Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Nov 30;67(Pt 12):o3516–o3517. doi: 10.1107/S1600536811050768

1′,6-Dimethyl-4′-phenyl­dispiro­[1-benzopyran-3(4H),3′-pyrrolidine-2′,3′′-indoline]-2,2′′-dione

D Lakshmanan a, S Murugavel b, D Kannan c, M Bakthadoss c,*,
PMCID: PMC3239137  PMID: 22199985

Abstract

In the title compound, C27H24N2O3, the five-membered pyrroldine ring adopts an envelope conformation (with the N atom in the flap position) and the six-membered pyran­one ring of the coumarine ring system adopts a slightly distorted boat conformation. The oxindole unit makes dihedral angles of 89.7 (1) and 25.6 (1)°, respectively, with the pyrrolidine ring and the coumarin ring system. The mol­ecular structure is stabilized by two intra­molecular C—H⋯O contacts and two intra­molecular π–π inter­actions [centroid–centroid seperations of 3.514 (1) and 3.623 (1) Å]. The crystal packing features N—H⋯O hydrogen bonds, which link the mol­ecules into cyclic centrosymmetric R 2 2(8) dimers, and C—H⋯π inter­actions.

Related literature

For background to the applications of pyrrolidine derivatives, see: Huryn et al. (1991) ; Suzuki et al. (1994); Waldmann (1995). For ring puckering analysis, see: Cremer & Pople (1975) . For closely related pyrrolidine structures, see: Selvanayagam et al. (2011); Ali et al. (2010). graphic file with name e-67-o3516-scheme1.jpg

Experimental

Crystal data

  • C27H24N2O3

  • M r = 424.48

  • Monoclinic, Inline graphic

  • a = 11.1019 (5) Å

  • b = 11.1740 (4) Å

  • c = 17.8156 (7) Å

  • β = 100.986 (2)°

  • V = 2169.57 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.25 × 0.22 × 0.17 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.979, T max = 0.986

  • 20613 measured reflections

  • 4481 independent reflections

  • 3019 reflections with I > 2σ(I)

  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.116

  • S = 1.02

  • 4481 reflections

  • 291 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia (1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811050768/bt5722sup1.cif

e-67-o3516-sup1.cif (24.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811050768/bt5722Isup2.hkl

e-67-o3516-Isup2.hkl (215.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg2 is the centroid of the C7–C12 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13A⋯O1 0.97 2.44 3.114 (2) 126
C26—H26⋯O1 0.93 2.48 3.265 (2) 142
N2—H2⋯O1i 0.86 2.06 2.852 (2) 153
C18—H18⋯Cg2ii 0.93 2.88 3.758 (2) 157

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank Dr Babu Vargheese, SAIF, IIT, Madras, India, for his help with the data collection.

supplementary crystallographic information

Comment

Highly functionalized pyrrolidines have gained much interest in the past few years as they constitute the main structural element of many natural and synthetic pharmacologically active compounds (Waldmann, 1995). Optically active pyrrolidines have been used as intermediates, chiral ligands or auxiliaries in controlled asymmetric synthesis (Suzuki et al., 1994; Huryn et al., 1991). In view of this importance, the crystal structure of the title compound has been carried out and the results are presented here.

The title compound consists of a pyrrolidine ring connected to a oxindole ring system at C1, a coumarine moiety at C2 and a benzene ring at C3. The X-ray analysis confirms the molecular structure and atom connectivity as illustrated in Fig.1.

The pyrrolidine (N1/C1–C4) ring adopts an envelope conformation with the N1 (displacement = 0.7 (2) Å) atom as the flap atom and with puckering parameters (Cremer & Pople, 1975),q2 = 0.3935 (17) Å and φ2 = 181.8 (2)°. The six membered pyranone ring (O2/C2/C13/C14/C19/C20) of the coumarine moiety adopts screw-boat conformation as indicated from the puckering parameters: Q = 0.5042 (16) Å, θ = 69.5 (2)° and φ = 208.3 (2)°. The oxindole unit (N2/C1/C6–C12) is essentially planar [maximum deviation = 0.049 (2) Å for the C1 atom] and is oriented at a dihedral angles of 89.7 (1)° and 25.6 (1)°, respectively, with the pyrrolidine and coumarine rings. The sum of angles at N1 of the pyrrolidine ring (336°) is in accordance with sp3 hybridization, and the sum of angles at N2 of the indole moiety (360°) is in accordance with sp2 hybridization. The geometric parameters of the title molecule agrees well with those reported for similar structures (Selvanayagam et al., 2011, Ali et al., 2010).

Ihe molecular structure is stabilized by four intramolecular C—H···O contacts (Table 1). The molecular structure is further stabilized by intramolecular π—π interactions with Cg1—Cg3 and Cg2—Cg3 seperations of 3.513 (1) Å and 3.623 (1) Å, respectively (Fig. 2; Cg1, Cg2 and Cg3 are the centroids of the (N2/C1/C6/C7/C12) indole ring, (C7–C12) benzene ring and (C14–C19) benzene ring, respectively). The crystal packing is stabilized by intermolecular N—H···O hydrogen bonds. The molecules at x, y, z and 1-x, -y, -z are linked by N2—H2···O1 hydrogen bonds into cyclic centrosymmetric R22(8) dimers (Fig. 3). The crystal packing (Fig. 4) is further stabilized by C—H···π interactions between a H18 atom and a neighbouring benzene ring (C7–C12), with a C18—H8···Cg2ii seperation of 2.88 Å ( Fig. 4 and Table 1; Cg2 is the centroid of the C7–C12 benzene ring, Symmetry code as in Fig. 4).

Experimental

A mixture of E-3-benzylidene-6-methylchroman-2-one (0.125 g, 0.5 mmol), isatin (0.08 g, 0.55 mmol) and N- methylglycine (0.025 g, 0.55 mmol) in toluene (5 ml) as solvent was allowed to reflux for 6 hours. After work up, the crude mass was purified by column chromatography to yield the pure product (0.199 g, 94 % yield). The compound was recrystallized from ethyl acetate solvent. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a ethylacetate solution at room temperature.

Refinement

H atoms were positioned geometrically, with N—H = 0.86 Å and and C—H = 0.93–0.97 Å and constrained to ride on their parent atom, with Uiso(H)=1.5Ueq for methyl H atoms and 1.2Ueq(C) for other H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

A view of the π—π interactions (dotted lines) in the molecular structure of the title compound. Cg1, Cg2 and Cg3 are the centroids of the (N2/C1/C6/C7/C12) indole ring, (C7–C12) benzene ring and (C14–C19) benzene ring, respectively

Fig. 3.

Fig. 3.

Part of the crystal structure of the title compound showing N—H···O intermolecular hydrogen bonds (dotted lines) generating R22(8) centrosymmetric dimer. [Symmetry code: (i) 1-x, -y, -z].

Fig. 4.

Fig. 4.

Part of the crystal structure showing C—H···π interactions in the title compound. Cg2 denotes the centroid of the C7–C12 benzene ring. [Symmetry code: (ii) 1-x, 1/2+y, 1/2-z].

Crystal data

C27H24N2O3 F(000) = 896
Mr = 424.48 Dx = 1.300 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 4502 reflections
a = 11.1019 (5) Å θ = 2.2–26.5°
b = 11.1740 (4) Å µ = 0.09 mm1
c = 17.8156 (7) Å T = 293 K
β = 100.986 (2)° Block, colourless
V = 2169.57 (15) Å3 0.25 × 0.22 × 0.17 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer 4481 independent reflections
Radiation source: fine-focus sealed tube 3019 reflections with I > 2σ(I)
graphite Rint = 0.033
Detector resolution: 10.0 pixels mm-1 θmax = 26.5°, θmin = 2.2°
ω scans h = −13→13
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) k = −9→14
Tmin = 0.979, Tmax = 0.986 l = −22→22
20613 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0527P)2 + 0.3552P] where P = (Fo2 + 2Fc2)/3
4481 reflections (Δ/σ)max < 0.001
291 parameters Δρmax = 0.17 e Å3
0 restraints Δρmin = −0.18 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O2 0.35755 (11) 0.44958 (10) 0.11728 (6) 0.0466 (3)
O1 0.34196 (11) 0.02802 (11) −0.00536 (7) 0.0528 (3)
N2 0.49556 (12) 0.06511 (12) 0.09708 (8) 0.0435 (3)
H2 0.5521 0.0230 0.0830 0.052*
O3 0.16634 (11) 0.41384 (12) 0.12218 (7) 0.0585 (4)
C12 0.40194 (14) 0.18543 (14) 0.17156 (8) 0.0363 (4)
N1 0.19474 (12) 0.10995 (13) 0.11455 (8) 0.0442 (4)
C2 0.25947 (13) 0.27281 (13) 0.04687 (8) 0.0341 (4)
C14 0.46468 (15) 0.34523 (14) 0.03236 (9) 0.0379 (4)
C6 0.38139 (15) 0.07699 (14) 0.05603 (9) 0.0392 (4)
C19 0.46720 (15) 0.41461 (14) 0.09636 (9) 0.0400 (4)
C13 0.34156 (14) 0.30656 (15) −0.00996 (8) 0.0380 (4)
H13A 0.3506 0.2382 −0.0420 0.046*
H13B 0.3039 0.3710 −0.0427 0.046*
C15 0.57578 (16) 0.31341 (16) 0.01419 (10) 0.0473 (4)
H15 0.5765 0.2665 −0.0289 0.057*
C20 0.25466 (15) 0.38168 (15) 0.09804 (9) 0.0400 (4)
C7 0.51132 (15) 0.12974 (14) 0.16579 (9) 0.0394 (4)
C1 0.30808 (14) 0.16185 (14) 0.09964 (8) 0.0351 (4)
C3 0.12491 (14) 0.23631 (15) 0.00972 (9) 0.0406 (4)
H3 0.0707 0.2915 0.0303 0.049*
C8 0.61422 (17) 0.13835 (16) 0.22169 (11) 0.0522 (5)
H8 0.6868 0.1002 0.2169 0.063*
C18 0.57418 (17) 0.45345 (15) 0.14141 (10) 0.0490 (5)
H18 0.5730 0.5013 0.1840 0.059*
C26 0.12318 (17) 0.16023 (18) −0.12513 (10) 0.0553 (5)
H26 0.1662 0.0924 −0.1050 0.066*
C4 0.10654 (15) 0.11394 (16) 0.04305 (10) 0.0483 (4)
H4A 0.0235 0.1054 0.0520 0.058*
H4B 0.1224 0.0508 0.0089 0.058*
C21 0.09077 (15) 0.24589 (16) −0.07623 (10) 0.0441 (4)
C17 0.68353 (17) 0.41960 (17) 0.12189 (11) 0.0546 (5)
H17 0.7570 0.4445 0.1521 0.065*
C11 0.39406 (17) 0.24889 (15) 0.23647 (9) 0.0467 (4)
H11 0.3203 0.2836 0.2424 0.056*
C16 0.68632 (16) 0.34950 (18) 0.05845 (11) 0.0533 (5)
C10 0.4981 (2) 0.26011 (17) 0.29294 (10) 0.0555 (5)
H10 0.4949 0.3049 0.3365 0.067*
C5 0.20686 (19) −0.00762 (19) 0.15049 (12) 0.0687 (6)
H5A 0.1292 −0.0317 0.1617 0.103*
H5B 0.2667 −0.0041 0.1971 0.103*
H5C 0.2326 −0.0646 0.1164 0.103*
C9 0.60616 (19) 0.20576 (18) 0.28527 (11) 0.0579 (5)
H9 0.6751 0.2147 0.3237 0.069*
C22 0.02522 (19) 0.3442 (2) −0.10834 (11) 0.0631 (6)
H22 0.0017 0.4023 −0.0767 0.076*
C25 0.0922 (2) 0.1748 (2) −0.20316 (12) 0.0705 (6)
H25 0.1149 0.1169 −0.2353 0.085*
C24 0.0285 (3) 0.2734 (3) −0.23376 (13) 0.0901 (8)
H24 0.0087 0.2833 −0.2865 0.108*
C27 0.8063 (2) 0.3121 (3) 0.03765 (14) 0.0913 (8)
H27A 0.8728 0.3512 0.0709 0.137*
H27B 0.8068 0.3342 −0.0144 0.137*
H27C 0.8156 0.2269 0.0431 0.137*
C23 −0.0059 (3) 0.3576 (3) −0.18622 (14) 0.0911 (8)
H23 −0.0505 0.4242 −0.2068 0.109*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O2 0.0484 (7) 0.0371 (7) 0.0556 (7) 0.0021 (5) 0.0129 (6) −0.0114 (5)
O1 0.0457 (7) 0.0542 (8) 0.0574 (8) 0.0055 (6) 0.0067 (6) −0.0225 (6)
N2 0.0361 (8) 0.0411 (8) 0.0535 (9) 0.0086 (6) 0.0088 (7) −0.0062 (6)
O3 0.0518 (8) 0.0640 (9) 0.0642 (8) 0.0145 (6) 0.0222 (7) −0.0155 (6)
C12 0.0379 (9) 0.0360 (9) 0.0360 (8) −0.0006 (7) 0.0094 (7) 0.0040 (7)
N1 0.0375 (8) 0.0495 (9) 0.0470 (8) −0.0073 (6) 0.0118 (7) 0.0046 (6)
C2 0.0307 (8) 0.0364 (9) 0.0371 (8) 0.0033 (6) 0.0108 (7) −0.0018 (6)
C14 0.0389 (9) 0.0398 (10) 0.0365 (9) −0.0039 (7) 0.0107 (7) 0.0047 (7)
C6 0.0380 (10) 0.0332 (9) 0.0471 (10) 0.0004 (7) 0.0094 (8) −0.0031 (7)
C19 0.0432 (10) 0.0341 (9) 0.0438 (9) −0.0028 (7) 0.0114 (8) 0.0024 (7)
C13 0.0389 (9) 0.0403 (10) 0.0365 (9) −0.0013 (7) 0.0118 (7) −0.0004 (7)
C15 0.0434 (11) 0.0599 (12) 0.0419 (10) −0.0063 (8) 0.0168 (8) −0.0018 (8)
C20 0.0411 (10) 0.0397 (10) 0.0403 (9) 0.0087 (7) 0.0101 (8) 0.0011 (7)
C7 0.0395 (10) 0.0364 (10) 0.0420 (9) −0.0004 (7) 0.0072 (8) 0.0040 (7)
C1 0.0320 (9) 0.0364 (9) 0.0388 (9) 0.0004 (6) 0.0117 (7) −0.0023 (6)
C3 0.0291 (8) 0.0520 (11) 0.0418 (9) 0.0052 (7) 0.0097 (7) −0.0034 (7)
C8 0.0437 (11) 0.0516 (12) 0.0572 (11) 0.0063 (8) −0.0008 (9) 0.0053 (9)
C18 0.0540 (12) 0.0439 (11) 0.0476 (10) −0.0103 (8) 0.0060 (9) −0.0043 (8)
C26 0.0453 (11) 0.0694 (14) 0.0519 (11) −0.0038 (9) 0.0112 (9) −0.0117 (9)
C4 0.0328 (9) 0.0585 (12) 0.0554 (11) −0.0083 (8) 0.0131 (8) −0.0018 (9)
C21 0.0294 (9) 0.0575 (11) 0.0452 (10) −0.0029 (7) 0.0064 (7) −0.0039 (8)
C17 0.0460 (11) 0.0616 (13) 0.0535 (11) −0.0148 (9) 0.0027 (9) 0.0042 (9)
C11 0.0548 (11) 0.0484 (11) 0.0388 (9) 0.0031 (8) 0.0141 (8) 0.0022 (8)
C16 0.0381 (11) 0.0692 (13) 0.0539 (11) −0.0077 (9) 0.0121 (9) 0.0057 (9)
C10 0.0736 (14) 0.0548 (12) 0.0356 (9) −0.0020 (10) 0.0043 (9) −0.0012 (8)
C5 0.0677 (14) 0.0634 (14) 0.0742 (14) −0.0184 (11) 0.0119 (11) 0.0209 (11)
C9 0.0619 (13) 0.0571 (13) 0.0472 (11) −0.0044 (10) −0.0088 (9) 0.0042 (9)
C22 0.0575 (13) 0.0755 (15) 0.0546 (12) 0.0130 (10) 0.0065 (10) 0.0044 (10)
C25 0.0631 (14) 0.0997 (19) 0.0506 (12) −0.0200 (13) 0.0159 (11) −0.0186 (12)
C24 0.0876 (19) 0.135 (3) 0.0435 (13) −0.0132 (17) 0.0025 (12) 0.0093 (15)
C27 0.0437 (13) 0.141 (2) 0.0926 (18) −0.0061 (14) 0.0221 (12) −0.0130 (17)
C23 0.098 (2) 0.108 (2) 0.0617 (15) 0.0225 (16) 0.0007 (14) 0.0198 (14)

Geometric parameters (Å, °)

O2—C20 1.360 (2) C8—H8 0.9300
O2—C19 1.395 (2) C18—C17 1.378 (3)
O1—C6 1.2265 (19) C18—H18 0.9300
N2—C6 1.344 (2) C26—C25 1.377 (3)
N2—C7 1.403 (2) C26—C21 1.387 (2)
N2—H2 0.8600 C26—H26 0.9300
O3—C20 1.1984 (18) C4—H4A 0.9700
C12—C11 1.373 (2) C4—H4B 0.9700
C12—C7 1.386 (2) C21—C22 1.380 (3)
C12—C1 1.513 (2) C17—C16 1.380 (3)
N1—C4 1.452 (2) C17—H17 0.9300
N1—C1 1.4551 (19) C11—C10 1.386 (3)
N1—C5 1.456 (2) C11—H11 0.9300
C2—C20 1.527 (2) C16—C27 1.508 (3)
C2—C13 1.533 (2) C10—C9 1.374 (3)
C2—C3 1.568 (2) C10—H10 0.9300
C2—C1 1.587 (2) C5—H5A 0.9600
C14—C19 1.375 (2) C5—H5B 0.9600
C14—C15 1.380 (2) C5—H5C 0.9600
C14—C13 1.494 (2) C9—H9 0.9300
C6—C1 1.551 (2) C22—C23 1.373 (3)
C19—C18 1.371 (2) C22—H22 0.9300
C13—H13A 0.9700 C25—C24 1.366 (4)
C13—H13B 0.9700 C25—H25 0.9300
C15—C16 1.386 (2) C24—C23 1.368 (4)
C15—H15 0.9300 C24—H24 0.9300
C7—C8 1.368 (2) C27—H27A 0.9600
C3—C21 1.510 (2) C27—H27B 0.9600
C3—C4 1.520 (2) C27—H27C 0.9600
C3—H3 0.9800 C23—H23 0.9300
C8—C9 1.377 (3)
C20—O2—C19 120.69 (12) C19—C18—C17 118.16 (16)
C6—N2—C7 111.83 (13) C19—C18—H18 120.9
C6—N2—H2 124.1 C17—C18—H18 120.9
C7—N2—H2 124.1 C25—C26—C21 120.5 (2)
C11—C12—C7 119.45 (15) C25—C26—H26 119.7
C11—C12—C1 131.22 (15) C21—C26—H26 119.7
C7—C12—C1 109.32 (13) N1—C4—C3 104.60 (13)
C4—N1—C1 106.84 (12) N1—C4—H4A 110.8
C4—N1—C5 113.81 (14) C3—C4—H4A 110.8
C1—N1—C5 115.41 (14) N1—C4—H4B 110.8
C20—C2—C13 106.93 (13) C3—C4—H4B 110.8
C20—C2—C3 108.67 (12) H4A—C4—H4B 108.9
C13—C2—C3 115.07 (12) C22—C21—C26 117.93 (17)
C20—C2—C1 108.38 (12) C22—C21—C3 119.18 (16)
C13—C2—C1 113.93 (12) C26—C21—C3 122.89 (16)
C3—C2—C1 103.64 (12) C18—C17—C16 121.39 (17)
C19—C14—C15 117.51 (15) C18—C17—H17 119.3
C19—C14—C13 116.99 (14) C16—C17—H17 119.3
C15—C14—C13 125.45 (15) C12—C11—C10 118.68 (17)
O1—C6—N2 125.50 (15) C12—C11—H11 120.7
O1—C6—C1 125.95 (14) C10—C11—H11 120.7
N2—C6—C1 108.56 (13) C17—C16—C15 118.37 (17)
C18—C19—C14 122.86 (16) C17—C16—C27 121.15 (18)
C18—C19—O2 117.23 (15) C15—C16—C27 120.48 (18)
C14—C19—O2 119.91 (15) C9—C10—C11 120.71 (17)
C14—C13—C2 109.87 (12) C9—C10—H10 119.6
C14—C13—H13A 109.7 C11—C10—H10 119.6
C2—C13—H13A 109.7 N1—C5—H5A 109.5
C14—C13—H13B 109.7 N1—C5—H5B 109.5
C2—C13—H13B 109.7 H5A—C5—H5B 109.5
H13A—C13—H13B 108.2 N1—C5—H5C 109.5
C14—C15—C16 121.71 (17) H5A—C5—H5C 109.5
C14—C15—H15 119.1 H5B—C5—H5C 109.5
C16—C15—H15 119.1 C10—C9—C8 121.21 (18)
O3—C20—O2 116.60 (15) C10—C9—H9 119.4
O3—C20—C2 125.26 (16) C8—C9—H9 119.4
O2—C20—C2 118.14 (13) C23—C22—C21 121.1 (2)
C8—C7—C12 122.43 (16) C23—C22—H22 119.4
C8—C7—N2 128.25 (16) C21—C22—H22 119.4
C12—C7—N2 109.30 (14) C24—C25—C26 120.6 (2)
N1—C1—C12 113.26 (12) C24—C25—H25 119.7
N1—C1—C6 113.72 (13) C26—C25—H25 119.7
C12—C1—C6 100.85 (12) C25—C24—C23 119.5 (2)
N1—C1—C2 102.19 (12) C25—C24—H24 120.3
C12—C1—C2 117.85 (12) C23—C24—H24 120.3
C6—C1—C2 109.42 (12) C16—C27—H27A 109.5
C21—C3—C4 115.70 (14) C16—C27—H27B 109.5
C21—C3—C2 116.39 (13) H27A—C27—H27B 109.5
C4—C3—C2 104.89 (12) C16—C27—H27C 109.5
C21—C3—H3 106.4 H27A—C27—H27C 109.5
C4—C3—H3 106.4 H27B—C27—H27C 109.5
C2—C3—H3 106.4 C24—C23—C22 120.3 (2)
C7—C8—C9 117.45 (17) C24—C23—H23 119.8
C7—C8—H8 121.3 C22—C23—H23 119.8
C9—C8—H8 121.3
C7—N2—C6—O1 −178.23 (16) N2—C6—C1—C2 121.92 (14)
C7—N2—C6—C1 1.28 (18) C20—C2—C1—N1 90.74 (14)
C15—C14—C19—C18 0.6 (2) C13—C2—C1—N1 −150.36 (12)
C13—C14—C19—C18 178.27 (15) C3—C2—C1—N1 −24.59 (14)
C15—C14—C19—O2 179.87 (14) C20—C2—C1—C12 −34.08 (17)
C13—C14—C19—O2 −2.5 (2) C13—C2—C1—C12 84.81 (16)
C20—O2—C19—C18 −153.29 (15) C3—C2—C1—C12 −149.41 (13)
C20—O2—C19—C14 27.4 (2) C20—C2—C1—C6 −148.42 (13)
C19—C14—C13—C2 −39.92 (19) C13—C2—C1—C6 −29.53 (17)
C15—C14—C13—C2 137.50 (16) C3—C2—C1—C6 96.25 (14)
C20—C2—C13—C14 56.40 (16) C20—C2—C3—C21 116.31 (15)
C3—C2—C13—C14 177.18 (13) C13—C2—C3—C21 −3.5 (2)
C1—C2—C13—C14 −63.32 (17) C1—C2—C3—C21 −128.57 (14)
C19—C14—C15—C16 0.0 (3) C20—C2—C3—C4 −114.43 (14)
C13—C14—C15—C16 −177.36 (16) C13—C2—C3—C4 125.75 (14)
C19—O2—C20—O3 175.48 (14) C1—C2—C3—C4 0.70 (15)
C19—O2—C20—C2 −5.5 (2) C12—C7—C8—C9 −0.2 (3)
C13—C2—C20—O3 143.17 (17) N2—C7—C8—C9 −178.56 (17)
C3—C2—C20—O3 18.4 (2) C14—C19—C18—C17 −1.0 (3)
C1—C2—C20—O3 −93.61 (19) O2—C19—C18—C17 179.80 (15)
C13—C2—C20—O2 −35.73 (18) C1—N1—C4—C3 −42.03 (16)
C3—C2—C20—O2 −160.51 (14) C5—N1—C4—C3 −170.61 (14)
C1—C2—C20—O2 87.49 (16) C21—C3—C4—N1 153.41 (14)
C11—C12—C7—C8 −2.1 (2) C2—C3—C4—N1 23.74 (16)
C1—C12—C7—C8 178.14 (15) C25—C26—C21—C22 1.1 (3)
C11—C12—C7—N2 176.58 (14) C25—C26—C21—C3 −178.44 (17)
C1—C12—C7—N2 −3.23 (18) C4—C3—C21—C22 136.12 (17)
C6—N2—C7—C8 179.74 (16) C2—C3—C21—C22 −100.01 (19)
C6—N2—C7—C12 1.21 (19) C4—C3—C21—C26 −44.4 (2)
C4—N1—C1—C12 169.27 (13) C2—C3—C21—C26 79.5 (2)
C5—N1—C1—C12 −63.08 (19) C19—C18—C17—C16 0.6 (3)
C4—N1—C1—C6 −76.35 (16) C7—C12—C11—C10 3.1 (2)
C5—N1—C1—C6 51.30 (19) C1—C12—C11—C10 −177.14 (16)
C4—N1—C1—C2 41.45 (15) C18—C17—C16—C15 0.0 (3)
C5—N1—C1—C2 169.10 (14) C18—C17—C16—C27 −179.60 (19)
C11—C12—C1—N1 −54.2 (2) C14—C15—C16—C17 −0.4 (3)
C7—C12—C1—N1 125.58 (14) C14—C15—C16—C27 179.28 (18)
C11—C12—C1—C6 −176.09 (17) C12—C11—C10—C9 −2.0 (3)
C7—C12—C1—C6 3.69 (16) C11—C10—C9—C8 −0.3 (3)
C11—C12—C1—C2 65.0 (2) C7—C8—C9—C10 1.4 (3)
C7—C12—C1—C2 −115.27 (15) C26—C21—C22—C23 −0.7 (3)
O1—C6—C1—N1 55.0 (2) C3—C21—C22—C23 178.8 (2)
N2—C6—C1—N1 −124.53 (14) C21—C26—C25—C24 −0.3 (3)
O1—C6—C1—C12 176.54 (16) C26—C25—C24—C23 −0.8 (4)
N2—C6—C1—C12 −2.97 (16) C25—C24—C23—C22 1.2 (4)
O1—C6—C1—C2 −58.6 (2) C21—C22—C23—C24 −0.4 (4)

Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C7–C12 benzene ring.
D—H···A D—H H···A D···A D—H···A
C3—H3···O3 0.98 2.24 2.795 (2) 115
C4—H4B···O1 0.97 2.51 3.059 (2) 116
C13—H13A···O1 0.97 2.44 3.114 (2) 126
C26—H26···O1 0.93 2.48 3.265 (2) 142
N2—H2···O1i 0.86 2.06 2.852 (2) 153.
C18—H18···Cg2ii 0.93 2.88 3.758 (2) 157

Symmetry codes: (i) −x+1, −y, −z; (ii) −x+1, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5722).

References

  1. Ali, M. A., Ismail, R., Tan, S. C., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, o2533–o2534. [DOI] [PMC free article] [PubMed]
  2. Bruker (2004). APEX2, SAINT and XPREP Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Huryn, D. M., Trost, B. M. & Fleming, I. (1991). Comp. Org. Synth. 1, 64–74.
  6. Selvanayagam, S., Ravikumar, K., Saravanan, P. & Raghunathan, R. (2011). Acta Cryst. E67, o751. [DOI] [PMC free article] [PubMed]
  7. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  10. Suzuki, H., Aoyagi, S. & Kibayashi, C. (1994). Tetrahedron Lett 35, 6119–6122.
  11. Waldmann, H. (1995). Synlett, pp. 133–141.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811050768/bt5722sup1.cif

e-67-o3516-sup1.cif (24.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811050768/bt5722Isup2.hkl

e-67-o3516-Isup2.hkl (215.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES