Skip to main content
Indian Journal of Clinical Biochemistry logoLink to Indian Journal of Clinical Biochemistry
. 1998 Jul;13(2):63–80. doi: 10.1007/BF02867866

Regulation of metabolic pathways in liver and kidney during experimental diabetes: Effects of antidiabetic compounds

Najma Zaheer Baquer 1,, Dhananjay Gupta 1, Jayadev Raju 1
PMCID: PMC3453566  PMID: 23105185

Abstract

Diabetes has been classified as a disease of glucose overproduction by tissues, mainly liver and glucose underutilization by insulin requiring tissues like liver, adipose and muscle due to lack of insulin. There is, however, glucose over utilization in tissues not dependent on insulin for glucose transport like kidney, nerve and brain. There are serious complications due to this excess glucose in these tissues and their reversal is important for a good metabolic control and normalisation of other parameters. Insulin, trace metals and some plant extracts have been used to see the reversal effects of the complications of diabetes in liver and kidney in experimental diabetes. Almost complete reversal of the metabolic changes has been achieved in the activities of key enzymes of metabolic pathways in liver and kidney and an effective glucose control has been achieved suggesting a combination of therapies in the treatment of metabolic disturbance of the diabetic state.

Key words: Diabetes, antidiabetic compounds, glycolysis, gluconeogenesis, antioxidant enzymes

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

References

  • 1.Spiro R.G. Search for a biochemical basis of diabetic microangiopathy. Diabetologia. 1976;12:1–4. doi: 10.1007/BF01221959. [DOI] [PubMed] [Google Scholar]
  • 2.McLean P. Pancreatic and gastrointestinal hormones. In: Riordan J.L.M., Malan P.G., Gould R.P., editors. Essentials of Endocrinology. Oxford, England: Blackwell Scientific Publication; 1988. pp. 222–265. [Google Scholar]
  • 3.Gabbay K.H. The sorbitol pathway and the complication of diabetes. New Engl. J. Med. 1973;288:831–837. doi: 10.1056/NEJM197304192881609. [DOI] [PubMed] [Google Scholar]
  • 4.Bunn H.F., Shapiro R., McManns M., Garrick L., MacDonald H.H., Gallop P.M., Gabby K.H. Structural heterogeneity of human haemoglobin A due to non-enzymic glycosylation. J. Biol. Chem. 1979;254:3892–3898. [PubMed] [Google Scholar]
  • 5.Cerami A., Stevens V.J., Monnier V.M. Role of nonenzymic glycosylation in the development of the sequence of diabetes mellitus. Metabolism. 1979;28(Suppl 1):431–437. doi: 10.1016/0026-0495(79)90051-9. [DOI] [PubMed] [Google Scholar]
  • 6.Alberti, K.G.M.M. and Press, C.M. (1982) The biochemistry and the complications of diabetes Eds. H. Keen and J. Jarret Edward Arnold Publishers p.231–270.
  • 7.Sochor M., Baquer N.Z., McLean P. Regulation of pathways of glucose metabolism in kidney. The effect of experimental diabetes on the activity of the pentose phosphate pathway and glucuronate-xylulose pathway. Arch. Biochem. Biophys. 1979;198:632–646. doi: 10.1016/0003-9861(79)90541-1. [DOI] [PubMed] [Google Scholar]
  • 8.Sochor M., Baquer N.Z., Hothersall J., McLean P. Effect of experimental diabetes on the activities of hexokinase isoenzymes in tissues of the rat. Biochem. Int. 1990;22(3):467–474. [PubMed] [Google Scholar]
  • 9.Steer K.A., Sochor M., Gonzalez A.M., McLean P. Regulation of pathway of glucose metabolism in kidney. Specific linking of pentose phosphate pathway activity with kidney growth in experimental diabetes and unilateral nephrectomy. FEBS Lett. 1982;150:494–498. doi: 10.1016/0014-5793(82)80797-7. [DOI] [PubMed] [Google Scholar]
  • 10.Cortes P., Levin N.W., Dumler F., Rubenstein A.H., Verghese G.P., Venkatachalam K.K. Uridine triphosphate and RNA-synthesis during diabetes induced kidney growth. Am. J. Physiol. 1980;238E:349–357. doi: 10.1152/ajpendo.1980.238.4.E349. [DOI] [PubMed] [Google Scholar]
  • 11.Oberley L.W. Free radicals and diabetes. Free Rad. Biol. Med. 1988;5:113–124. doi: 10.1016/0891-5849(88)90036-6. [DOI] [PubMed] [Google Scholar]
  • 12.Srivastava P., Saxena A.K., Kale R.K., Baquer N.Z. Insulin like effects of lithium and vanadate on the altered antioxidant status of diabetic rats. Res. Commun. Chem. Pathol. Pharmacol. 1993;80(3):283–293. [PubMed] [Google Scholar]
  • 13.Sochor M., Baquer N.Z., McLean P. Glucose over and underutilization in diabetes: Comparative studies on the changes in activities of enzymes of glucose metabolism in rat kidney and liver. Mol. Physiol. 1985;7:51–68. [Google Scholar]
  • 14.Glock G.E., McLean P. A preliminary investigation of the hormonal control of the hexose monophosphate oxidative pathway. Biochem. J. 1955;61:397–404. doi: 10.1042/bj0610390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Novello F., McLean P. The pentose phosphate pathway of glucose metabolism. Measurement of the non-oxidative reaction of the cycle. Biochem. J. 1968;107:775–791. doi: 10.1042/bj1070775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Weinhouse S. Regulation of glucokinase in liver. Curr. Topic. Cell. Regul. 1976;11:1–46. [PubMed] [Google Scholar]
  • 17.Greenbaum A.L., Gumaa K.A., McLean P. The distribution of hepatic metabolites and the control of pathways of carbohydrate metabolism in animals of different dietary and hormonal status. Arch. Biochem. Biophys. 1971;143:617–663. doi: 10.1016/0003-9861(71)90247-5. [DOI] [PubMed] [Google Scholar]
  • 18.Needleman P., Passonnean J.V., Lowry O.H. Distribution of glucose and related metabolities in rat kidney. Am. J. Physiol. 1968;215:655–659. doi: 10.1152/ajplegacy.1968.215.3.655. [DOI] [PubMed] [Google Scholar]
  • 19.Saxena A.K., Srivastava P., Kale R.K., Baquer N.Z. Effect of vanadate administration on polyol pathway in diabetic rat kidney. Biochem. Int. 1992;26(1):59–68. [PubMed] [Google Scholar]
  • 20.Singh N., Tyagi S.D., Agarwal S.C. Effects of long term feeding of acetone extracts ofMomordica charantia (whole fruit powder) on alloxan diabetic albino rats Ind. J. Physiol. Pharmacol. 1989;33(2):97–100. [PubMed] [Google Scholar]
  • 21.Shibib B.A., Khan L.A., Rahman R. Hypoglycaemic activity ofCoccinia indica andMomordica charantia in diabetic rats, depression of hepatic gluconeogenic enzymes glucose-6-phosphatase and fructose-1,6-bisphophatase and elevation of both liver and red cell shunt enzyme glu-6-phosphate dehydrogenase. Biochem. J. 1993;291(1):267–270. doi: 10.1042/bj2920267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Sharma R.D. Effect of fenugreek seeds and leaves on blood glucose and serum insulin response in human subjects. Nutr. Res. 1986;6:1353–1364. doi: 10.1016/S0271-5317(86)80020-3. [DOI] [Google Scholar]
  • 23.Stark A., Madar Z. The effect of an ethanol extract derived from fenugreek (Trigonella foenum-graecum) on bile and absorption and cholesterol levels in rats. Brit. J. Nutri. 1993;69:277–287. doi: 10.1079/BJN19930029. [DOI] [PubMed] [Google Scholar]
  • 24.Khosla P., Gupta D.D., Nagpal R.K. Effect ofTrigonella foenum graecum (fenugreek) on blood glucose in normal and diabetic rats. Ind. J. Physiol. Pharmacol. 1995;39(2):173–174. [PubMed] [Google Scholar]
  • 25.Pugazhenthi S, Murthy P.S. Studies on the isolation and effect of three orally active hypoglycemic principles Kakara Ib, IIIa and IIIb from bitter gourd (Momordica charantia Linn.) Diabetes Bulletin. 1989;9:73–76. [Google Scholar]
  • 26.a).Pugazhenthi S., Murthy P.S. Partial purification of a hypoglycemic fraction from the unripe fruit ofMomordica charantia (bitter gourd) Ind. J. Clin Biochem. 1995;10(1):19–22. [Google Scholar]
  • 27.a).Murthy P.S. Potential of medicinal plants for the treatment of diabetes mellitus and other diseases. Ind. J. Clin. Biochem. 1995;10(2):52–53. doi: 10.1007/BF02871000. [DOI] [Google Scholar]
  • 28.Heyliger C.E., Tahihani A.G., McNeill J.H. Effect of vanadate on elevated blood glucose and depressed cardiac performance of diabetic rats. Science. 1985;227:1474–1477. doi: 10.1126/science.3156405. [DOI] [PubMed] [Google Scholar]
  • 29.Kaur G., Singh R., Baquer N.Z. Localization of gluconeogenic enzymes (glucose-6-phosphatase and frutose-1,6-bisphosphatase) in subcellular fractions from different regions of the rat brain. J. Bioscience. 1981;3:125–128. doi: 10.1007/BF02702654. [DOI] [Google Scholar]
  • 30.Racker E. The mechanism of action of glyoxalase I. J. Biol. Chem. 1951;190:685–696. [PubMed] [Google Scholar]
  • 31.Shecter Y., Li J., Meyerovitch J., Gefel D., Bruck R., Elberg G., Miller D.S., Shisheva A. Insulin-like actions of vanadate are mediated in an insulin receptor independent manner, via nonreceptor protein tyrosine kinases and protein tyrosine phosphatases. Mol. Cell. Biochem. 1995;153:39–47. doi: 10.1007/BF01075917. [DOI] [PubMed] [Google Scholar]
  • 32.Sekar N., Li J., Shechter Y. Vanadium salts as insulin substitutes: mechanisms of action a scientific and therapeutic tool in diabetes mellitus research. Crit. Rev. Biochem. Mol Biol. 1996;31:339–359. doi: 10.3109/10409239609108721. [DOI] [PubMed] [Google Scholar]
  • 33.Kinoshita J.H., Fukushi S., Kador P., Manola L.O. Aldose reductase inhibitors in diabetic complications of the eye metabolism. Metabolism. 1979;28:462–469. doi: 10.1016/0026-0495(79)90057-X. [DOI] [PubMed] [Google Scholar]
  • 34.Gonzalez A.M., Sochor M., Hothersall J.S., McLean P. Effect of aldose reductase inhibitor on integration of polyol pathway and glycolytic route in diabetic rat lens. Diabetes. 1986;35:1200–1205. doi: 10.2337/diabetes.35.11.1200. [DOI] [PubMed] [Google Scholar]
  • 35.Srivastava S.K., Ansari N., Nair G.A., Jaspan J., Rao M.B., Das B. Hyperglycemia induced activation of human erythrocyte aldose reductase and alteration in kinetic properties. Biochim. Biophys. Acta. 1986;870:302–311. doi: 10.1016/0167-4838(86)90234-7. [DOI] [PubMed] [Google Scholar]
  • 36.Saxena A.K., Srivastava P., Baquer N.Z. Effects of vanadate on glycolytic enzymes and malic enzymes in insulin dependent and independent tissues of diabetic rats. Eur. J. Pharmacol. 1992;216:123–126. doi: 10.1016/0014-2999(92)90219-T. [DOI] [PubMed] [Google Scholar]
  • 37.Saxena A.K., Srivastava P., Kale R.K., Baquer N.Z. Impaired antioxidant status in diabetic rat liver. Effect of vanadate. Biochem. Pharmacol. 1993;45(3):539–542. doi: 10.1016/0006-2952(93)90124-F. [DOI] [PubMed] [Google Scholar]
  • 38.Ramanadham S., Mangold J.J., Brownsey R.W., Cros G.H., McNeil J.H. Oral vanadyl sulfate in treatment of diabetes mellitus in rats. Am. J. Physiol. 1989;257:904–911. doi: 10.1152/ajpheart.1989.257.3.H904. [DOI] [PubMed] [Google Scholar]
  • 39.Ramasarma T. Vanadium complexes with insulin mimic actions-A second line of protection against diabetes. Ind. J. Clin. Biochem. 1996;11(2):92–107. [Google Scholar]
  • 40.Brichard M.S., Henquin J.C. The role of vanadium in the management of diabetes. Trends Pharmacol. Sci. 1995;16:265–270. doi: 10.1016/S0165-6147(00)89043-4. [DOI] [PubMed] [Google Scholar]
  • 41.Sekar N., Qian S., Shechter Y. Vanadate elevates lipogenecity of starved rat adipose tissue: Mechanism of action. Endocrinology. 1998;139(5):2514–2518. doi: 10.1210/en.139.5.2514. [DOI] [PubMed] [Google Scholar]
  • 42.Green A. The insulin like effect of sodium vanadate on adipocytes: glucose transport is mediated at a post insulin receptor level. Biochem. J. 1986;238:663–669. doi: 10.1042/bj2380663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Sochor M., McLean P., Brown J., Greenbaum A.L. Regulation of pathway of ornithine metabolism. Effects of thyroid hormones and diabetes on the activity of enzymes at the ornithine cross roads in liver. Enzymes. 1981;26:15–23. [PubMed] [Google Scholar]
  • 44.Kazmi S.M.I., Mayanil C.S.K., Baquer N.Z. Malate-aspartate shuttle enzymes in rat regions, liver and heart during alloxan diabetes and insulin replacement. Enzymes. 1985;34:98–106. doi: 10.1159/000469369. [DOI] [PubMed] [Google Scholar]
  • 45.Salimuddin Upadhyaya, K.C., Baquer N.Z. Effects of vanadate and insulin on the activities of selected enzymes of amino acid metabolism in alloxan diabetic rat kidney. Biochem. Mol. Biol. Int. 1996;40(4):853–860. doi: 10.1080/15216549600201463. [DOI] [PubMed] [Google Scholar]
  • 46.Salimuddin . Effect of vanadium salts on the expression of urea cycle and related enzymes during diabetes. New Delhi, India: School of Life Sciences, Jawaharlal Nehru University; 1997. [Google Scholar]
  • 47.Morris S.M., Moncman C.L., Rand K.D., Dizides G.J., Cederbaum S.D., O’Brien W.E. Regulation of mRNA levels for five urea cycle enzymes in rat liver by diet, cyclic AMP and glucocorticoids. Arch. Biochem. Biophys. 1987;256:343–353. doi: 10.1016/0003-9861(87)90455-3. [DOI] [PubMed] [Google Scholar]
  • 48.Thormalley P.J. Modification of the glyoxalase system in disease processes and prospects for therapeutic strategies. Biochem. Soc. Trans. 1993;21:531–534. doi: 10.1042/bst0210531. [DOI] [PubMed] [Google Scholar]

Articles from Indian Journal of Clinical Biochemistry are provided here courtesy of Springer

RESOURCES