PubMed] [Google Scholar]
- Edwards J. H. Familiarity, recessivity and germline mosaicism. Ann Hum Genet. 1989 Jan;53(Pt 1):33–47. doi: 10.1111/j.1469-1809.1989.tb01120.x. [DOI] [PubMed] [Google Scholar]
- Eicher E. M., Southard J. L., Scriver C. R., Glorieux F. H. Hypophosphatemia: mouse model for human familial hypophosphatemic (vitamin D-resistant) rickets. Proc Natl Acad Sci U S A. 1976 Dec;73(12):4667–4671. doi: 10.1073/pnas.73.12.4667. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FRAME B., ARNSTEIN A. R., FROST H. M., SMITH R. W., Jr RESISTANT OSTEOMALACIA: STUDIES WITH TETRACYCLINE BONE LABELING AND METABOLIC BALANCE. Am J Med. 1965 Jan;38:134–144. doi: 10.1016/0002-9343(65)90167-1. [DOI] [PubMed] [Google Scholar]
- FROST H. M. Some observations on bone mineral in a case of vitamin D resistant rickets. Henry Ford Hosp Med Bull. 1958 Dec;6(4 Pt 1):300–310. [PubMed] [Google Scholar]
- Fraser D., Nikiforuk G. The etiology of enamel hypoplasia in children--a unifying concept. J Int Assoc Dent Child. 1982 Jun;13(1):1–11. [PubMed] [Google Scholar]
- GREENBERG B. G., WINTERS R. W., GRAHAM J. B. The normal range of serum inorganic phosphorus and its utility as a discriminant in the diagnosis of congenital hypophosphatemia. J Clin Endocrinol Metab. 1960 Mar;20:364–379. doi: 10.1210/jcem-20-3-364. [DOI] [PubMed] [Google Scholar]
- Glorieux F. H., Scriver C. R., Reade T. M., Goldman H., Roseborough A. Use of phosphate and vitamin D to prevent dwarfism and rickets in X-linked hypophosphatemia. N Engl J Med. 1972 Sep 7;287(10):481–487. doi: 10.1056/NEJM197209072871003. [DOI] [PubMed] [Google Scholar]
- Glorieux F., Scriver C. R. Loss of a parathyroid hormone-sensitive component of phosphate transport in X-linked hypophosphatemia. Science. 1972 Mar 3;175(4025):997–1000. doi: 10.1126/science.175.4025.997. [DOI] [PubMed] [Google Scholar]
- Kay M. A., Meyer M. H., Delzer P. R., Meyer R. A., Jr Changing patterns of femoral and skeletal mineralization during growth in juvenile X-linked hypophosphatemic mice. Miner Electrolyte Metab. 1985;11(6):374–380. [PubMed] [Google Scholar]
- Kruse K., Kracht U., Göpfert G. Renal threshold phosphate concentration (TmPO4/GFR). Arch Dis Child. 1982 Mar;57(3):217–223. doi: 10.1136/adc.57.3.217. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lyon M. F., Scriver C. R., Baker L. R., Tenenhouse H. S., Kronick J., Mandla S. The Gy mutation: another cause of X-linked hypophosphatemia in mouse. Proc Natl Acad Sci U S A. 1986 Jul;83(13):4899–4903. doi: 10.1073/pnas.83.13.4899. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marie P. J., Glorieux F. H. Relation between hypomineralized periosteocytic lesions and bone mineralization in vitamin D-resistant rickets. Calcif Tissue Int. 1983 Jul;35(4-5):443–448. doi: 10.1007/BF02405074. [DOI] [PubMed] [Google Scholar]
- McNair S. L., Stickler G. B. Growth in familial hypophosphatemic vitamin-D-resistant rickets. N Engl J Med. 1969 Sep 4;281(10):512–516. doi: 10.1056/NEJM196909042811001. [DOI] [PubMed] [Google Scholar]
- Philippas G. G., Applebaum E. Age factor in secondary dentin formation. J Dent Res. 1966 May-Jun;45(3):778–789. doi: 10.1177/00220345660450034701. [DOI] [PubMed] [Google Scholar]
- Schwartz S., Scriver C. R., Reade T. M., Shields E. D. Oral findings in patients with autosomal dominant hypophosphatemic bone disease and X-linked hypophosphatemia: further evidence that they are different diseases. Oral Surg Oral Med Oral Pathol. 1988 Sep;66(3):310–314. doi: 10.1016/0030-4220(88)90237-x. [DOI] [PubMed] [Google Scholar]
- Scriver C. R., MacDonald W., Reade T., Glorieux R. H., Nogrady B. Hypophosphatemic nonrachitic bone disease: an entity distinct from X-linked hypophosphatemia in the renal defect, bone involvement, and inheritance. Am J Med Genet. 1977;1(1):101–117. doi: 10.1002/ajmg.1320010111. [DOI] [PubMed] [Google Scholar]
- Scriver C. R., Reade T., Halal F., Costa T., Cole D. E. Autosomal hypophosphataemic bone disease responds to 1,25-(OH)2D3. Arch Dis Child. 1981 Mar;56(3):203–207. doi: 10.1136/adc.56.3.203. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sofaer J. A., Southam J. C. Naturally-occurring exposure of the dental pulp in mice with inherited hypophosphataemia. Arch Oral Biol. 1982;27(8):701–703. doi: 10.1016/0003-9969(82)90196-0. [DOI] [PubMed] [Google Scholar]
- Steendijk R., van den Hoof A., Nielsen H. K., Jowsey J. Lesion of the bone matrix in vitamin D-resistant rickets. Nature. 1965 Jul 24;207(995):426–427. doi: 10.1038/207426a0. [DOI] [PubMed] [Google Scholar]
- Stickler G. B. Familial hypophosphatemic vitamin D resistant rickets. The neonatal period and infancy. Acta Paediatr Scand. 1969 May;58(3):213–219. doi: 10.1111/j.1651-2227.1969.tb04709.x. [DOI] [PubMed] [Google Scholar]
- Tenenhouse H. S., Henry H. L. Protein kinase activity and protein kinase inhibitor in mouse kidney: effect of the X-linked Hyp mutation and vitamin D status. Endocrinology. 1985 Nov;117(5):1719–1726. doi: 10.1210/endo-117-5-1719. [DOI] [PubMed] [Google Scholar]
- Tenenhouse H. S., Scriver C. R., McInnes R. R., Glorieux F. H. Renal handling of phosphate in vivo and in vitro by the X-linked hypophosphatemic male mouse: evidence for a defect in the brush border membrane. Kidney Int. 1978 Sep;14(3):236–244. doi: 10.1038/ki.1978.115. [DOI] [PubMed] [Google Scholar]
- Thakker R. V., Read A. P., Davies K. E., Whyte M. P., Weksberg R., Glorieux F., Davies M., Mountford R. C., Harris R., King A. Bridging markers defining the map position of X linked hypophosphataemic rickets. J Med Genet. 1987 Dec;24(12):756–760. doi: 10.1136/jmg.24.12.756. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tracy W. E., Steen J. C., Steiner J. E., Buist N. R. Analysis of dentine pathogenesis in vitamin D--resistant rickets. Oral Surg Oral Med Oral Pathol. 1971 Jul;32(1):38–44. doi: 10.1016/0030-4220(71)90248-9. [DOI] [PubMed] [Google Scholar]
- WINTERS R. W., GRAHAM J. B., WILLIAMS T. F., McFALLS V. W., BURNETT C. H. A genetic study of familial hypophosphatemia and vitamin D resistant rickets with a review of the literature. Medicine (Baltimore) 1958 May;37(2):97–142. doi: 10.1097/00005792-195805000-00001. [DOI] [PubMed] [Google Scholar]
- Witkop C. J., Jr Partial expression of sex-linked recessive amelogenesis imperfecta in females compatible with the Lyon hypothesis. Oral Surg Oral Med Oral Pathol. 1967 Feb;23(2):174–182. doi: 10.1016/0030-4220(67)90092-8. [DOI] [PubMed] [Google Scholar]
- de JONGE T. E. Das Altern des Gebisses. Paradentologie. 1950 Jul;4(2):83–98. [PubMed] [Google Scholar]
