Skip to main content
Archives of Disease in Childhood. Fetal and Neonatal Edition logoLink to Archives of Disease in Childhood. Fetal and Neonatal Edition
. 1999 Jul;81(1):F19–F23. doi: 10.1136/fn.81.1.f19

Amplitude integrated EEG 3 and 6 hours after birth in full term neonates with hypoxic-ischaemic encephalopathy

M Toet, L Hellstrom-Westas, F Groenendaal, P Eken, L S de Vries
PMCID: PMC1720950  PMID: 10375357

Abstract

AIM—To assess the prognostic value of amplitude integrated EEG (aEEG) 3 and 6 hours after birth.
METHODS—Seventy three term, asphyxiated infants were studied (from two different centres), using the Cerebral Function Monitor (CFM Lectromed). The different aEEG tracings were compared using pattern recognition (flat tracing mainly isoelectric (FT); continuous extremely low voltage (CLV); burst-suppression (BS); discontinuous normal voltage (DNV); continuous normal voltage (CNV)) with subsequent outcome.
RESULTS—Sixty eight infants were followed up for more than 12 months (range 12 months to 6 years).Twenty one out of 68 infants (31%) showed a change in pattern from 3 to 6 hours, but this was only significant in five cases (24%). In three this changed from BS to CNV with a normal outcome. One infant showed a change in pattern from CNV to FT and had a major handicap at follow up. Another infant showed a change in pattern from DNV to BS, and developed a major handicap at follow up. The other 16 infants did not have any significant changes in pattern: 11 infants had CLV, BS, or FT at 3 and 6 hours and died (n = 9) in the neonatal period or developed a major handicap (n = 2). Five infants had a CNV or DNV pattern at 3 and 6 hours, with a normal outcome. The sensitivity and specificity of BS, together with FT and CLV, for poor outcome at 3 hours was 0.85 and 0.77, respectively; at 6 hours 0.91 and 0.86, respectively. The positive predictive value (PPV) was 78% and the negative predictive value (NPV) 84% 3 hours after birth. At 6 hours the PPV was 86% and the NPV was 91%.
CONCLUSION—aEEG could be very useful for selecting those infants who might benefit from intervention after birth asphyxia.



Full Text

The Full Text of this article is available as a PDF (129.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amess P. N., Penrice J., Cady E. B., Lorek A., Wylezinska M., Cooper C. E., D'Souza P., Tyszczuk L., Thoresen M., Edwards A. D. Mild hypothermia after severe transient hypoxia-ischemia reduces the delayed rise in cerebral lactate in the newborn piglet. Pediatr Res. 1997 Jun;41(6):803–808. doi: 10.1203/00006450-199706000-00002. [DOI] [PubMed] [Google Scholar]
  2. Archbald F., Verma U. L., Tejani N. A., Handwerker S. M. Cerebral function monitor in the neonate. II: Birth asphyxia. Dev Med Child Neurol. 1984 Apr;26(2):162–168. doi: 10.1111/j.1469-8749.1984.tb04427.x. [DOI] [PubMed] [Google Scholar]
  3. Bjerre I., Hellström-Westas L., Rosén I., Svenningsen N. Monitoring of cerebral function after severe asphyxia in infancy. Arch Dis Child. 1983 Dec;58(12):997–1002. doi: 10.1136/adc.58.12.997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Carter B. S., McNabb F., Merenstein G. B. Prospective validation of a scoring system for predicting neonatal morbidity after acute perinatal asphyxia. J Pediatr. 1998 Apr;132(4):619–623. doi: 10.1016/s0022-3476(98)70349-x. [DOI] [PubMed] [Google Scholar]
  5. Dijxhoorn M. J., Visser G. H., Huisjes H. J., Fidler V., Touwen B. C. The relation between umbilical pH values and neonatal neurological morbidity in full term appropriate-for-dates infants. Early Hum Dev. 1985 May;11(1):33–42. doi: 10.1016/0378-3782(85)90117-3. [DOI] [PubMed] [Google Scholar]
  6. Edwards A. D., Azzopardi D. Hypothermic neural rescue treatment: from laboratory to cotside? Arch Dis Child Fetal Neonatal Ed. 1998 Mar;78(2):F88–F91. doi: 10.1136/fn.78.2.f88. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Edwards A. D., Wyatt J. S., Thoresen M. Treatment of hypoxic-ischaemic brain damage by moderate hypothermia. Arch Dis Child Fetal Neonatal Ed. 1998 Mar;78(2):F85–F88. doi: 10.1136/fn.78.2.f85. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Eken P., Jansen G. H., Groenendaal F., Rademaker K. J., de Vries L. S. Intracranial lesions in the fullterm infant with hypoxic ischaemic encephalopathy: ultrasound and autopsy correlation. Neuropediatrics. 1994 Dec;25(6):301–307. doi: 10.1055/s-2008-1073044. [DOI] [PubMed] [Google Scholar]
  9. Eken P., Toet M. C., Groenendaal F., de Vries L. S. Predictive value of early neuroimaging, pulsed Doppler and neurophysiology in full term infants with hypoxic-ischaemic encephalopathy. Arch Dis Child Fetal Neonatal Ed. 1995 Sep;73(2):F75–F80. doi: 10.1136/fn.73.2.f75. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ekert P., Perlman M., Steinlin M., Hao Y. Predicting the outcome of postasphyxial hypoxic-ischemic encephalopathy within 4 hours of birth. J Pediatr. 1997 Oct;131(4):613–617. doi: 10.1016/s0022-3476(97)70072-6. [DOI] [PubMed] [Google Scholar]
  11. Gibson N. A., Graham M., Levene M. I. Somatosensory evoked potentials and outcome in perinatal asphyxia. Arch Dis Child. 1992 Apr;67(4 Spec No):393–398. doi: 10.1136/adc.67.4_spec_no.393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Haaland K., Løberg E. M., Steen P. A., Thoresen M. Posthypoxic hypothermia in newborn piglets. Pediatr Res. 1997 Apr;41(4 Pt 1):505–512. doi: 10.1203/00006450-199704000-00009. [DOI] [PubMed] [Google Scholar]
  13. Hagberg B., Hagberg G., Olow I. The changing panorama of cerebral palsy in Sweden 1954-1970. I. Analysis of the general changes. Acta Paediatr Scand. 1975 Mar;64(2):187–192. doi: 10.1111/j.1651-2227.1975.tb03820.x. [DOI] [PubMed] [Google Scholar]
  14. Hagberg B., Hagberg G., Olow I. The changing panorama of cerebral palsy in Sweden. VI. Prevalence and origin during the birth year period 1983-1986. Acta Paediatr. 1993 Apr;82(4):387–393. doi: 10.1111/j.1651-2227.1993.tb12704.x. [DOI] [PubMed] [Google Scholar]
  15. Hall R. T., Hall F. K., Daily D. K. High-dose phenobarbital therapy in term newborn infants with severe perinatal asphyxia: a randomized, prospective study with three-year follow-up. J Pediatr. 1998 Feb;132(2):345–348. doi: 10.1016/s0022-3476(98)70458-5. [DOI] [PubMed] [Google Scholar]
  16. Hellström-Westas L. Comparison between tape-recorded and amplitude-integrated EEG monitoring in sick newborn infants. Acta Paediatr. 1992 Oct;81(10):812–819. doi: 10.1111/j.1651-2227.1992.tb12109.x. [DOI] [PubMed] [Google Scholar]
  17. Hellström-Westas L., Rosén I., Svenningsen N. W. Predictive value of early continuous amplitude integrated EEG recordings on outcome after severe birth asphyxia in full term infants. Arch Dis Child Fetal Neonatal Ed. 1995 Jan;72(1):F34–F38. doi: 10.1136/fn.72.1.f34. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Holmes G., Rowe J., Hafford J., Schmidt R., Testa M., Zimmerman A. Prognostic value of the electroencephalogram in neonatal asphyxia. Electroencephalogr Clin Neurophysiol. 1982 Jan;53(1):60–72. doi: 10.1016/0013-4694(82)90106-7. [DOI] [PubMed] [Google Scholar]
  19. King T. A., Jackson G. L., Josey A. S., Vedro D. A., Hawkins H., Burton K. M., Burks M. N., Yellin W. M., Laptook A. R. The effect of profound umbilical artery acidemia in term neonates admitted to a newborn nursery. J Pediatr. 1998 Apr;132(4):624–629. doi: 10.1016/s0022-3476(98)70350-6. [DOI] [PubMed] [Google Scholar]
  20. Levene M., Blennow M., Whitelaw A., Hankø E., Fellman V., Hartley R. Acute effects of two different doses of magnesium sulphate in infants with birth asphyxia. Arch Dis Child Fetal Neonatal Ed. 1995 Nov;73(3):F174–F177. doi: 10.1136/fn.73.3.f174. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Martin E., Barkovich A. J. Magnetic resonance imaging in perinatal asphyxia. Arch Dis Child Fetal Neonatal Ed. 1995 Jan;72(1):F62–F70. doi: 10.1136/fn.72.1.f62. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Monod N., Pajot N., Guidasci S. The neonatal EEG: statistical studies and prognostic value in full-term and pre-term babies. Electroencephalogr Clin Neurophysiol. 1972 May;32(5):529–544. doi: 10.1016/0013-4694(72)90063-6. [DOI] [PubMed] [Google Scholar]
  23. Pezzani C., Radvanyi-Bouvet M. F., Relier J. P., Monod N. Neonatal electroencephalography during the first twenty-four hours of life in full-term newborn infants. Neuropediatrics. 1986 Feb;17(1):11–18. doi: 10.1055/s-2008-1052492. [DOI] [PubMed] [Google Scholar]
  24. Rutherford M. A., Pennock J. M., Dubowitz L. M. Cranial ultrasound and magnetic resonance imaging in hypoxic-ischaemic encephalopathy: a comparison with outcome. Dev Med Child Neurol. 1994 Sep;36(9):813–825. doi: 10.1111/j.1469-8749.1994.tb08191.x. [DOI] [PubMed] [Google Scholar]
  25. Sarnat H. B., Sarnat M. S. Neonatal encephalopathy following fetal distress. A clinical and electroencephalographic study. Arch Neurol. 1976 Oct;33(10):696–705. doi: 10.1001/archneur.1976.00500100030012. [DOI] [PubMed] [Google Scholar]
  26. Shankaran S. Identification of term infants at risk for neonatal morbidity. J Pediatr. 1998 Apr;132(4):571–572. doi: 10.1016/s0022-3476(98)70341-5. [DOI] [PubMed] [Google Scholar]
  27. Svenningsen N. W., Blennow G., Lindroth M., Gäddlin P. O., Ahlström H. Brain-orientated intensive care treatment in severe neonatal asphyxia. Effects of phenobarbitone protection. Arch Dis Child. 1982 Mar;57(3):176–183. doi: 10.1136/adc.57.3.176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Thoresen M., Penrice J., Lorek A., Cady E. B., Wylezinska M., Kirkbride V., Cooper C. E., Brown G. C., Edwards A. D., Wyatt J. S. Mild hypothermia after severe transient hypoxia-ischemia ameliorates delayed cerebral energy failure in the newborn piglet. Pediatr Res. 1995 May;37(5):667–670. doi: 10.1203/00006450-199505000-00019. [DOI] [PubMed] [Google Scholar]
  29. Thornberg E., Thiringer K. Normal pattern of the cerebral function monitor trace in term and preterm neonates. Acta Paediatr Scand. 1990 Jan;79(1):20–25. doi: 10.1111/j.1651-2227.1990.tb11324.x. [DOI] [PubMed] [Google Scholar]
  30. Van Bel F., Shadid M., Moison R. M., Dorrepaal C. A., Fontijn J., Monteiro L., Van De Bor M., Berger H. M. Effect of allopurinol on postasphyxial free radical formation, cerebral hemodynamics, and electrical brain activity. Pediatrics. 1998 Feb;101(2):185–193. doi: 10.1542/peds.101.2.185. [DOI] [PubMed] [Google Scholar]
  31. Vannucci R. C., Perlman J. M. Interventions for perinatal hypoxic-ischemic encephalopathy. Pediatrics. 1997 Dec;100(6):1004–1014. doi: 10.1542/peds.100.6.1004. [DOI] [PubMed] [Google Scholar]
  32. Watanabe K., Miyazaki S., Hara K., Hakamada S. Behavioral state cycles, background EEGs and prognosis of newborns with perinatal hypoxia. Electroencephalogr Clin Neurophysiol. 1980 Sep;49(5-6):618–625. doi: 10.1016/0013-4694(80)90402-2. [DOI] [PubMed] [Google Scholar]
  33. Wayenberg J. L., Vermeylen D., Bormans J., Magrez P., Müller M. F., Pardou A. Diagnosis of severe birth asphyxia and early prediction of neonatal neurological outcome in term asphyxiated newborns. J Perinat Med. 1994;22(2):129–136. doi: 10.1515/jpme.1994.22.2.129. [DOI] [PubMed] [Google Scholar]
  34. de Vries L. S. Somatosensory-evoked potentials in term neonates with postasphyxial encephalopathy. Clin Perinatol. 1993 Jun;20(2):463–482. [PubMed] [Google Scholar]

Articles from Archives of Disease in Childhood. Fetal and Neonatal Edition are provided here courtesy of BMJ Publishing Group

RESOURCES