Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1981 Nov;20(5):634–641. doi: 10.1128/aac.20.5.634

Pharmacokinetics of ceftriaxone in humans.

I H Patel, S Chen, M Parsonnet, M R Hackman, M A Brooks, J Konikoff, S A Kaplan
PMCID: PMC181765  PMID: 6275779

Abstract

Pharmacokinetics of the investigational cephalosporin ceftriaxone were studied after 30-min intravenous infusions of three ascending single doses of 0.5, 1, and 2 g crossed over in 12 normal subjects. Serially collected plasma and urine samples were analyzed for ceftriaxone by high-performance liquid chromatography. Plasma concentration-time profiles were characterized by a linear two-compartment open model with the following respective mean (+/- standard deviation) parameters at 0.5-, 1-, and 2-g dose levels: elimination half-life, 6.5 +/- 0.7, 6.2 +/- 0.8, and 5.9 +/- 0.7 h; apparent volume of distribution, 8.5 +/- 1.1, 9.0 +/- 1.1, and 10.1 +/- 1.0 liters; and plasma clearance, 929 +/- 150, 1,007 +/- 130, and 1,190 +/- 150 ml/h. The respective renal excretion parameters were as follows: renal clearance, 373 +/- 60, 399 +/- 50, and 533 +/- 128 ml/h; and percentage of dose excreted unchanged in the 48-h urine samples, 41 +/- 8, 39 +/- 5, and 43 +/- 10. The 6-h elimination half-life of ceftriaxone was 2- to 10-fold longer than those reported for marketed and other known investigational cephalosporins. The small dose-related increases in the apparent volume of distribution and clearance parameters can be explainhe 48-h urine samples, 41 +/- 8, 39 +/- 5, and 43 +/- 10. The 6-h elimination half-life of ceftriaxone was 2- to 10-fold longer than those reported for marketed and other known investigational cephalosporins. The small dose-related increases in the apparent volume of distribution and clearance parameters can be explainhe 48-h urine samples, 41 +/- 8, 39 +/- 5, and 43 +/- 10. The 6-h elimination half-life of ceftriaxone was 2- to 10-fold longer than those reported for marketed and other known investigational cephalosporins. The small dose-related increases in the apparent volume of distribution and clearance parameters can be explained by the concentration-dependent plasma protein binding of ceftriaxone in humans. The impact of the small dose-dependent changes in the pharmacokinetics of ceftriaxone is anticipated to be of negligible clinical significance.

Full text

PDF
634

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allaz A. F., Dayer P., Fabre J., Rudhardt M., Balant L. Pharmacocinétique d'une nouvelle céphalosporine, la céfopérazone. Schweiz Med Wochenschr. 1979 Dec 29;109(50):1999–2005. [PubMed] [Google Scholar]
  2. Angehrn P., Probst P. J., Reiner R., Then R. L. Ro 13-9904, a long-acting broad-spectrum cephalosporin: in vitro and in vivo studies. Antimicrob Agents Chemother. 1980 Dec;18(6):913–921. doi: 10.1128/aac.18.6.913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Craig W. A. Single-dose pharmacokinetics of cefoperazone following intravenous administration. Clin Ther. 1980;3(Spec Issue):46–49. [PubMed] [Google Scholar]
  4. Fu K. P., Neu H. C. beta-lactamase stability of HR 756, a novel cephalosporin, compared to that of cefuroxime and cefoxitin. Antimicrob Agents Chemother. 1978 Sep;14(3):322–326. doi: 10.1128/aac.14.3.322. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hinkle A. M., Bodey G. P. In vitro evaluation of Ro 13-9904. Antimicrob Agents Chemother. 1980 Oct;18(4):574–578. doi: 10.1128/aac.18.4.574. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kamimura T., Matsumoto Y., Okada N., Mine Y., Nishida M., Goto S., Kuwahara S. Ceftizoxime (FK 749), a new parenteral cephalosporin: in vitro and in vivo antibacterial activities. Antimicrob Agents Chemother. 1979 Nov;16(5):540–548. doi: 10.1128/aac.16.5.540. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Lode H., Kemmerich B., Koeppe P., Belmega D., Jendroschek H. Comparative pharmacokinetics of cefoperazone and cefotaxime. Clin Ther. 1980;3(Spec Issue):80–88. [PubMed] [Google Scholar]
  8. Lüthy R., Münch R., Blaser J., Bhend H., Siegenthaler W. Human pharmacology of cefotaxime (HR 756), a new cephalosporin. Antimicrob Agents Chemother. 1979 Aug;16(2):127–133. doi: 10.1128/aac.16.2.127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Matsubara N., Minami S., Muraoka T., Saikawa I., Mitsuhashi S. In vitro antibacterial activity of cefoperazone (T-1551), a new semisynthetic cephalosporin. Antimicrob Agents Chemother. 1979 Dec;16(6):731–735. doi: 10.1128/aac.16.6.731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Neu H. C., Aswapokee N., Fu K. P., Aswapokee P. Antibacterial activity of a new 1-oxa cephalosporin compared with that of other beta-lactam compounds. Antimicrob Agents Chemother. 1979 Aug;16(2):141–149. doi: 10.1128/aac.16.2.141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Neu H. C., Aswapokee P., Fu K. P., Ho I., Matthijssen C. Cefotaxime kinetics after intravenous and intramuscular injection of single and multiple doses. Clin Pharmacol Ther. 1980 May;27(5):677–685. doi: 10.1038/clpt.1980.96. [DOI] [PubMed] [Google Scholar]
  12. O'Callaghan C. H. Description and classification of the newer cephalosporins and their relationships with the established compounds. J Antimicrob Chemother. 1979 Nov;5(6):635–671. doi: 10.1093/jac/5.6.635. [DOI] [PubMed] [Google Scholar]
  13. Patel I. H., Miller K., Weinfeld R., Spicehandler J. Multiple intravenous dose pharmacokinetics of ceftriaxone in man. Chemotherapy. 1981;27 (Suppl 1):47–56. doi: 10.1159/000238029. [DOI] [PubMed] [Google Scholar]
  14. Reiner R., Weiss U., Brombacher U., Lanz P., Montavon M., Furlenmeier A., Angehrn P., Probst P. J. Ro 13-9904/001, a novel potent and long-acting parenteral cephalosporin. J Antibiot (Tokyo) 1980 Jul;33(7):783–786. doi: 10.7164/antibiotics.33.783. [DOI] [PubMed] [Google Scholar]
  15. Seddon M., Wise R., Gillett A. P., Livingston R. Pharmacokinetics of Ro 13-9904, a broad-spectrum cephalosporin. Antimicrob Agents Chemother. 1980 Aug;18(2):240–242. doi: 10.1128/aac.18.2.240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Shannon K., King A., Warren C., Phillips I. In vitro antibacterial activity and susceptibility of the cephalosporin Ro 13-9904 to beta-lactamases. Antimicrob Agents Chemother. 1980 Aug;18(2):292–298. doi: 10.1128/aac.18.2.292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Shelton S., Nelson J. D., McCracken G. H., Jr In vitro susceptibility of gram-negative bacilli from pediatric patients to moxalactam, cefotaxime, Ro 13-9904, and other cephalosporins. Antimicrob Agents Chemother. 1980 Sep;18(3):476–479. doi: 10.1128/aac.18.3.476. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Stoeckel K., McNamara P. J., Brandt R., Plozza-Nottebrock H., Ziegler W. H. Effects of concentration-dependent plasma protein binding on ceftriaxone kinetics. Clin Pharmacol Ther. 1981 May;29(5):650–657. doi: 10.1038/clpt.1981.90. [DOI] [PubMed] [Google Scholar]
  19. Wise R., Baker S., Livingston R. Comparison of cefotaxime and moxalactam pharmacokinetics and tissue levels. Antimicrob Agents Chemother. 1980 Sep;18(3):369–371. doi: 10.1128/aac.18.3.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Wise R., Baker S., Wright N., Livingston R. The pharmacokinetics of LY127935, a broad spectrum oxa-beta-lactam. J Antimicrob Chemother. 1980 May;6(3):319–322. doi: 10.1093/jac/6.3.319. [DOI] [PubMed] [Google Scholar]
  21. Wise R., Gillett A. P., Andrews J. M., Bedford K. A. Ro 13-9904: A cephalosporin with a high degree of activity and broad antibacterial activity: an invitro comparative study. J Antimicrob Chemother. 1980 Sep;6(5):595–600. doi: 10.1093/jac/6.5.595. [DOI] [PubMed] [Google Scholar]
  22. Yoshikawa T. T., Shibata S. A., Herbert P., Oill P. A. In vitro activity of Ro 13-9904, cefuroxime, cefoxitin, and ampicillin against Neisseria gonorrhoeae. Antimicrob Agents Chemother. 1980 Aug;18(2):355–356. doi: 10.1128/aac.18.2.355. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES