Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Jan 16;66(Pt 2):o365. doi: 10.1107/S1600536810001303

2-Chloro-N′-(5-hydr­oxy-2-nitro­benzyl­idene)benzohydrazide

Cong-Shan Zhou a, Tao Yang a,*
PMCID: PMC2979760  PMID: 21579789

Abstract

The mol­ecule of the title Schiff base compound, C14H10ClN3O4, exists in a trans configuration with respect to the acyclic C=N bond. The dihedral angle between the two benzene rings is 62.37 (9)°. An intra­molecular C—H⋯O hydrogen bond is observed. In the crystal structure, adjacent mol­ecules are linked into a ribbon along [1Inline graphic0] by O—H⋯O and N—H⋯O hydrogen bonds.

Related literature

For the biological properties of Schiff bases, see: Mohamed et al. (2009); Ritter et al. (2009); Bagihalli et al. (2008). For related structures, see: Fun et al. (2008); Shafiq et al. (2009); Goh et al. (2010); Zhou et al. (2009); Zhou & Yang (2009).graphic file with name e-66-0o365-scheme1.jpg

Experimental

Crystal data

  • C14H10ClN3O4

  • M r = 319.70

  • Triclinic, Inline graphic

  • a = 7.2490 (2) Å

  • b = 9.4719 (3) Å

  • c = 10.4749 (4) Å

  • α = 100.623 (2)°

  • β = 97.433 (2)°

  • γ = 96.127 (2)°

  • V = 694.64 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 298 K

  • 0.17 × 0.15 × 0.15 mm

Data collection

  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.951, T max = 0.957

  • 4097 measured reflections

  • 2900 independent reflections

  • 2332 reflections with I > 2σ(I)

  • R int = 0.016

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.103

  • S = 1.03

  • 2900 reflections

  • 203 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810001303/ci5018sup1.cif

e-66-0o365-sup1.cif (15.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810001303/ci5018Isup2.hkl

e-66-0o365-Isup2.hkl (142.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2i 0.89 (1) 2.09 (1) 2.9591 (18) 165 (2)
O4—H4⋯O1ii 0.82 1.85 2.6708 (17) 176
C7—H7⋯O2 0.93 2.22 2.817 (2) 122

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors acknowledge the Hunan Provincial Natural Science Foundation of China (grant No. 09 J J6022) and the Scientific Research Fund of Hunan Provincial Education Department (grant No. 08B031), China, for financial support.

supplementary crystallographic information

Comment

Schiff bases usually possess excellent biological properties, such as antibacterial, antimicrobial, and antitumor (Mohamed et al., 2009; Ritter et al., 2009; Bagihalli et al., 2008). Recently, a large number of Schiff bases derived from the reaction of aldehydes with benzohydrazides have been reported (Fun et al., 2008; Shafiq et al., 2009; Goh et al., 2010). In this paper, the crystal structure of the title new Schiff base derived from the condensing of 5-hydroxy-2-nitrobenzaldehyde with 2-chlorobenzohydrazide in methanol is reported.

Bond lengths in the title molecule (Fig. 1) are comparable to those observed in related structures (Zhou et al., 2009; Zhou & Yang, 2009). The molecule exists in a trans configuration with respect to the acyclic C═N bond. The dihedral angle between the two benzene rings is 62.37 (9)°. An intramolecular C—H···O hydrogen bond is observed.

In the crystal structure, intermolecular N—H···O and O—H···O hydrogen bonds link adjacent molecules into a ribbon along [110] (Table 1 and Fig. 2).

Experimental

5-Hydroxy-2-nitrobenzaldehyde (1.0 mmol, 167.1 mg) and 2-chlorobenzohydrazide (1.0 mmol, 170.0 mg) were dissolved in a methanol solution (30 ml). The mixture was stirred for 30 min at room temperature. The resulting solution was left in air for a few days, yielding colourless block-shaped crystals.

Refinement

Atom H2 was located in a difference map and refined with the N–H distance restrained to 0.90 (1) Å. The remaining H atoms were positioned geometrically [C–H = 0.93 Å and O–H = 0.82 Å] and refined using a riding model, with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.

Fig. 2.

Fig. 2.

Part of the crystal packing of the title compound, viewed along the a axis. Hydrogen bonds are shown as dashed lines.

Crystal data

C14H10ClN3O4 Z = 2
Mr = 319.70 F(000) = 328
Triclinic, P1 Dx = 1.528 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.2490 (2) Å Cell parameters from 1937 reflections
b = 9.4719 (3) Å θ = 2.6–28.4°
c = 10.4749 (4) Å µ = 0.30 mm1
α = 100.623 (2)° T = 298 K
β = 97.433 (2)° Block, colourless
γ = 96.127 (2)° 0.17 × 0.15 × 0.15 mm
V = 694.64 (4) Å3

Data collection

Bruker SMART 1000 CCD area-detector diffractometer 2900 independent reflections
Radiation source: fine-focus sealed tube 2332 reflections with I > 2σ(I)
graphite Rint = 0.016
ω scans θmax = 27.0°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −8→9
Tmin = 0.951, Tmax = 0.957 k = −11→12
4097 measured reflections l = −11→13

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0433P)2 + 0.2231P] where P = (Fo2 + 2Fc2)/3
2900 reflections (Δ/σ)max = 0.001
203 parameters Δρmax = 0.20 e Å3
1 restraint Δρmin = −0.25 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.21511 (7) 0.78685 (7) 0.05703 (5) 0.06308 (19)
N1 0.2273 (2) 0.77176 (15) 0.47983 (14) 0.0378 (3)
N2 0.3525 (2) 0.78387 (15) 0.39232 (15) 0.0387 (3)
N3 0.3042 (2) 0.46714 (16) 0.72546 (17) 0.0469 (4)
O1 0.30056 (19) 1.01035 (13) 0.37374 (13) 0.0487 (3)
O2 0.3739 (2) 0.42683 (16) 0.62639 (16) 0.0618 (4)
O3 0.3681 (2) 0.44819 (19) 0.83292 (17) 0.0740 (5)
O4 −0.33418 (18) 0.74516 (14) 0.71890 (14) 0.0501 (3)
H4 −0.3206 0.8188 0.6885 0.075*
C1 0.1112 (2) 0.63648 (17) 0.62866 (16) 0.0356 (4)
C2 0.1367 (2) 0.54064 (17) 0.71438 (17) 0.0370 (4)
C3 0.0078 (3) 0.51237 (18) 0.79603 (18) 0.0427 (4)
H3 0.0290 0.4480 0.8518 0.051*
C4 −0.1514 (3) 0.57918 (19) 0.79491 (18) 0.0418 (4)
H4A −0.2407 0.5575 0.8471 0.050*
C5 −0.1775 (2) 0.67960 (18) 0.71488 (17) 0.0381 (4)
C6 −0.0480 (2) 0.70698 (18) 0.63260 (17) 0.0372 (4)
H6 −0.0679 0.7737 0.5790 0.045*
C7 0.2412 (2) 0.66589 (18) 0.53720 (18) 0.0396 (4)
H7 0.3336 0.6068 0.5214 0.047*
C8 0.3786 (2) 0.90324 (17) 0.34225 (16) 0.0342 (4)
C9 0.5138 (2) 0.89383 (17) 0.24509 (17) 0.0352 (4)
C10 0.4520 (2) 0.84446 (18) 0.11239 (18) 0.0391 (4)
C11 0.5744 (3) 0.8381 (2) 0.02143 (19) 0.0480 (5)
H11 0.5302 0.8060 −0.0677 0.058*
C12 0.7634 (3) 0.8801 (2) 0.0653 (2) 0.0551 (5)
H12 0.8473 0.8770 0.0051 0.066*
C13 0.8291 (3) 0.9268 (2) 0.1973 (2) 0.0598 (6)
H13 0.9571 0.9537 0.2260 0.072*
C14 0.7048 (3) 0.9337 (2) 0.2875 (2) 0.0497 (5)
H14 0.7495 0.9651 0.3767 0.060*
H2 0.421 (3) 0.713 (2) 0.373 (2) 0.080*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0402 (3) 0.0935 (4) 0.0521 (3) 0.0016 (2) 0.0072 (2) 0.0100 (3)
N1 0.0386 (8) 0.0387 (7) 0.0418 (8) 0.0101 (6) 0.0200 (6) 0.0102 (6)
N2 0.0396 (8) 0.0373 (7) 0.0475 (8) 0.0143 (6) 0.0243 (7) 0.0128 (6)
N3 0.0455 (9) 0.0406 (8) 0.0619 (11) 0.0148 (7) 0.0141 (8) 0.0196 (7)
O1 0.0609 (8) 0.0432 (7) 0.0561 (8) 0.0249 (6) 0.0327 (7) 0.0191 (6)
O2 0.0643 (10) 0.0625 (9) 0.0756 (10) 0.0356 (7) 0.0338 (8) 0.0261 (8)
O3 0.0729 (11) 0.0925 (12) 0.0715 (11) 0.0404 (9) 0.0110 (9) 0.0382 (9)
O4 0.0463 (7) 0.0567 (8) 0.0628 (9) 0.0224 (6) 0.0302 (6) 0.0280 (7)
C1 0.0368 (9) 0.0324 (8) 0.0399 (9) 0.0056 (6) 0.0127 (7) 0.0077 (7)
C2 0.0363 (9) 0.0340 (8) 0.0438 (9) 0.0088 (7) 0.0106 (7) 0.0103 (7)
C3 0.0490 (10) 0.0395 (9) 0.0454 (10) 0.0083 (8) 0.0141 (8) 0.0176 (8)
C4 0.0428 (10) 0.0447 (9) 0.0441 (10) 0.0073 (7) 0.0198 (8) 0.0149 (8)
C5 0.0382 (9) 0.0376 (8) 0.0419 (9) 0.0089 (7) 0.0143 (7) 0.0086 (7)
C6 0.0394 (9) 0.0371 (8) 0.0411 (9) 0.0100 (7) 0.0154 (7) 0.0138 (7)
C7 0.0382 (9) 0.0384 (9) 0.0489 (10) 0.0135 (7) 0.0182 (8) 0.0134 (8)
C8 0.0334 (8) 0.0372 (8) 0.0349 (9) 0.0093 (7) 0.0112 (7) 0.0078 (7)
C9 0.0366 (9) 0.0319 (8) 0.0410 (9) 0.0083 (6) 0.0163 (7) 0.0079 (7)
C10 0.0363 (9) 0.0426 (9) 0.0426 (10) 0.0083 (7) 0.0141 (7) 0.0124 (7)
C11 0.0512 (11) 0.0585 (11) 0.0399 (10) 0.0129 (9) 0.0199 (9) 0.0123 (8)
C12 0.0499 (12) 0.0622 (12) 0.0601 (13) 0.0098 (9) 0.0338 (10) 0.0110 (10)
C13 0.0373 (10) 0.0655 (13) 0.0723 (15) −0.0002 (9) 0.0225 (10) −0.0031 (11)
C14 0.0407 (10) 0.0555 (11) 0.0484 (11) 0.0057 (8) 0.0121 (8) −0.0047 (9)

Geometric parameters (Å, °)

Cl1—C10 1.7346 (18) C4—C5 1.391 (2)
N1—C7 1.267 (2) C4—H4A 0.93
N1—N2 1.3814 (18) C5—C6 1.390 (2)
N2—C8 1.337 (2) C6—H6 0.93
N2—H2 0.891 (10) C7—H7 0.93
N3—O3 1.213 (2) C8—C9 1.500 (2)
N3—O2 1.228 (2) C9—C10 1.381 (2)
N3—C2 1.465 (2) C9—C14 1.387 (3)
O1—C8 1.2268 (19) C10—C11 1.381 (2)
O4—C5 1.353 (2) C11—C12 1.378 (3)
O4—H4 0.82 C11—H11 0.93
C1—C6 1.395 (2) C12—C13 1.376 (3)
C1—C2 1.399 (2) C12—H12 0.93
C1—C7 1.470 (2) C13—C14 1.385 (3)
C2—C3 1.384 (2) C13—H13 0.93
C3—C4 1.374 (2) C14—H14 0.93
C3—H3 0.93
C7—N1—N2 114.29 (13) C1—C6—H6 119.3
C8—N2—N1 121.18 (13) N1—C7—C1 120.03 (14)
C8—N2—H2 119.8 (16) N1—C7—H7 120.0
N1—N2—H2 119.0 (16) C1—C7—H7 120.0
O3—N3—O2 122.61 (16) O1—C8—N2 123.19 (14)
O3—N3—C2 118.25 (16) O1—C8—C9 123.39 (14)
O2—N3—C2 119.14 (16) N2—C8—C9 113.42 (13)
C5—O4—H4 109.5 C10—C9—C14 118.64 (15)
C6—C1—C2 116.75 (14) C10—C9—C8 121.08 (15)
C6—C1—C7 119.39 (14) C14—C9—C8 120.28 (16)
C2—C1—C7 123.86 (15) C9—C10—C11 121.74 (17)
C3—C2—C1 122.08 (15) C9—C10—Cl1 119.70 (12)
C3—C2—N3 115.99 (15) C11—C10—Cl1 118.56 (15)
C1—C2—N3 121.91 (15) C12—C11—C10 118.78 (18)
C4—C3—C2 120.15 (15) C12—C11—H11 120.6
C4—C3—H3 119.9 C10—C11—H11 120.6
C2—C3—H3 119.9 C13—C12—C11 120.62 (17)
C3—C4—C5 119.29 (15) C13—C12—H12 119.7
C3—C4—H4A 120.4 C11—C12—H12 119.7
C5—C4—H4A 120.4 C12—C13—C14 120.08 (19)
O4—C5—C6 122.39 (15) C12—C13—H13 120.0
O4—C5—C4 117.36 (15) C14—C13—H13 120.0
C6—C5—C4 120.23 (15) C13—C14—C9 120.11 (19)
C5—C6—C1 121.40 (15) C13—C14—H14 119.9
C5—C6—H6 119.3 C9—C14—H14 119.9

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2···O2i 0.89 (1) 2.09 (1) 2.9591 (18) 165 (2)
O4—H4···O1ii 0.82 1.85 2.6708 (17) 176
C7—H7···O2 0.93 2.22 2.817 (2) 122

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI5018).

References

  1. Bagihalli, G. B., Avaji, P. G., Patil, S. A. & Badami, P. S. (2008). Eur. J. Med. Chem.43, 2639–2649. [DOI] [PubMed]
  2. Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Fun, H.-K., Chantrapromma, S., Jana, S., Hazra, A. & Goswami, S. (2008). Acta Cryst. E64, o175–o176. [DOI] [PMC free article] [PubMed]
  4. Goh, J. H., Fun, H.-K., Vinayaka, A. C. & Kalluraya, B. (2010). Acta Cryst. E66, o24. [DOI] [PMC free article] [PubMed]
  5. Mohamed, G. G., Omar, M. M. & Ibrahim, A. A. (2009). Eur. J. Med. Chem.44, 4801–4812. [DOI] [PubMed]
  6. Ritter, E., Przybylski, P., Brzezinski, B. & Bartl, F. (2009). Curr. Org. Chem.13, 241–249.
  7. Shafiq, Z., Yaqub, M., Tahir, M. N., Hussain, A. & Iqbal, M. S. (2009). Acta Cryst. E65, o2501. [DOI] [PMC free article] [PubMed]
  8. Sheldrick, G. M. (1996). SADABS University of Goöttingen, Germany.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Zhou, C.-S., Hou, H.-Y. & Yang, T. (2009). Z. Kristallogr. New Cryst. Struct.224, 37–38.
  11. Zhou, C.-S. & Yang, T. (2009). Z. Kristallogr. New Cryst. Struct.224, 39–40.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810001303/ci5018sup1.cif

e-66-0o365-sup1.cif (15.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810001303/ci5018Isup2.hkl

e-66-0o365-Isup2.hkl (142.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES