Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 14;68(Pt 4):o1071. doi: 10.1107/S1600536812010513

4-Fluoro-2-[(3-methyl­phen­yl)imino­meth­yl]phenol

Alice Brink a,*, Hendrik G Visser a, Andreas Roodt a
PMCID: PMC3344028  PMID: 22589937

Abstract

The title compound, C14H12FNO, crystallizes as the trans phenol–imine tautomer. The two benzene rings are essentially coplanar, being inclined to one another by 9.28 (7)°. This is at least in part due to the intra­molecular O—H⋯N hydrogen bond between the hy­droxy O atom and the imine N atom. The crystal structure is stabilized by an array of weak C—H⋯O and C—H⋯F inter­actions, which link the mol­ecules into a stable three-dimensional network.

Related literature  

For related structures, see: Karakaş et al. (2004); Arod et al. (2005); Cheng et al. (2005); Brink et al. (2009). For related rhenium tricarbonyl complexes containing salicylaldimines, see: Brink et al. (2011). For related N,O-bidentate ligands coordinated to a rhenium tricarbonyl core, see: Schutte et al. (2011).graphic file with name e-68-o1071-scheme1.jpg

Experimental  

Crystal data  

  • C14H12FNO

  • M r = 229.25

  • Monoclinic, Inline graphic

  • a = 10.2655 (6) Å

  • b = 4.6738 (2) Å

  • c = 12.3561 (8) Å

  • β = 112.331 (3)°

  • V = 548.37 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.19 × 0.1 × 0.06 mm

Data collection  

  • Bruker X8 APEXII 4K Kappa CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004) T min = 0.981, T max = 0.994

  • 7009 measured reflections

  • 1319 independent reflections

  • 1203 reflections with I > 2σ(I)

  • R int = 0.028

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.095

  • S = 1.06

  • 1319 reflections

  • 156 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2004); software used to prepare material for publication: WingGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812010513/sj5208sup1.cif

e-68-o1071-sup1.cif (16KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812010513/sj5208Isup2.hkl

e-68-o1071-Isup2.hkl (63.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812010513/sj5208Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1B⋯N1 0.84 1.85 2.601 (2) 147
C1—H1A⋯O1i 0.95 2.6 3.467 (3) 151
C16—H16⋯O1i 0.95 2.65 3.495 (3) 149
C13—H13⋯F1ii 0.95 2.6 3.472 (3) 153
C231—H23A⋯F1iii 0.98 2.73 3.321 (3) 119
C231—H23C⋯F1iv 0.98 2.67 3.193 (2) 114

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

Financial assistance from the University of the Free State (UFS), the UFS Advanced Biomolecular Cluster, SASOL and the South African National Research Foundation (SA-NRF/THRIP) is gratefully acknowledged. Part of this material is based on work supported by the SA-NRF/THRIP under grant No. GUN 2068915. Opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the SA-NRF.

supplementary crystallographic information

Comment

Schiff-base ligands have played a significant role in the development of coordination chemistry as stable organometallic complexes are readily formed with a variety of transition metals. In continuation of our research on the coordination of various bifunctional chelate systems on the fac-[M(CO)3]+ moiety (M = Re(I), Tc(I)) (Brink et al., 2011; Schutte et al., 2011) the title compound was synthesized and is reported here.

The title compound (Figure 1) is essentially co-planar with a dihedral angle of 9.28 (7)° between the aromatic rings. The bond distances and angles in the title compound are in accord with those reported for related salicylaldimine-based ligand systems (Karakaş et al., 2004; Arod et al., 2005; Cheng et al., 2005; Brink et al., 2009).

The compound crystallizes as the trans phenol-imine tautomer. A strong intramolecular hydrogen bond occurs between the O—H···N atoms in each unique molecule. The crystal structure is stabilized by an array of weak C—H···O and C—H···F interactions. The bifurcated acceptor, O1, experiences weak hydrogen bond interactions with H16 and H1A. As a result, the two independent molecules pack nearly perpendicular to each other with a dihedral angle of 88.01 (5)° between planes drawn through the C1 aromatic ring systems (Figures 2 and 3). All the interactions serve to link the molecules into a stable three-dimensional supramolecular network. The molecular packing, viewed along the c-axis, illustrates the cube-like tunnel formation resulting from the various interactions (Figure 4).

Experimental

The reaction was performed under Schlenk conditions using a nitrogen atmosphere. To a solution of 5-fluorosalicylaldehyde (0.50 g, 3.57 mmol) in methanol, a solution of m-toluidine (0.382 g, 3.57 mmol) was added. The reaction was refluxed at 80°C for 3 h. The solvent was removed under reduced pressure. The product was obtained as an orange solid which was washed with cold methanol and filtered. Crystals suitable for X-ray diffraction were grown from the filtrate. Yield 82.1%. 1H NMR [acetone-d6, 600 MHz, δ (p.p.m.)] 13.04 (s, 1H), 8.90 (s, 1H), 7.40 (dd, 1H, J = 3.1, 8.7 Hz), 7.35 (t, 1H, J = 7.7 Hz), 7.25 (s, 1H), 7.24–7.20 (m, 2H), 7.16 (d, 1H, J = 7.7 Hz), 6.96 (dd, 1H, J = 4.5, 9.1 Hz), 2.39 (s, 3H, CH3).

Refinement

The aromatic H atoms and hydroxy H atom were placed in geometrically idealized positions and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) and 1.5eq(O).The aliphatic H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) and 1.5eq(C), respectively for the methylene and methyl carbon atoms. The methyl groups were generated to fit the difference electron density and the groups were then refined as rigid rotors. The absolute structure parameter is meaningless and has been removed from the CIF. The Friedel opposites have been merged as the compound is a weak anomalous scatterer.

Figures

Fig. 1.

Fig. 1.

Representation of the molecular structure of the title compound, showing the numbering scheme and displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Representation of the hydrogen-bond interactions (only relevant H atoms are shown).

Fig. 3.

Fig. 3.

Representation of the perpendicular orientation of molecules.

Fig. 4.

Fig. 4.

Molecular packing of the unit cell illustrating the cube-like formation as viewed along the c-axis.

Crystal data

C14H12FNO F(000) = 240
Mr = 229.25 Dx = 1.388 Mg m3
Monoclinic, Pc Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2yc Cell parameters from 2573 reflections
a = 10.2655 (6) Å θ = 3.4–28.3°
b = 4.6738 (2) Å µ = 0.10 mm1
c = 12.3561 (8) Å T = 100 K
β = 112.331 (3)° Cuboid, orange
V = 548.37 (5) Å3 0.19 × 0.1 × 0.06 mm
Z = 2

Data collection

Bruker X8 APEXII 4K Kappa CCD diffractometer 1319 independent reflections
Graphite monochromator 1203 reflections with I > 2σ(I)
Detector resolution: 512 pixels mm-1 Rint = 0.028
ω and φ scans θmax = 28.0°, θmin = 3.4°
Absorption correction: multi-scan (SADABS; Bruker, 2004) h = −13→13
Tmin = 0.981, Tmax = 0.994 k = −5→6
7009 measured reflections l = −16→16

Refinement

Refinement on F2 2 restraints
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.034 w = 1/[σ2(Fo2) + (0.0597P)2 + 0.0513P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.095 (Δ/σ)max < 0.001
S = 1.06 Δρmax = 0.19 e Å3
1319 reflections Δρmin = −0.19 e Å3
156 parameters

Special details

Experimental. Intensity data was collected on a Bruker X8 Apex II 4 K Kappa CCD diffractometer using an exposure time of 55 s/frame. A total of 1495 frames were collected with a frame width of 0.5° covering up to θ = 28.0° with 99.6% completeness accomplished
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.51676 (18) 0.7931 (4) 0.51611 (15) 0.0170 (4)
O1 0.62483 (16) 0.5330 (3) 0.71672 (14) 0.0229 (4)
H1B 0.571 0.6442 0.666 0.034*
F1 0.95777 (14) −0.0665 (3) 0.54083 (13) 0.0276 (3)
C1 0.5962 (2) 0.6410 (4) 0.47953 (19) 0.0178 (4)
H1A 0.5897 0.6626 0.4012 0.021*
C11 0.6955 (2) 0.4372 (4) 0.55563 (18) 0.0161 (4)
C12 0.7069 (2) 0.3900 (4) 0.67131 (18) 0.0183 (4)
C13 0.8048 (2) 0.1934 (5) 0.74184 (18) 0.0211 (5)
H13 0.8132 0.1637 0.8203 0.025*
C14 0.8897 (2) 0.0416 (5) 0.6980 (2) 0.0219 (5)
H14 0.9567 −0.0919 0.7458 0.026*
C15 0.8756 (2) 0.0873 (4) 0.5839 (2) 0.0195 (5)
C16 0.7817 (2) 0.2812 (5) 0.51227 (19) 0.0181 (4)
H16 0.7753 0.3092 0.4343 0.022*
C21 0.4220 (2) 0.9970 (4) 0.44138 (18) 0.0168 (4)
C22 0.3265 (2) 1.1211 (4) 0.48298 (18) 0.0171 (4)
H22 0.3286 1.0669 0.5577 0.021*
C23 0.2280 (2) 1.3232 (5) 0.41733 (18) 0.0189 (4)
C24 0.2290 (2) 1.4038 (5) 0.30877 (18) 0.0209 (5)
H24 0.163 1.541 0.2625 0.025*
C25 0.3257 (2) 1.2853 (5) 0.26779 (19) 0.0223 (5)
H25 0.3258 1.3445 0.1943 0.027*
C26 0.4219 (2) 1.0818 (4) 0.33261 (19) 0.0205 (5)
H26 0.4871 1.0008 0.3036 0.025*
C231 0.1250 (2) 1.4526 (5) 0.4626 (2) 0.0227 (5)
H23A 0.1367 1.3641 0.5377 0.034*
H23B 0.0289 1.4194 0.4063 0.034*
H23C 0.1422 1.6588 0.4736 0.034*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0165 (8) 0.0168 (8) 0.0174 (9) −0.0004 (6) 0.0061 (7) 0.0005 (6)
O1 0.0264 (8) 0.0271 (8) 0.0181 (7) 0.0081 (6) 0.0116 (7) 0.0032 (6)
F1 0.0278 (7) 0.0264 (7) 0.0320 (7) 0.0092 (5) 0.0154 (6) 0.0010 (6)
C1 0.0200 (10) 0.0174 (8) 0.0165 (10) −0.0022 (8) 0.0075 (8) 0.0011 (8)
C11 0.0166 (10) 0.0141 (9) 0.0164 (10) −0.0015 (7) 0.0050 (8) −0.0008 (8)
C12 0.0190 (10) 0.0193 (10) 0.0170 (10) −0.0024 (8) 0.0074 (9) −0.0012 (8)
C13 0.0228 (11) 0.0231 (10) 0.0157 (10) −0.0005 (9) 0.0053 (9) 0.0034 (8)
C14 0.0201 (11) 0.0207 (10) 0.0212 (11) 0.0009 (8) 0.0036 (9) 0.0019 (8)
C15 0.0166 (10) 0.0191 (10) 0.0244 (12) 0.0003 (8) 0.0096 (9) −0.0018 (8)
C16 0.0194 (10) 0.0192 (10) 0.0178 (10) −0.0010 (8) 0.0095 (8) −0.0006 (7)
C21 0.0171 (10) 0.0154 (9) 0.0177 (10) −0.0020 (8) 0.0063 (8) −0.0010 (7)
C22 0.0184 (10) 0.0163 (9) 0.0165 (10) −0.0023 (7) 0.0066 (8) −0.0006 (8)
C23 0.0168 (10) 0.0188 (10) 0.0200 (11) −0.0025 (8) 0.0059 (8) −0.0034 (8)
C24 0.0181 (11) 0.0193 (10) 0.0219 (11) 0.0017 (8) 0.0039 (9) 0.0011 (8)
C25 0.0240 (12) 0.0248 (11) 0.0186 (10) 0.0027 (8) 0.0086 (9) 0.0038 (8)
C26 0.0206 (10) 0.0217 (10) 0.0209 (11) 0.0022 (8) 0.0098 (9) 0.0001 (8)
C231 0.0192 (10) 0.0244 (10) 0.0247 (11) 0.0015 (8) 0.0086 (9) −0.0019 (9)

Geometric parameters (Å, º)

N1—C1 1.287 (3) C21—C22 1.395 (3)
N1—C21 1.422 (3) C21—C26 1.401 (3)
O1—C12 1.353 (3) C21—N1 1.422 (3)
O1—H1B 0.84 C22—C23 1.396 (3)
F1—C15 1.361 (2) C22—H22 0.95
C1—C11 1.450 (3) C23—C24 1.397 (3)
C1—H1A 0.95 C23—C231 1.499 (3)
C11—C16 1.401 (3) C24—C25 1.389 (3)
C11—C12 1.407 (3) C24—H24 0.95
C12—C13 1.396 (3) C25—C26 1.386 (3)
C13—C14 1.385 (3) C25—H25 0.95
C13—H13 0.95 C26—H26 0.95
C14—C15 1.377 (3) C231—H23A 0.98
C14—H14 0.95 C231—H23B 0.98
C15—C16 1.373 (3) C231—H23C 0.98
C16—H16 0.95
C1—N1—C21 120.69 (16) C26—C21—N1 124.30 (18)
C12—O1—H1B 109.5 C22—C21—N1 116.25 (17)
N1—C1—C11 121.23 (18) C26—C21—N1 124.30 (18)
N1—C1—H1A 119.4 C21—C22—C23 121.53 (18)
C11—C1—H1A 119.4 C21—C22—H22 119.2
C16—C11—C12 119.11 (19) C23—C22—H22 119.2
C16—C11—C1 118.98 (18) C22—C23—C24 118.16 (18)
C12—C11—C1 121.91 (18) C22—C23—C231 120.94 (18)
O1—C12—C13 118.70 (18) C24—C23—C231 120.90 (19)
O1—C12—C11 121.31 (19) C25—C24—C23 120.63 (19)
C13—C12—C11 119.99 (19) C25—C24—H24 119.7
C14—C13—C12 120.27 (19) C23—C24—H24 119.7
C14—C13—H13 119.9 C26—C25—C24 120.94 (19)
C12—C13—H13 119.9 C26—C25—H25 119.5
C15—C14—C13 118.9 (2) C24—C25—H25 119.5
C15—C14—H14 120.5 C25—C26—C21 119.3 (2)
C13—C14—H14 120.5 C25—C26—H26 120.4
F1—C15—C16 118.91 (19) C21—C26—H26 120.4
F1—C15—C14 118.57 (19) C23—C231—H23A 109.5
C16—C15—C14 122.5 (2) C23—C231—H23B 109.5
C15—C16—C11 119.17 (19) H23A—C231—H23B 109.5
C15—C16—H16 120.4 C23—C231—H23C 109.5
C11—C16—H16 120.4 H23A—C231—H23C 109.5
C22—C21—C26 119.44 (19) H23B—C231—H23C 109.5
C22—C21—N1 116.25 (17)
N1—N1—C1—C11 0.0 (6) N1—N1—C21—C22 0.0 (6)
C21—N1—C1—C11 178.58 (17) C1—N1—C21—C22 171.08 (18)
N1—C1—C11—C16 −178.66 (18) N1—N1—C21—C26 0.0 (7)
N1—C1—C11—C12 1.9 (3) C1—N1—C21—C26 −10.4 (3)
C16—C11—C12—O1 −179.24 (18) C1—N1—C21—N1 0E1 (10)
C1—C11—C12—O1 0.2 (3) C26—C21—C22—C23 1.7 (3)
C16—C11—C12—C13 1.1 (3) N1—C21—C22—C23 −179.74 (17)
C1—C11—C12—C13 −179.45 (19) N1—C21—C22—C23 −179.74 (17)
O1—C12—C13—C14 179.49 (19) C21—C22—C23—C24 −1.3 (3)
C11—C12—C13—C14 −0.8 (3) C21—C22—C23—C231 179.38 (19)
C12—C13—C14—C15 −0.2 (3) C22—C23—C24—C25 0.0 (3)
C13—C14—C15—F1 −178.87 (18) C231—C23—C24—C25 179.33 (19)
C13—C14—C15—C16 1.0 (3) C23—C24—C25—C26 0.9 (3)
F1—C15—C16—C11 179.14 (17) C24—C25—C26—C21 −0.5 (3)
C14—C15—C16—C11 −0.8 (3) C22—C21—C26—C25 −0.7 (3)
C12—C11—C16—C15 −0.3 (3) N1—C21—C26—C25 −179.19 (19)
C1—C11—C16—C15 −179.79 (18) N1—C21—C26—C25 −179.19 (19)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1B···N1 0.84 1.85 2.601 (2) 147
C1—H1A···O1i 0.95 2.6 3.467 (3) 151
C16—H16···O1i 0.95 2.65 3.495 (3) 149
C13—H13···F1ii 0.95 2.6 3.472 (3) 153
C231—H23A···F1iii 0.98 2.73 3.321 (3) 119
C231—H23C···F1iv 0.98 2.67 3.193 (2) 114

Symmetry codes: (i) x, −y+1, z−1/2; (ii) x, −y, z+1/2; (iii) x−1, y+1, z; (iv) x−1, y+2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5208).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  2. Arod, F., Gardon, M., Pattison, P. & Chapuis, G. (2005). Acta Cryst. C61, o317–o320. [DOI] [PubMed]
  3. Brandenburg, K. & Putz, H. (2004). DIAMOND Crystal Impact GbR, Bonn, Germany.
  4. Brink, A., Roodt, A. & Visser, H. G. (2009). Acta Cryst. E65, o3175–o3176. [DOI] [PMC free article] [PubMed]
  5. Brink, A., Visser, H. G. & Roodt, A. (2011). J. Coord. Chem. 64, 122–133.
  6. Bruker (2004). SAINT-Plus, X-PREP and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  7. Bruker (2005). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  8. Cheng, K., You, Z.-L., Li, Y.-G. & Zhu, H.-L. (2005). Acta Cryst. E61, o1137–o1138.
  9. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  10. Karakaş, A., Elmali, A., Ūnver, H. & Svoboda, I. (2004). J. Mol. Struct. 702, 103–110.
  11. Schutte, M., Kemp, G., Visser, H. G. & Roodt, A. (2011). Inorg. Chem. 50, 12486–12498. [DOI] [PubMed]
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812010513/sj5208sup1.cif

e-68-o1071-sup1.cif (16KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812010513/sj5208Isup2.hkl

e-68-o1071-Isup2.hkl (63.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812010513/sj5208Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES