Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jan 8;65(Pt 2):o262. doi: 10.1107/S1600536808044073

2-Hydr­oxy-N′-[(E)-(3-hydr­oxy-2-naphth­yl)methyl­ene]benzohydrazide

Yuying Sun a, Hong-Gang Li b, Xiao Wang c, Shizhou Fu c, Daqi Wang c,*
PMCID: PMC2968222  PMID: 21581877

Abstract

In the title mol­ecule, C18H14N2O3, O—H⋯N and N—H⋯O hydrogen bonds influence the mol­ecular conformation; the benzene and naphthalene planes are inclined at a dihedral angle of 11.54 (5)°. In the crystal structure, inter­molecular O—H⋯O hydrogen bonds link the mol­ecules into chains running in the [01Inline graphic] direction.

Related literature

For useful applications of salicyloyl hydrazide derivatives, see: Sumita et al. (1999). For the crystal structure of (E)-2-hydr­oxy-N′-(3-hydr­oxy-4-methoxy­benzyl­idene)benzohydrazide, see: Luo (2007).graphic file with name e-65-0o262-scheme1.jpg

Experimental

Crystal data

  • C18H14N2O3

  • M r = 306.31

  • Orthorhombic, Inline graphic

  • a = 21.124 (2) Å

  • b = 11.6212 (13) Å

  • c = 5.9826 (8) Å

  • V = 1468.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 (2) K

  • 0.32 × 0.18 × 0.15 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.970, T max = 0.986

  • 6099 measured reflections

  • 1422 independent reflections

  • 896 reflections with I > 2σ(I)

  • R int = 0.057

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.076

  • S = 1.04

  • 1422 reflections

  • 209 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808044073/cv2501sup1.cif

e-65-0o262-sup1.cif (16.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808044073/cv2501Isup2.hkl

e-65-0o262-Isup2.hkl (70.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯N2 0.82 1.90 2.623 (5) 146
N1—H1⋯O2 0.86 1.92 2.620 (4) 137
O2—H2⋯O1i 0.82 1.81 2.573 (4) 155

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors acknowledge the support of the National Natural Science Foundation of Liaocheng University (grant No. X051040).

supplementary crystallographic information

Comment

Salicyloyl hydrazide is an important organic intermediate, it can act as moulding board in inorganic complex (Sumita et al., 1999). In this paper, we present the title compound (I), which was synthesized by the reaction of 2-hydroxyl naphthaldehyde and salicyloyl hydrazide.

In (I) (Fig. 1), the bond lengths and angles are normal and comparable to those observed in the reported compound (Luo, 2007). In the crystal structure, the C8=N2 bond length is 1.279 (5) Å showing the double-bond character. The dihedral angle between the naphthalene ring and C8/N2/N1 is 10.14 (3) Å, the C1/N1/N2 and benzene ring form a dihedral angle of 6.70 (4) Å showing that intramolecular O—H···N and N—H···O hydrogen bonds (Table 1) influence the molecular conformation.

In the crystal, intermolecular O—H···O hydrogen bonds (Table 1) link the molecules into chains running in direction [01–1].

Experimental

Salicyloyl hydrazide (0.5 mmol) and freshly 2-hydroxyl naphthaldehyde (0.5 mmol) were mixed in 50 ml flash. After stirring 30 min at 353 K, the mixture then cooling slowly to room temperature and affording the title compound, then recrystallized from ethanol, affording the title compound as a green crystalline solid. Elemental analysis: calculated for C18H14N2O3: C 70.58, H 4.61, N 9.15%; found: C 70.53, H 4.55, N 9.24%.

Refinement

All H atoms were placed in geometrically idealized positions (N—H 0.86, O—H 0.82 and C—H=0.93 Å) and treated as riding, with Uiso(H) = 1.2 Ueq of the parent atom. In the absence of any significant anomalous scatterers in the molecule, the 1353 Friedel pairs were merged before the final refinement.

Figures

Fig. 1.

Fig. 1.

ORTEP drawing of the title molecule with atomic numbering scheme and displacement ellipsoids at 30% probability level.

Crystal data

C18H14N2O3 Dx = 1.385 Mg m3
Mr = 306.31 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21 Cell parameters from 1119 reflections
a = 21.124 (2) Å θ = 2.6–25.4°
b = 11.6212 (13) Å µ = 0.10 mm1
c = 5.9826 (8) Å T = 298 K
V = 1468.6 (3) Å3 Block, yellow
Z = 4 0.32 × 0.18 × 0.15 mm
F(000) = 640

Data collection

Bruker SMART CCD area-detector diffractometer 1422 independent reflections
Radiation source: fine-focus sealed tube 896 reflections with I > 2σ(I)
graphite Rint = 0.057
φ and ω scans θmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −24→24
Tmin = 0.970, Tmax = 0.986 k = −13→8
6099 measured reflections l = −7→6

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0012P)2 + 0.7621P] where P = (Fo2 + 2Fc2)/3
1422 reflections (Δ/σ)max = 0.001
209 parameters Δρmax = 0.15 e Å3
1 restraint Δρmin = −0.16 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.22373 (16) 0.9395 (3) 0.7320 (6) 0.0514 (10)
H1 0.2172 0.8713 0.7828 0.062*
N2 0.19138 (18) 0.9753 (3) 0.5434 (6) 0.0536 (11)
O1 0.27673 (14) 1.1075 (2) 0.7748 (6) 0.0703 (10)
O2 0.25278 (12) 0.7725 (2) 1.0077 (6) 0.0574 (9)
H2 0.2526 0.7107 1.0739 0.086*
O3 0.16012 (13) 1.1067 (3) 0.2045 (6) 0.0664 (10)
H3 0.1787 1.0892 0.3199 0.100*
C1 0.2649 (2) 1.0079 (4) 0.8375 (8) 0.0504 (12)
C2 0.2955 (2) 0.9611 (3) 1.0404 (8) 0.0447 (11)
C3 0.2891 (2) 0.8497 (3) 1.1229 (7) 0.0441 (12)
C4 0.3185 (2) 0.8179 (4) 1.3196 (8) 0.0544 (13)
H4 0.3135 0.7435 1.3740 0.065*
C5 0.3548 (2) 0.8948 (5) 1.4348 (9) 0.0672 (15)
H5 0.3750 0.8718 1.5655 0.081*
C6 0.3618 (2) 1.0054 (5) 1.3596 (10) 0.0718 (16)
H6 0.3863 1.0578 1.4392 0.086*
C7 0.3321 (2) 1.0378 (4) 1.1646 (10) 0.0614 (14)
H7 0.3366 1.1130 1.1142 0.074*
C8 0.1536 (2) 0.8994 (4) 0.4641 (8) 0.0546 (13)
H8 0.1507 0.8288 0.5363 0.066*
C9 0.1152 (2) 0.9189 (4) 0.2659 (8) 0.0493 (12)
C10 0.1211 (2) 1.0193 (4) 0.1429 (8) 0.0495 (12)
C11 0.0868 (2) 1.0370 (4) −0.0549 (8) 0.0560 (13)
H11 0.0914 1.1054 −0.1339 0.067*
C12 0.0468 (2) 0.9542 (4) −0.1312 (9) 0.0607 (14)
H12 0.0255 0.9653 −0.2656 0.073*
C13 0.0369 (2) 0.8510 (4) −0.0089 (9) 0.0548 (13)
C14 0.07102 (19) 0.8331 (4) 0.1920 (8) 0.0511 (12)
C15 0.0568 (2) 0.7320 (4) 0.3138 (9) 0.0656 (15)
H15 0.0780 0.7173 0.4470 0.079*
C16 0.0128 (2) 0.6564 (5) 0.2396 (11) 0.0790 (19)
H16 0.0044 0.5909 0.3239 0.095*
C17 −0.0202 (2) 0.6734 (5) 0.0415 (12) 0.0771 (17)
H17 −0.0500 0.6199 −0.0067 0.093*
C18 −0.0082 (2) 0.7700 (4) −0.0809 (9) 0.0686 (16)
H18 −0.0301 0.7825 −0.2136 0.082*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.053 (2) 0.058 (2) 0.043 (3) 0.005 (2) −0.001 (2) 0.022 (2)
N2 0.051 (2) 0.070 (3) 0.040 (2) 0.016 (2) 0.000 (2) 0.017 (2)
O1 0.086 (2) 0.0454 (18) 0.079 (3) 0.0026 (17) 0.004 (2) 0.0291 (19)
O2 0.076 (2) 0.0427 (16) 0.053 (2) −0.0038 (16) −0.012 (2) 0.0166 (17)
O3 0.063 (2) 0.081 (2) 0.056 (3) −0.0053 (18) −0.0055 (19) 0.029 (2)
C1 0.052 (3) 0.049 (3) 0.050 (3) 0.007 (2) 0.006 (3) 0.012 (2)
C2 0.046 (3) 0.043 (3) 0.044 (3) 0.005 (2) 0.001 (2) 0.009 (2)
C3 0.050 (3) 0.042 (3) 0.040 (3) 0.000 (2) −0.001 (2) 0.005 (2)
C4 0.060 (3) 0.058 (3) 0.045 (3) 0.008 (3) 0.001 (3) 0.017 (3)
C5 0.062 (3) 0.087 (4) 0.053 (4) 0.012 (3) −0.010 (3) 0.003 (3)
C6 0.065 (3) 0.073 (4) 0.077 (4) −0.006 (3) −0.012 (3) −0.011 (3)
C7 0.066 (3) 0.050 (3) 0.068 (4) −0.002 (3) 0.002 (3) 0.007 (3)
C8 0.055 (3) 0.062 (3) 0.047 (3) 0.013 (3) 0.007 (3) 0.018 (3)
C9 0.047 (3) 0.063 (3) 0.037 (3) 0.011 (2) 0.005 (2) 0.014 (3)
C10 0.044 (3) 0.068 (3) 0.037 (3) 0.007 (2) 0.007 (3) 0.016 (3)
C11 0.054 (3) 0.075 (3) 0.039 (3) 0.011 (3) −0.001 (3) 0.020 (3)
C12 0.059 (3) 0.088 (4) 0.035 (3) 0.009 (3) 0.000 (3) 0.007 (3)
C13 0.049 (3) 0.064 (3) 0.051 (3) 0.009 (3) 0.009 (3) 0.001 (3)
C14 0.049 (3) 0.059 (3) 0.046 (3) 0.017 (2) 0.006 (3) 0.004 (3)
C15 0.056 (3) 0.071 (3) 0.070 (4) 0.008 (3) 0.000 (3) 0.017 (3)
C16 0.069 (4) 0.068 (4) 0.100 (6) 0.003 (3) 0.001 (4) 0.018 (4)
C17 0.068 (4) 0.067 (4) 0.096 (5) −0.003 (3) 0.002 (4) 0.001 (4)
C18 0.060 (3) 0.079 (4) 0.066 (4) 0.007 (3) 0.008 (3) −0.008 (4)

Geometric parameters (Å, °)

N1—C1 1.336 (5) C8—C9 1.455 (6)
N1—N2 1.383 (5) C8—H8 0.9300
N1—H1 0.8600 C9—C10 1.386 (5)
N2—C8 1.280 (5) C9—C14 1.435 (5)
O1—C1 1.242 (5) C10—C11 1.403 (6)
O2—C3 1.366 (5) C11—C12 1.360 (6)
O2—H2 0.8200 C11—H11 0.9300
O3—C10 1.359 (5) C12—C13 1.420 (6)
O3—H3 0.8200 C12—H12 0.9300
C1—C2 1.479 (6) C13—C18 1.407 (6)
C2—C3 1.392 (5) C13—C14 1.417 (6)
C2—C7 1.395 (6) C14—C15 1.415 (6)
C3—C4 1.381 (6) C15—C16 1.354 (6)
C4—C5 1.364 (6) C15—H15 0.9300
C4—H4 0.9300 C16—C17 1.389 (7)
C5—C6 1.370 (7) C16—H16 0.9300
C5—H5 0.9300 C17—C18 1.364 (6)
C6—C7 1.377 (7) C17—H17 0.9300
C6—H6 0.9300 C18—H18 0.9300
C7—H7 0.9300
C1—N1—N2 121.8 (4) C10—C9—C14 118.7 (4)
C1—N1—H1 119.1 C10—C9—C8 120.9 (4)
N2—N1—H1 119.1 C14—C9—C8 120.4 (4)
C8—N2—N1 113.8 (4) O3—C10—C9 122.7 (4)
C3—O2—H2 109.5 O3—C10—C11 115.7 (4)
C10—O3—H3 109.5 C9—C10—C11 121.6 (5)
O1—C1—N1 122.9 (4) C12—C11—C10 120.1 (5)
O1—C1—C2 120.2 (5) C12—C11—H11 120.0
N1—C1—C2 116.9 (4) C10—C11—H11 120.0
C3—C2—C7 117.3 (4) C11—C12—C13 121.1 (5)
C3—C2—C1 126.2 (4) C11—C12—H12 119.5
C7—C2—C1 116.4 (4) C13—C12—H12 119.5
O2—C3—C4 120.5 (4) C18—C13—C14 120.4 (5)
O2—C3—C2 119.1 (4) C18—C13—C12 120.4 (5)
C4—C3—C2 120.5 (4) C14—C13—C12 119.1 (5)
C5—C4—C3 120.6 (5) C15—C14—C13 116.8 (5)
C5—C4—H4 119.7 C15—C14—C9 123.8 (5)
C3—C4—H4 119.7 C13—C14—C9 119.4 (4)
C4—C5—C6 120.6 (5) C16—C15—C14 121.1 (5)
C4—C5—H5 119.7 C16—C15—H15 119.5
C6—C5—H5 119.7 C14—C15—H15 119.5
C5—C6—C7 119.0 (5) C15—C16—C17 122.1 (6)
C5—C6—H6 120.5 C15—C16—H16 118.9
C7—C6—H6 120.5 C17—C16—H16 118.9
C6—C7—C2 122.0 (5) C18—C17—C16 118.8 (6)
C6—C7—H7 119.0 C18—C17—H17 120.6
C2—C7—H7 119.0 C16—C17—H17 120.6
N2—C8—C9 122.9 (4) C17—C18—C13 120.8 (6)
N2—C8—H8 118.6 C17—C18—H18 119.6
C9—C8—H8 118.6 C13—C18—H18 119.6

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O3—H3···N2 0.82 1.90 2.623 (5) 146
N1—H1···O2 0.86 1.92 2.620 (4) 137
O2—H2···O1i 0.82 1.81 2.573 (4) 155

Symmetry codes: (i) −x+1/2, y−1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2501).

References

  1. Luo, Z.-G. (2007). Acta Cryst. E63, o3672.
  2. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  3. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  4. Siemens (1996). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  5. Sumita, N. R., Munshi, K. N., Nageswara, R. N., Bhadbhade, M. M. & Suresh, E. (1999). Polyhedron, 18, 2491–2497.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808044073/cv2501sup1.cif

e-65-0o262-sup1.cif (16.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808044073/cv2501Isup2.hkl

e-65-0o262-Isup2.hkl (70.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES