Skip to main content
Indian Journal of Microbiology logoLink to Indian Journal of Microbiology
. 2008 May 1;48(1):49–64. doi: 10.1007/s12088-008-0006-5

Microbial extracellular polymeric substances: central elements in heavy metal bioremediation

Arundhati Pal 1, A K Paul 1,
PMCID: PMC3450203  PMID: 23100700

Abstract

Extracellular polymeric substances (EPS) of microbial origin are a complex mixture of biopolymers comprising polysaccharides, proteins, nucleic acids, uronic acids, humic substances, lipids, etc. Bacterial secretions, shedding of cell surface materials, cell lysates and adsorption of organic constituents from the environment result in EPS formation in a wide variety of free-living bacteria as well as microbial aggregates like biofilms, bioflocs and biogranules. Irrespective of origin, EPS may be loosely attached to the cell surface or bacteria may be embedded in EPS. Compositional variation exists amongst EPS extracted from pure bacterial cultures and heterogeneous microbial communities which are regulated by the organic and inorganic constituents of the microenvironment. Functionally, EPS aid in cell-to-cell aggregation, adhesion to substratum, formation of flocs, protection from dessication and resistance to harmful exogenous materials. In addition, exopolymers serve as biosorbing agents by accumulating nutrients from the surrounding environment and also play a crucial role in biosorption of heavy metals. Being polyanionic in nature, EPS forms complexes with metal cations resulting in metal immobilization within the exopolymeric matrix. These complexes generally result from electrostatic interactions between the metal ligands and negatively charged components of biopolymers. Moreover, enzymatic activities in EPS also assist detoxification of heavy metals by transformation and subsequent precipitation in the polymeric mass. Although the core mechanism for metal binding and / or transformation using microbial exopolymer remains identical, the existence and complexity of EPS from pure bacterial cultures, biofilms, biogranules and activated sludge systems differ significantly, which in turn affects the EPS-metal interactions. This paper presents the features of EPS from various sources with a view to establish their role as central elements in bioremediation of heavy metals.

Keywords: Microbial exopolymer · biofilm, bioflocs, activated sludge, biogranule, heavy metals, biosorption, bioreduction, bioremediation, biodegradation

Full Text

The Full Text of this article is available as a PDF (138.2 KB).

References

  • 1.Wingender J., Neu T.R., Flemming H.C. What are bacterial extracellular polymeric substances? In: Wingender J., Neu T.R., Flemming H.C., editors. Microbial Extracellular Polymeric Substances. Berlin: Springer; 1999. pp. 1–20. [Google Scholar]
  • 2.Sutherland I.W. Biofilm exopolysaccharides: a strong and sticky framework. Microbiology. 2001;147:3–9. doi: 10.1099/00221287-147-1-3. [DOI] [PubMed] [Google Scholar]
  • 3.Tay J.H., Liu Q.S., Liu Y. The role of cellular polysaccharides in the formation and stability of aerobic granules. Lett Appl Microbiol. 2001;33:222–226. doi: 10.1046/j.1472-765x.2001.00986.x. [DOI] [PubMed] [Google Scholar]
  • 4.Comte S., Guibaud G., Baudu M. Relations between extraction protocols for activated sludge extracellular polymeric substances (EPS) and EPS complexation properties Part I. Comparison of the efficiency of eight EPS extraction methods. Enz Microbial Technol. 2006;38:237–245. doi: 10.1016/j.enzmictec.2005.06.016. [DOI] [Google Scholar]
  • 5.Gutnick D.L., Bach H. Engineering bacterial biopolymers for the biosorption of heavy metals: new products and novel formulations. Appl Microbiol Biotechnol. 2000;54:451–460. doi: 10.1007/s002530000438. [DOI] [PubMed] [Google Scholar]
  • 6.Gehrke T., Telegdi J., Thierry D., Sand W. Importance of extracellular polymeric substances from Thiobacillus ferroxidans for bioleaching. Appl Environ Microbiol. 1998;64:2743–2747. doi: 10.1128/aem.64.7.2743-2747.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Gadd G.M. Bioremedial potential of microbial mechanisms of metal mobilization and immobilization. Curr Opin Biotechnol. 2000;11:271–279. doi: 10.1016/S0958-1669(00)00095-1. [DOI] [PubMed] [Google Scholar]
  • 8.Kotrba P., Ruml T. Bioremediation of heavy metal pollution exploiting constituents, metabolites and metabolic pathways of livings. A review Collect. Czech Chem Commun. 2000;65:1205–1247. doi: 10.1135/cccc20001205. [DOI] [Google Scholar]
  • 9.Liu Q.S., Tay J.H., Liu Y. Substrate concentration-independent aerobic granulation in sequential aerobic sludge blanket reactor. Environ Technol. 2003;24:1235–1242. doi: 10.1080/09593330309385665. [DOI] [PubMed] [Google Scholar]
  • 10.Hullebusch E.D., Zandvoort M.H., Lens P.N.L. Metal immobilisation by biofilms: Mechanisms and analytical tools. Rev Environ Sci Biotechnol. 2003;2:9–33. doi: 10.1023/B:RESB.0000022995.48330.55. [DOI] [Google Scholar]
  • 11.Beyenal H., Sani R.K., Peyton B.M., Dohnalkova A.C., Amonette J.E., Lewandowski Z. Uranium immobilization by sulfate-reducing biofilms. Environ Sci Technol. 2004;38:2067–2074. doi: 10.1021/es0348703. [DOI] [PubMed] [Google Scholar]
  • 12.Xu H., Tay J.H., Foo S.K., Yang S.F., Liu Y. Removal of dissolved copper (II) and zinc (II) by aerobic granular sludge Water. Sci Technol. 2004;50:155–160. [PubMed] [Google Scholar]
  • 13.Ozdemir G., Ceyhan N., Manav E. Utilization of an exopolysaccharide produced by Chryseomonas luteola TEM05 in alginate beads for adsorption of cadmium and cobalt ions. Biores Technol. 2005;96:1677–1682. doi: 10.1016/j.biortech.2004.12.031. [DOI] [PubMed] [Google Scholar]
  • 14.Gulnaz O., Saygideger S., Kusvuran E. Study of Cu(II) biosorption by activated sludge: effect of physico-chemical properties and kinetic studies. J Haz Mat. 2005;120:193–200. doi: 10.1016/j.jhazmat.2005.01.003. [DOI] [PubMed] [Google Scholar]
  • 15.Choi S.B., Yun Y.N. Biosorption of cadmium by various types of dried sludge: anequilibrium study and investigations of mechanism. J Haz Mat. 2006;138:378–383. doi: 10.1016/j.jhazmat.2006.05.059. [DOI] [PubMed] [Google Scholar]
  • 16.Morris J.M., Meyer J.S. Extracellular and intracellular uptake of zinc by photosynthetic biofilm matrix. Bull Environ Contam Toxicol. 2006;77:30–35. doi: 10.1007/s00128-006-1028-5. [DOI] [PubMed] [Google Scholar]
  • 17.Geesey G.G. Microbial exopolymers: ecological and economic considerations. ASM News. 1982;48:9–14. [Google Scholar]
  • 18.Characklis W.G., Wilderer P.A. Glossary. In: Characklis W.G., Wilderer P.A., editors. Structure and function of biofilms. Chichester: Wiley; 1989. pp. 369–371. [Google Scholar]
  • 19.Nielsen P.H., Jahn A. Extraction of EPS. In: Wingender J., Neu T.R., Flemming H.C., editors. Microbial extracellular polymeric substances. Berlin: Springer; 1999. pp. 49–72. [Google Scholar]
  • 20.Laspidou C.S., Rittmann B.E. A unified theory for extracellular polymeric substances, soluble microbial products, and active and inert biomass. Water Res. 2002;36:2711–2720. doi: 10.1016/S0043-1354(01)00413-4. [DOI] [PubMed] [Google Scholar]
  • 21.Sheng G.P., Yu H.Q., Yue Z. Factors influencing the production of extracellular polymeric substances by Rhodopseudomonas acidophila. Int Biodeter Biodeg. 2006;58:289–293. [Google Scholar]
  • 22.Neal A.L., Dublin S.N., Taylor J., Bates D.J., Burns J.L., Apkarian R., DiChristina T.J. Terminal electron acceptors influence the quantity and chemical composition of capsular exopolymers produced by anaerobically growing Shewanella spp. Biomacromolecules. 2007;8:166–174. doi: 10.1021/bm060826e. [DOI] [PubMed] [Google Scholar]
  • 23.Sheng G.P., Yu H.Q., Yue Z.B. Production of extracellular polymeric substances from Rhodopseudomonas acidophila in presence of toxic substances. Appl Microbiol Biotechnol. 2005;69:216–222. doi: 10.1007/s00253-005-1990-6. [DOI] [PubMed] [Google Scholar]
  • 24.Priester J.H., Olson S.G., Webb S.M., Neu M.P., Hersman L.E., Holden P.A. Enhanced exopolymer production and chromium stabilization in Pseudomonas putida unsaturated biofilms. Appl Environ Microbiol. 2006;72:1988–1996. doi: 10.1128/AEM.72.3.1988-1996.2006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Nichols C.A.M., Garon S., Bowman J.P., Raguenes G., Guezennec J. Production of exopolysaccharides by Antartic marine bacterial isolates. J Appl Microbiol. 2004;96:1057–1066. doi: 10.1111/j.1365-2672.2004.02216.x. [DOI] [PubMed] [Google Scholar]
  • 26.Qin L., Liu Q.S., Yang S.F., Tay J.H., Liu Y. Stressful conditions-induced production of extracellular polysaccharides in aerobic granulation process. Civil Eng Res. 2004;17:49–51. [Google Scholar]
  • 27.Liu Y.Q., Liu Y., Tay J.H. The effects of extracellular polymeric substances on the formation and stability of biogranules. Appl Microbiol Biotechnol. 2004;65:143–148. doi: 10.1007/s00253-004-1657-8. [DOI] [PubMed] [Google Scholar]
  • 28.Jahn A., Nielsen P.H. Extraction of extracellular polymeric substances (EPS) from biofilms using cation exchange resin. Wat Sci Technol. 1995;32:157–164. doi: 10.1016/0273-1223(96)00020-0. [DOI] [Google Scholar]
  • 29.Denkhaus E., Meisen S., Telgheder U., Wingender J. Chemical and physical methods for characterisation of biofilms. Microchim Acta. 2007;158:1–27. doi: 10.1007/s00604-006-0688-5. [DOI] [Google Scholar]
  • 30.Zhang X., Bishop P.L., Kinkle B.K. Comparison of extraction methods for quantifying extracellular polymers in biofilms. Wat Sci Technol. 1999;39:211–218. doi: 10.1016/S0273-1223(99)00170-5. [DOI] [Google Scholar]
  • 31.Wuertz S., Spaeth R., Hindenberger A., Grieba T., Flemming H.C., Wilderer P.A. A new method for extraction of extracellular polymeric substances from biofilms and activated sludge suitable for direct quantification of sorbed metals. Water Sci Technol. 2001;43:25–31. [PubMed] [Google Scholar]
  • 32.Li X.G., Cao H.B., Wu J.C., Zhong F.L., Yu K.T. Enhanced extraction of extracellular polymeric substances from biofilms by alternating current. Biotechnol Lett. 2002;24:619–621. doi: 10.1023/A:1015031021858. [DOI] [Google Scholar]
  • 33.Azeredo J., Henriques M., Sillankorva S., Oliveira R. Extraction of exopolymers from biofilms: the protective effect of glutaraldehyde. Water Sci Technol. 2003;47:175–179. [PubMed] [Google Scholar]
  • 34.Liu H., Fang H.P. Characterization of electrostatic binding sites of extracellular polymers by linear programming analysis of titration data. Biotechnol Bioeng. 2002;80:806–811. doi: 10.1002/bit.10432. [DOI] [PubMed] [Google Scholar]
  • 35.Wilén B.N., Jin B., Lant P. The influence of key chemical constituents of activated sludge on surface and flocculating properties. Water Res. 2003;37:2127–2139. doi: 10.1016/S0043-1354(02)00629-2. [DOI] [PubMed] [Google Scholar]
  • 36.Sheng G.P., Yu H.Q., Yu Z. Extraction of extracellular polymeric substances from the photosynthetic bacterium Rhodopseudomonas acidophila. Appl Microbiol Biotechnol. 2005;67:125–130. doi: 10.1007/s00253-004-1704-5. [DOI] [PubMed] [Google Scholar]
  • 37.Flemming H.C., Wingender J. Relevance of microbial extracellular polymeric substances (EPSs) Part 1 Structural and ecological aspects. Water Sci Technol. 2001;43:1–8. [PubMed] [Google Scholar]
  • 38.Sutherland I.W. The biofilm matrix — an immobilized but dynamic microbial environment. Trends Microbiol. 2001;9:222–227. doi: 10.1016/S0966-842X(01)02012-1. [DOI] [PubMed] [Google Scholar]
  • 39.Guezennec J. Deep-sea hydrothermal vents: A new source of innovative bacterial exopolysaccharides of biotechnological interest. J Ind Microbiol Biotechnol. 2002;29:204–208. doi: 10.1038/sj.jim.7000298. [DOI] [PubMed] [Google Scholar]
  • 40.Philippis R., Sili C., Paperi R., Vincenzini M. Exopolysaccharide-producing cyanobacteria and their possible exploitation: A review. J Appl Phycol. 2001;13:293–299. doi: 10.1023/A:1017590425924. [DOI] [Google Scholar]
  • 41.Allison D.G. The biofilm matrix Biofouling. 2003;19:139–150. doi: 10.1080/0892701031000072190. [DOI] [PubMed] [Google Scholar]
  • 42.Sutherland IW (1990) Biotechnology of exopolysaccharides Cambridge, Cambridge University Press
  • 43.Mack D., Fischer W., Krokotsch A., Leopold K., Hartmann R., Egge H., Laufs R. The intracellular adhesion involved in biofilm accumulation of Staphylococcus epidermidis is a linear β-1,6-linked glucsaminoglycan: purification and structural analysis. J Bacteriol. 1996;178:175–183. doi: 10.1128/jb.178.1.175-183.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Beech I., Hanjagsit L., Kalaji M., Neal A.L., Zinkevich V. Chemical and structural characterization of exopolymers produced by Pseudomonas sp. NCIMB 2021 in continuous culture. Microbiology. 1999;145:1491–1497. doi: 10.1099/13500872-145-6-1491. [DOI] [PubMed] [Google Scholar]
  • 45.Jahn A., Griebe T., Nielson P.H. Composition of Pseudomonas putida biofilms: accumulation of protein in the biofilm matrix. Biofouling. 2000;14:49–57. [Google Scholar]
  • 46.Guibaud G., Comte S., Bordas F., Dupuy S., Baudu M. Comparison of the complexation potential of extracellular polymeric substances (EPS), extracted from activated sludges and produced by pure bacteria strains, for cadmium, lead and nickel. Chemosphere. 2005;59:629–638. doi: 10.1016/j.chemosphere.2004.10.028. [DOI] [PubMed] [Google Scholar]
  • 47.Xie B., Gu J.D., Li X.Y. Protein profiles of extracellular polymeric substances and activated sludge in a membrane biological reactor by 2-dimensional gel electrophoresis. Water Sci Technol. 2006;6:27–33. [Google Scholar]
  • 48.Frolund B., Palmgren R., Keiding K., Nielsen P.H. Extraction of extracellular polymers from activated sludge using a cation exchange resin. Water Res. 1996;30:1749–1758. doi: 10.1016/0043-1354(95)00323-1. [DOI] [Google Scholar]
  • 49.Sutherland I.W. Polysaccharases in biofilms-source-action-consequences! In: Wingender J., Neu T.R., Flemming H.C., editors. Microbial Extracellular Polymeric Substances. Berlin: Springer; 1999. pp. 201–230. [Google Scholar]
  • 50.Wingender J., Jaeger K.E., Flemming H.C. Interaction between extracellular polysaccharides and enzymes. In: Wingender J., Neu T.R., Flemming H.C., editors. Microbial Extracellular Polymeric Substances. Berlin: Springer; 1999. pp. 231–251. [Google Scholar]
  • 51.Watanabe M., Suzuki Y., Sasaki K., Nakashimada Y., Nishio N. Flocculating property of extracellular polymeric substance derived from a marine photosynthetic bacterium, Rhodovulum sp. J Biosci Bioengg. 1999;87:625–629. doi: 10.1016/S1389-1723(99)80125-X. [DOI] [PubMed] [Google Scholar]
  • 52.Noparatnaraporn N., Watanabe M., Choorit W., Sasaki K. Production of RNA by a marine photosynthetic bacterium, Rhodovulum sp. Biotechnol Lett. 2000;22:1867–1870. doi: 10.1023/A:1005696807599. [DOI] [Google Scholar]
  • 53.Whitchurch C.B., Tolker-Nielsen T., Ragas P.C., Mattick J.S. Extracellular DNA required for bacterial biofilm formation. Science. 2002;295:1487. doi: 10.1126/science.295.5559.1487. [DOI] [PubMed] [Google Scholar]
  • 54.Steinberger R.E., Holden P.A. Macromolecular composition of unsaturated Pseudomonas aeruginosa biofilms with time and carbon source. Biofilms. 2004;1:37–47. doi: 10.1017/S1479050503001066. [DOI] [Google Scholar]
  • 55.Steinberger R.E., Holden P.A. Extracellular DNA in single-and multiple-species unsaturated biofilms. Appl Environ Microbiol. 2005;71:5404–5410. doi: 10.1128/AEM.71.9.5404-5410.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Salehizadeh H., Shojaosadati S.A. Removal of metal ions from aqueous solution by polysaccharide produced from Bacillus firmus. Water Res. 2003;37:4231–4235. doi: 10.1016/S0043-1354(03)00418-4. [DOI] [PubMed] [Google Scholar]
  • 57.Kachlany S.C., Levery S.B., Kim J.S., Reuhs B.L., Lion L.W., Ghiorse W.C. Structure and carbohydrate analysis of the exopolysaccharide capsule of Pseudomonas putida G7. Environ Microbiol. 2001;3:774–784. doi: 10.1046/j.1462-2920.2001.00248.x. [DOI] [PubMed] [Google Scholar]
  • 58.Gavrilescu M. Removal of heavy metals from the environment by biosorption. Eng Life Sci. 2004;4:219–232. doi: 10.1002/elsc.200420026. [DOI] [Google Scholar]
  • 59.Santamaria M., Diaz-Marreto A.R., Hernandez J., Uutierrez-Navarro A.M., Corzo J. Effect of thorium on the growth and capsule morphology of Bradyrhizobium. Environ Microbiol. 2003;5:916–924. doi: 10.1046/j.1462-2920.2003.00487.x. [DOI] [PubMed] [Google Scholar]
  • 60.Geesey G.G., Jang L. Interactions between metal ions and capsular polymers. In: Beveridge T., Doyle R.J., editors. Bacterial interactions with metallic ions. New York, NY: John Wiley and Sons; 1989. pp. 325–357. [Google Scholar]
  • 61.Mejare M., Bulow L. Metal-binding proteins and peptides in bioremediation and phytoremediation of heavy metals. Trend Biotechnol. 2001;19:67–73. doi: 10.1016/S0167-7799(00)01534-1. [DOI] [PubMed] [Google Scholar]
  • 62.Beech I.B., Sunner J. Biocorrosion: towards understanding interactions between biofilms and metals. Curr Opin Biotechnol. 2004;15:181–186. doi: 10.1016/j.copbio.2004.05.001. [DOI] [PubMed] [Google Scholar]
  • 63.Chen J.H., Lion L.W., Ghiorse W.C., Schuler M.L. Mobilization of adsorbed cadmium and lead in aquifer material by bacterial extracellular polymers. Water Res. 1995;29:421–430. doi: 10.1016/0043-1354(94)00184-9. [DOI] [Google Scholar]
  • 64.Foster L.J.R., Moy Y.P., Rogers P.L. Metal binding capabilities of Rhizobium etli and its extracellular polymeric substances. Biotechnol Lett. 2000;22:1757–1760. doi: 10.1023/A:1005694018653. [DOI] [Google Scholar]
  • 65.Pulsawat W., Leksawasdi N., Rogers P.L., Foster L.J.R. Anions effects on biosorption of Mn(II) by extracellular polymeric substance (EPS) from Rhizobium etli. Biotechnol Lett. 2003;25:1267–1270. doi: 10.1023/A:1025083116343. [DOI] [PubMed] [Google Scholar]
  • 66.Prado Acosta M., Valdman E., Leite S.G.F., Battaglini F., Ruzal S.M. Biosorption of copper by Paenibacillus polymyxa cells and their exopolysaccharide World. J Microbiol Biotechnol. 2005;21:1157–1163. [Google Scholar]
  • 67.Yilmaz I.E. Metal tolerance and biosorption capacity of Bacillus circulans strain EB1. Res Microbiol. 2003;154:409–415. doi: 10.1016/S0923-2508(03)00116-5. [DOI] [PubMed] [Google Scholar]
  • 68.Morillo J.A., Aguilera M., Ramoz-Cormenzana A., Monteoliva Sanchez M. Production of a metal-binding exopolysaccharide by Paenibacillus jamilae using two-phase olive-mill waste as fermentation substrate. Curr Microbiol. 2006;53:189–193. doi: 10.1007/s00284-005-0438-7. [DOI] [PubMed] [Google Scholar]
  • 69.Beech I.B., Cheung C.W.S. Interactions of exopolymers produced by sulphate reducing bacteria with metal ions. Int Biodeter Biodegrad. 1995;35:59–72. doi: 10.1016/0964-8305(95)00082-G. [DOI] [Google Scholar]
  • 70.Chen B., Utgikar V.P., Harmon S.M., Tabak H.H., Bishop D.F., Govind R. Studies on biosorption of zinc(II) and copper (II) Desulfovibrio desulfurican. Int Biodeter Biodegrad. 2000;46:11–18. doi: 10.1016/S0964-8305(00)00054-8. [DOI] [Google Scholar]
  • 71.Bridge T.A.M., White C., Gadd G.C. Extracellular metal binding activity of the bacterium Desulfococcus multivorans. Microbiology. 1999;145:2987–2992. doi: 10.1099/00221287-145-10-2987. [DOI] [PubMed] [Google Scholar]
  • 72.Omoike A., Chorover J., Kwon K.D., Kubici J.D. Adhesion of bacterial exopolymers to a-FeOOH: Innersphere complexation of phosphodiester groups. Langmuir. 2004;20:11108–11114. doi: 10.1021/la048597+. [DOI] [PubMed] [Google Scholar]
  • 73.Flemming H.C. Biofouling in water systems — cases, causes and countermeasures. Appl Microbiol Biotechnol. 2002;59:629–640. doi: 10.1007/s00253-002-1066-9. [DOI] [PubMed] [Google Scholar]
  • 74.Wimpenny J., Manz W., Szewzyk U. Heterogeneity in biofilms. FEMS Microbiol Rev. 2000;24:661–671. doi: 10.1111/j.1574-6976.2000.tb00565.x. [DOI] [PubMed] [Google Scholar]
  • 75.Flemming H.C. Sorption sites in biofilms. Water Sci Technol. 1995;32:27–33. doi: 10.1016/0273-1223(96)00004-2. [DOI] [Google Scholar]
  • 76.Horn H., Morgenroth E. Transport of oxygen, sodium chloride, and sodium nitrate in biofilms. Chem Eng Sci. 2006;61:1347–1356. doi: 10.1016/j.ces.2005.08.027. [DOI] [Google Scholar]
  • 77.Jang A., Kim S.M., Kim S.Y., Lee S.G., Kim I.S. Effect of heavy metals (Cu, Pb, and Ni) on the compositions of EPS in biofilms. Water Sci Technol. 2001;43:41–48. [PubMed] [Google Scholar]
  • 78.Teitzel G.M., Parsek M.R. Heavy metal resistance of biofilm and planktonic Pseudomonas aeruginosa. Appl Environ Microbiol. 2003;69:2313–2320. doi: 10.1128/AEM.69.4.2313-2320.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 79.Langley S., Beveridge T.J. Metal binding by Pseudomonas aeruginosa PAO1 is influenced by growth of the cells as a biofilm. Can J Microbiol. 1999;45:616–622. doi: 10.1139/cjm-45-7-616. [DOI] [PubMed] [Google Scholar]
  • 80.Hill W.R., Bednarek A.T., Larsen I.L. Cadmium sorption and toxicity in autotrophic biofilms. Can J Fish Aquat Sci. 2000;57:530–537. doi: 10.1139/cjfas-57-3-530. [DOI] [Google Scholar]
  • 81.Templeton A.S., Trainor T.P., Traina S.J., Spormann A.M., Brown G.E. Pb(II) distributions at biofilm-metal oxide interfaces. Proc Natl Acad Sci. 2001;98:11897–11902. doi: 10.1073/pnas.201150998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82.Webb J.S., McGinness S., Lappin-Scott H.M. Metal removal by sulphate-reducing bacteria from natural and constructed wetlands. J Appl Microbiol. 1998;84:240–248. doi: 10.1046/j.1365-2672.1998.00337.x. [DOI] [PubMed] [Google Scholar]
  • 83.White C., Gadd G.M. Copper accumulation by sulfate-reducing bacterial biofilms. FEMS Microbiol Lett. 2000;83:313–318. doi: 10.1111/j.1574-6968.2000.tb08977.x. [DOI] [PubMed] [Google Scholar]
  • 84.Spaeth R., Wuertz S. Extraction and quantification of extracellular polymeric substances from wastewater. In: Flemming C., Szewzyk U., Griebe T., editors. Biofilms Investigative Methods and Applications. Lancaster, USA: Technomic Publishing; 2000. pp. 195–209. [Google Scholar]
  • 85.Liu Y., Lam M.C., Fan P. Adsorption of heavy metals by EPS of activated sludge. Water Sci Tecnol. 2001;33:59–66. [PubMed] [Google Scholar]
  • 86.Singh S., Pradhan S., Rai L.C. Metal removal from single and multimetallic systems by different biosorbent materials as evaluated by differential pulse anodic stripping voltammetry. Process Biochem. 2000;36:175–182. doi: 10.1016/S0032-9592(00)00211-9. [DOI] [Google Scholar]
  • 87.Guibaud G., Tixier N., Bouju A., Baudu M. Relation between extracellular polymers’ composition and its ability to complex Cd, Cu and Pb. Chemosphere. 2003;52:1701–1710. doi: 10.1016/S0045-6535(03)00355-2. [DOI] [PubMed] [Google Scholar]
  • 88.Liu Y., Fang H.H.P. Influence of extracellular polymeric substances (EPS) on flocculation, settling and dewatering of activated sludge. Crit Rev Environ Sci Technol. 2003;33:237–273. doi: 10.1080/10643380390814479. [DOI] [Google Scholar]
  • 89.Yuncu B., Sanin F.D., Yetis U. An investigation of heavy metal biosorption in relation to C/N ratio of activated sludge. J Haz Mat. 2006;137:990–997. doi: 10.1016/j.jhazmat.2006.03.020. [DOI] [PubMed] [Google Scholar]
  • 90.Comte S., Guibaud G., Baudu M. Relations between extraction protocols for activated sludge extracellular polymeric substances (EPS) and complexation properties of Pb and Cd with EPS Part II. Consequences of EPS extraction methods on Pb2+ and Cd2+ complexation. Enz Microbial Technol. 2006;38:246–252. doi: 10.1016/j.enzmictec.2005.06.023. [DOI] [Google Scholar]
  • 91.Comte S., Guibaud G., Baudu M. Biosorption properties of extracellular polymeric substances (EPS) resulting from activated sludge according to their type: soluble or bound. Process Biochem. 2006;41:815–823. doi: 10.1016/j.procbio.2005.10.014. [DOI] [Google Scholar]
  • 92.Liu Y., Tay J.H. State of the art of biogranulation technology for wastewater treatment. Biotechnol Adv. 2004;22:533–536. doi: 10.1016/j.biotechadv.2004.05.001. [DOI] [PubMed] [Google Scholar]
  • 93.Liu Y., Tay J.H. The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge. Water Res. 2002;36:1653–1665. doi: 10.1016/S0043-1354(01)00379-7. [DOI] [PubMed] [Google Scholar]
  • 94.Jang A., Yoon Y.H., Kim I.S., Kim K.S., Bishop P.L. Characterization and evaluation of aerobic granules in sequencing batch reactor. J Biotechnol. 2003;105:71–82. doi: 10.1016/S0168-1656(03)00142-1. [DOI] [PubMed] [Google Scholar]
  • 95.Meyer R.L., Saunders A.M., Zeng R.J., Keller J., Blackall L.L. Microscale structure and function of anaerobic-aerobic granules containing glycogen accumulating organisms. FEMS Microbiol Ecol. 2003;45:253–261. doi: 10.1016/S0168-6496(03)00159-4. [DOI] [PubMed] [Google Scholar]
  • 96.Tsuneda S., Nagano T., Hoshino T., Ejiri Y., Noda N., Hirata A. Characterization of nitrifying granules produced in an aerobic upflow fluidized bed reactor. Water Res. 2003;37:4965–4973. doi: 10.1016/j.watres.2003.08.017. [DOI] [PubMed] [Google Scholar]
  • 97.Lin Y.M., Liu Y., Tay J.H. Development and characteristics of phosphorous-accumulating granules in sequencing batch reactor. Appl Microbiol Biotechnol. 2003;62:430–435. doi: 10.1007/s00253-003-1359-7. [DOI] [PubMed] [Google Scholar]
  • 98.Liu Y., Yang S.F., Tay J.H. Elemental compositions and characteristics of aerobic granules cultivated at different substrate N/C ratios. Appl Microbiol Biotechnol. 2003;61:556–561. doi: 10.1007/s00253-003-1246-2. [DOI] [PubMed] [Google Scholar]
  • 99.Yang S.F., Liu Y., Tay J.H. A novel granular sludge sequencing batch reactor for removal of organic and nitrogen from wastewater. J Biotechnol. 2003;106:77–86. doi: 10.1016/j.jbiotec.2003.07.007. [DOI] [PubMed] [Google Scholar]
  • 100.McSwain B.S., Irvine R.L., Hausner M., Wilderer P.A. Composition and distribution of extracellular polymeric substances in aerobic flocs and granular sludge. Appl Environ Microbiol. 2005;71:1051–1057. doi: 10.1128/AEM.71.2.1051-1057.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 101.Wang Z.W., Liu Y., Tay J.H. Distribution of EPS and cell surface hydrophobicity in aerobic granules. Appl Microbiol Biotechnol. 2005;69:469–473. doi: 10.1007/s00253-005-1991-5. [DOI] [PubMed] [Google Scholar]
  • 102.Chen M.Y., Lee D.J., Tay J.H. Distribution of extracellular polymeric substances in aerobic granules. Appl Microbiol Biotechnol. 2007;73:1463–1469. doi: 10.1007/s00253-006-0617-x. [DOI] [PubMed] [Google Scholar]
  • 103.Liu Y., Yang S.F., Tan S.F., Lin Y.M., Tay J.H. Aerobic granules: a novel zinc biosorbent. Lett Appl Microbiol. 2002;35:548–551. doi: 10.1046/j.1472-765X.2002.01227.x. [DOI] [PubMed] [Google Scholar]
  • 104.Liu Y., Xu H.L., Yang S.F., Tay J. H. A general model for biosorption of Cd2+, Cu2+ and Zn2+ by aerobic granules. J Biotechnol. 2003;102:233–239. doi: 10.1016/S0168-1656(03)00030-0. [DOI] [PubMed] [Google Scholar]
  • 105.Dohnalkova A., Marshall M.J., Kennedy D.W., Gorby Y.A., Shi L., Beliaev A., Apkarian R., Fredrickson J.K. The role of bacterial exopolymers in metal sorption and reduction. Microsc Microanal. 2005;11:16–117. doi: 10.1017/S1431927605506688. [DOI] [Google Scholar]
  • 106.Smith W.L., Gadd G.M. Reduction and precipitation of chromate by mixed culture sulphate-reducing bacterial biofilms. J Appl Microbiol. 2000;88:983–991. doi: 10.1046/j.1365-2672.2000.01066.x. [DOI] [PubMed] [Google Scholar]
  • 107.Canstein H., Li Y., Leonhäuser J., Haase E., Felske A., Deckwer W.D., Wagner-Döbler I. Spatially oscillating activity and microbial succession of mercury-reducing biofilms in a technical-scale bioremediation system. Appl Environ Microbiol. 2002;68:1938–1946. doi: 10.1128/AEM.68.4.1938-1946.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 108.Quintero E.J., Weiner R.M. Evidence for the adhesive function of the exopolysaccharide of Hyphomonas MHS-3 in its attachment to surfaces. Appl Environ Microbiol. 1995;61:1897–1903. doi: 10.1128/aem.61.5.1897-1903.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 109.Kim S.Y., Kim J.H., Kim C.J., Oh D.K. Metal adsorption of the polysaccharide produced from Methylobacterium organophilum. Biotechnol Lett. 1996;18:1161–1164. doi: 10.1007/BF00128585. [DOI] [Google Scholar]
  • 110.Loaëc M., Olier R., Guezennec J. Uptake of lead, cadmium and zinc by a novel bacterial exopolysaccharide. Water Res. 1997;31:1171–1179. doi: 10.1016/S0043-1354(96)00375-2. [DOI] [Google Scholar]
  • 111.Pirog T.P., Kovalenko M.A., Kuzminskaya Y., Votselko S.K. Physicochemical properties of the microbial exopolysaccharide ethapolan synthesized on a mixture of growth substrates. Microbiology. 2004;73:14–18. doi: 10.1023/B:MICI.0000016361.71744.6f. [DOI] [PubMed] [Google Scholar]
  • 112.Klock JH, Weiland A, Seifert R and Michaelis W (2007) Extracellular polymeric substances (EPS) from cyanobacterial mats: characterization and isolation method optimization Marine Biol DOI 10.1007/s00227-007-0754-5
  • 113.Kazy S.K., Sar P., Singh S.P., Sen A.K., D’souza S.F. Extracellular polysaccharides of a copper-sensitive and copper-resistant Pseudomonas aeruginosa strain: synthesis, chemical nature and copper binding World. J Microbiol Biotechnol. 2002;18:583–588. [Google Scholar]
  • 114.Iyer A., Mody K., Jha B. Accumulation of hexavalent chromium by an exopolysaccharide producing marine Enterobacter cloaceae. Mar Pollut Bull. 2004;49:974–977. doi: 10.1016/j.marpolbul.2004.06.023. [DOI] [PubMed] [Google Scholar]
  • 115.Finlay J.A., Allan V.J., Conner A., Callow M.E., Basnakova G., Macaskie L.E. Phosphate release and heavy metal accumulation by biofilm-immobilized and chemically-coupled cells of a Citrobacter sp. pre-grown in continuous culture. Biotechnol Bioeng. 1999;63:87–97. doi: 10.1002/(SICI)1097-0290(19990405)63:1<87::AID-BIT9>3.0.CO;2-0. [DOI] [PubMed] [Google Scholar]
  • 116.Qureshi F.M., Badar U., Ahmed N. Biosorption of copper by a bacterial biofilm on a flexible polyvinyl chloride conduit. Appl Environ Microbiol. 2001;67:4349–4352. doi: 10.1128/AEM.67.9.4349-4352.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 117.Templeton A.S., Trainor T.P., Spormann A.M., Newville M., Sutton S.R., Dohnalkova A., Gorby Y., Brown G.E. Sorption versus biomineralization of Pb(II) within Burkholderia cepacia biofilms. Environ Sci Technol. 2003;37:300–3007. doi: 10.1021/es025972g. [DOI] [PubMed] [Google Scholar]
  • 118.Beyenal H., Lewandowski Z. Dynamics of lead immobilization in sulfate reducing biofilms. Water Res. 2004;38:2726–2736. doi: 10.1016/j.watres.2004.03.023. [DOI] [PubMed] [Google Scholar]
  • 119.Hu Z., Hidalgo G., Houston P.L., Hay A.G., Shuler M.L., Abruña H.D., Ghiorse W.C., Lion L.W. Determination of spatial distributions of zinc and active biomass in microbial biofilms by two-photon laser scanning microscopy. Appl Environ Microbiol. 2005;71:4014–4021. doi: 10.1128/AEM.71.7.4014-4021.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 120.Zhang X., Brussee K., Coutinho C.T., Rooney-Varga J.N. Chemical stress induced by copper: examination of a biofilm system. Water Sci Technol. 2006;54:191–919. doi: 10.2166/wst.2006.865. [DOI] [PubMed] [Google Scholar]
  • 121.Kang S.Y., Bremer P.J., Kim K.W., McQuillan A.J. Monitoring metal ion binding in single-layer Pseudomonas aeruginosa biofilms using ATR-IR spectroscopy. Langmuir. 2006;22:286–291. doi: 10.1021/la051660q. [DOI] [PubMed] [Google Scholar]
  • 122.Lameiras S, Quintelas S and Tavares T (2007) Biosorption of Cr(VI) using bacterial biofilm supported on granular activated carbon and on zeolite Biores Technol DOI: 10.1016/j.biortech.2007.01.040 [DOI] [PubMed]
  • 123.Hu Z., Jin J., Abruña H.D., Houston P.L., Hay A.G., Ghiorse W.C., Shuler M.L., Hidalgo G., Lion L.W. Spatial distributions of copper in microbial biofilms by scanning electrochemical microscopy. Environ Sci Technol. 2007;41:936–941. doi: 10.1021/es061293k. [DOI] [PubMed] [Google Scholar]
  • 124.Aksu Z., Acikel U., Kabasakal E., Tezer S. Equilibrium modeling of individual and simultaneous biosorption of chromium (VI) and nickel (II) onto dried activated sludge. Water Res. 2002;36:3063–3073. doi: 10.1016/S0043-1354(01)00530-9. [DOI] [PubMed] [Google Scholar]
  • 125.Sag Y., Tarar B., Kutsal T. Biosorption of Pb(II) and Cu(II) by activated sludge in batch and continuousflow stirred reactors. Biores Technol. 2003;87:27–33. doi: 10.1016/S0960-8524(02)00210-9. [DOI] [PubMed] [Google Scholar]
  • 126.Wu H.S., Zhang A.Q., Wang L.S. Immobilization study of biosorptions of metal ions onto activated sludge. J Environ Sci. 2004;16:640–645. [PubMed] [Google Scholar]
  • 127.Wang X.J., Xia S.Q., Chen L., Zhao J.F., Chovelon J.M., Nicole J.R. Biosorption of cadmium (II) and lead (II) ions from aqueous solutions onto dried activated sludge. J Environ Sci. 2006;18:840–844. doi: 10.1016/S1001-0742(06)60002-8. [DOI] [PubMed] [Google Scholar]
  • 128.Pamukoglu M.Y., Kargi F. Batch kinetics and isotherms for biosorption of copper (II) ions onto pre-treated powdered waste sludge (PWS) J Haz Mat. 2006;138:479–484. doi: 10.1016/j.jhazmat.2006.05.065. [DOI] [PubMed] [Google Scholar]
  • 129.Zhang D., Wang J., Pan X. Cadmium sorption by EPS produced by anaerobic sludge under sulphate-reducing conditions. J Haz Mat. 2006;138:589–593. doi: 10.1016/j.jhazmat.2006.05.092. [DOI] [PubMed] [Google Scholar]
  • 130.Comte S, Guibaud G and Baudu M (2007) Biosorption properties of extracellular polymeric substances (EPS) towards Cd, Cu and Pb for different pH values J Haz Mat DOI: 10.1016/j.jhazmat.2007.05.070 [DOI] [PubMed]
  • 131.Chang W.C., Hsu C.H., Chiang S.M., Su M.C. Equilibrium and kinetics of metal biosorption by sludge from a biological nutrient removal system. Environ Technol. 2007;28:453–462. doi: 10.1080/09593332808618806. [DOI] [PubMed] [Google Scholar]
  • 132.Zhang L.L., Feng X.X., Xu F., Xu S., Cai W.M. Biosorption of rare earth metal ion on aerobic granules. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2005;40:857–867. doi: 10.1081/ese-200048290. [DOI] [PubMed] [Google Scholar]
  • 133.Xu H., Liu Y., Tay J.H. Effect of pH on nickel biosorption by aerobic granular sludge. Biores Technol. 2006;97:359–363. doi: 10.1016/j.biortech.2005.03.011. [DOI] [PubMed] [Google Scholar]
  • 134.Hawari A.H., Mulligan C.N. Biosorption of lead(II), cadmium(II), copper(II) and nickel(II) by anaerobic granular biomass. Biores Technol. 2006;97:692–700. doi: 10.1016/j.biortech.2005.03.033. [DOI] [PubMed] [Google Scholar]

Articles from Indian Journal of Microbiology are provided here courtesy of Springer

RESOURCES