Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Dec 22;69(Pt 1):o129. doi: 10.1107/S1600536812050957

2-[4-(Morpholin-4-ylmeth­yl)phen­yl]benzonitrile

Gangadhar Y Meti a, R R Kamble a, A J Ravi b, H K Arunkashi b, H C Devarajegowda b,*
PMCID: PMC3588350  PMID: 23476389

Abstract

In the title compound, C18H18N2O, the morpholine ring adopts a chair conformation with the exocyclic N—C bond in an equatorial orientation. The dihedral angles between the central benzene ring and the morpholine ring (all atoms) and the cyano­benzene ring are 87.87 (7) and 52.54 (7)°, respectively. No significant inter­molecular inter­actions are observed in the crystal structure.

Related literature  

For biological applications of biphenyl derivatives see; Li et al. (2011); Hadizad et al. (2009); Larsen et al. (1994); Kamble et al. (2011); Zhang et al. (2004); Chan et al. (1994).graphic file with name e-69-0o129-scheme1.jpg

Experimental  

Crystal data  

  • C18H18N2O

  • M r = 278.34

  • Monoclinic, Inline graphic

  • a = 21.1079 (5) Å

  • b = 8.1358 (1) Å

  • c = 9.0793 (2) Å

  • β = 100.833 (1)°

  • V = 1531.40 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.24 × 0.20 × 0.12 mm

Data collection  

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007) T min = 0.770, T max = 1.000

  • 10319 measured reflections

  • 2387 independent reflections

  • 1948 reflections with I > 2σ(I)

  • R int = 0.021

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.033

  • wR(F 2) = 0.083

  • S = 1.03

  • 2387 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.11 e Å−3

  • Δρmin = −0.10 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812050957/hb7014sup1.cif

e-69-0o129-sup1.cif (18.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812050957/hb7014Isup2.hkl

e-69-0o129-Isup2.hkl (114.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812050957/hb7014Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Universities Sophisticated Instrumental Centre, Karnatak University, Dharwad, for the data collection. The authors are also grateful to University Grants Commission, New Delhi for financial assistance [letter No. 37-248/2009 (SR)].

supplementary crystallographic information

Comment

Biphenyl derivatives were reported as non-peptide AII antagonists by the discovery at Du-pont Merck which resulted into clinical candidate (5–2-[(4-methyl)-biphenyl]-1H-tetrazole. This has become the common motif for most of the potent antagonists reported (Li et al., 2011; Hadizad et al., 2009; Larsen et al., 1994). This discovery lead to the development of drugs such as irbesartan and losartan for the efficient treatment of hypertension. Since then these biphenyl derivatives have received enormous focus due to their inhibition of angiotensin converting enzyme (ACE) and in this regard many biphenyl derivatives have been reported (Kamble et al., 2011; Zhang et al., 2004; Chan et al., 1994).

The asymmetric unit of 4'-(morpholin-4-ylmethyl)biphenyl-2-carbonitrile is shown in Fig. 1. The the morpholine ring (O1/N2/C4–C7)adopts a chair conformation. The dihedral angle between the morpholine ring (O1/N2/C4–C7) and the benzene rings (C9–C14) and (C15–C20) are 87.87 (7)° and 44.76 (7)° respectively. No significant intermolecular interactions are observed. The crystal packing of the molecules is shown in Fig.2.

Experimental

A mixture of 4'-(bromomethyl)-biphenyl-2-carbonitrile (0.0074 mol), morpholine (0.0085 mol) in presence of potassium carbonate (0.009 mol) in acetone (20 ml) was stirred at 298–300 K for 5–6hrs, filtred the salt, filtrate added to 50 ml water stirred well to get solid, filtered and washed with water, dried at 313 K. Colourless plates were recrystallized from a solvent mixture of acetone and THF (m.p. 348 K).

Refinement

All H atoms were positioned geometrically, with C—H = 0.93 Å for aromatic H and C—H = 0.97 Å for methylene H and refined using a riding model with Uiso(H) = 1.2Ueq(C) for aromatic and methylene H.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary radius.

Fig. 2.

Fig. 2.

The packing of molecules.

Crystal data

C18H18N2O F(000) = 592
Mr = 278.34 Dx = 1.207 Mg m3
Monoclinic, P21/c Melting point: 348 K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 21.1079 (5) Å Cell parameters from 2387 reflections
b = 8.1358 (1) Å θ = 2.7–24.1°
c = 9.0793 (2) Å µ = 0.08 mm1
β = 100.833 (1)° T = 296 K
V = 1531.40 (5) Å3 Plate, colourless
Z = 4 0.24 × 0.20 × 0.12 mm

Data collection

Bruker SMART CCD diffractometer 2387 independent reflections
Radiation source: fine-focus sealed tube 1948 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.021
ω and φ scans θmax = 24.1°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 2007) h = −18→24
Tmin = 0.770, Tmax = 1.000 k = −9→9
10319 measured reflections l = −10→10

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033 H-atom parameters constrained
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.0398P)2 + 0.1412P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max < 0.001
2387 reflections Δρmax = 0.11 e Å3
191 parameters Δρmin = −0.10 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0110 (13)

Special details

Experimental. Spectroscopic data IR (KBr): 3040–3080, 2175, 1500, 1H NMR (300 MHz, CDCl3, δ p.p.m..): 2.93 (t,4H, Morpholine CH2), 3.8 (s, 2H, CH2), 3.94 (t, 4H, morpholine CH2), 7.42- 7.84 (m, 8H, ArH). MS (m/z, 70 eV): 278, 250, 192.
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.05263 (6) 0.66354 (15) 0.88307 (13) 0.0926 (4)
N2 0.11430 (4) 0.39688 (12) 0.76422 (10) 0.0462 (3)
N3 0.42812 (7) 0.18166 (17) 1.11979 (17) 0.0859 (4)
C4 0.10594 (8) 0.5807 (2) 0.96979 (18) 0.0835 (5)
H4A 0.0904 0.4927 1.0258 0.100*
H4B 0.1302 0.6568 1.0412 0.100*
C5 0.14930 (6) 0.51072 (17) 0.87289 (15) 0.0584 (4)
H5A 0.1667 0.5991 0.8209 0.070*
H5B 0.1851 0.4541 0.9351 0.070*
C6 0.05896 (6) 0.48231 (17) 0.67698 (15) 0.0585 (4)
H6A 0.0337 0.4060 0.6075 0.070*
H6B 0.0739 0.5695 0.6191 0.070*
C7 0.01763 (7) 0.5536 (2) 0.7778 (2) 0.0789 (5)
H7A −0.0185 0.6112 0.7178 0.095*
H7B 0.0005 0.4654 0.8306 0.095*
C8 0.15600 (7) 0.33485 (18) 0.66566 (14) 0.0583 (4)
H8A 0.1782 0.4270 0.6304 0.070*
H8B 0.1293 0.2843 0.5788 0.070*
C9 0.20548 (6) 0.21152 (16) 0.73752 (13) 0.0504 (3)
C10 0.18769 (6) 0.07434 (16) 0.81104 (13) 0.0523 (3)
H10 0.1448 0.0608 0.8197 0.063*
C11 0.23247 (6) −0.04191 (16) 0.87128 (13) 0.0507 (3)
H11 0.2193 −0.1331 0.9194 0.061*
C12 0.29698 (6) −0.02548 (15) 0.86153 (14) 0.0491 (3)
C13 0.31476 (6) 0.11113 (16) 0.78798 (15) 0.0582 (4)
H13 0.3577 0.1251 0.7798 0.070*
C14 0.26966 (6) 0.22674 (17) 0.72675 (15) 0.0585 (4)
H14 0.2827 0.3170 0.6771 0.070*
C15 0.34412 (6) −0.15362 (15) 0.92802 (15) 0.0527 (3)
C16 0.40058 (6) −0.11543 (16) 1.02980 (16) 0.0566 (4)
C17 0.44281 (7) −0.23758 (18) 1.09399 (18) 0.0706 (4)
H17 0.4801 −0.2099 1.1615 0.085*
C18 0.42949 (8) −0.39895 (19) 1.0579 (2) 0.0776 (5)
H18 0.4578 −0.4810 1.1006 0.093*
C19 0.37458 (8) −0.43904 (18) 0.9591 (2) 0.0789 (5)
H19 0.3655 −0.5487 0.9351 0.095*
C20 0.33248 (7) −0.31866 (17) 0.89470 (18) 0.0687 (4)
H20 0.2954 −0.3486 0.8274 0.082*
C21 0.41517 (6) 0.05194 (18) 1.07696 (17) 0.0633 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0948 (8) 0.0848 (8) 0.0920 (8) 0.0435 (7) 0.0019 (7) −0.0129 (6)
N2 0.0412 (6) 0.0469 (6) 0.0480 (6) 0.0037 (4) 0.0018 (4) 0.0029 (4)
N3 0.0726 (9) 0.0598 (9) 0.1148 (11) −0.0027 (7) −0.0098 (8) −0.0077 (8)
C4 0.0912 (12) 0.0866 (11) 0.0668 (9) 0.0383 (9) −0.0004 (9) −0.0144 (9)
C5 0.0537 (8) 0.0582 (8) 0.0572 (8) 0.0045 (6) −0.0051 (6) −0.0016 (6)
C6 0.0477 (7) 0.0567 (8) 0.0651 (8) 0.0028 (6) −0.0051 (6) 0.0076 (7)
C7 0.0517 (9) 0.0840 (12) 0.0987 (12) 0.0207 (8) 0.0079 (8) 0.0104 (10)
C8 0.0629 (8) 0.0654 (9) 0.0447 (7) 0.0125 (7) 0.0054 (6) 0.0041 (6)
C9 0.0529 (8) 0.0578 (8) 0.0394 (6) 0.0078 (6) 0.0062 (5) −0.0035 (6)
C10 0.0434 (7) 0.0646 (8) 0.0488 (7) 0.0043 (6) 0.0081 (6) −0.0036 (6)
C11 0.0491 (7) 0.0507 (7) 0.0525 (7) −0.0014 (6) 0.0101 (6) −0.0021 (6)
C12 0.0475 (7) 0.0463 (7) 0.0529 (7) 0.0029 (6) 0.0079 (6) −0.0050 (6)
C13 0.0453 (7) 0.0593 (8) 0.0710 (8) 0.0027 (6) 0.0137 (6) 0.0035 (7)
C14 0.0578 (9) 0.0567 (8) 0.0618 (8) 0.0030 (7) 0.0132 (7) 0.0087 (7)
C15 0.0488 (7) 0.0467 (7) 0.0638 (8) 0.0037 (6) 0.0139 (6) −0.0009 (6)
C16 0.0466 (8) 0.0482 (8) 0.0746 (9) 0.0051 (6) 0.0106 (7) 0.0021 (7)
C17 0.0530 (8) 0.0618 (9) 0.0932 (11) 0.0106 (7) 0.0044 (8) 0.0069 (8)
C18 0.0693 (10) 0.0554 (9) 0.1073 (12) 0.0191 (8) 0.0140 (9) 0.0113 (9)
C19 0.0840 (11) 0.0446 (8) 0.1079 (12) 0.0080 (8) 0.0171 (10) −0.0030 (8)
C20 0.0637 (9) 0.0522 (9) 0.0874 (10) 0.0010 (7) 0.0070 (8) −0.0079 (8)
C21 0.0458 (8) 0.0573 (9) 0.0821 (10) 0.0039 (7) −0.0003 (7) 0.0027 (8)

Geometric parameters (Å, º)

O1—C7 1.4120 (19) C10—C11 1.3758 (17)
O1—C4 1.4169 (18) C10—H10 0.9300
N2—C5 1.4502 (16) C11—C12 1.3873 (17)
N2—C8 1.4581 (16) C11—H11 0.9300
N2—C6 1.4585 (15) C12—C13 1.3843 (18)
N3—C21 1.1401 (18) C12—C15 1.4886 (18)
C4—C5 1.496 (2) C13—C14 1.3788 (18)
C4—H4A 0.9700 C13—H13 0.9300
C4—H4B 0.9700 C14—H14 0.9300
C5—H5A 0.9700 C15—C20 1.3881 (19)
C5—H5B 0.9700 C15—C16 1.3989 (18)
C6—C7 1.495 (2) C16—C17 1.3880 (18)
C6—H6A 0.9700 C16—C21 1.443 (2)
C6—H6B 0.9700 C17—C18 1.369 (2)
C7—H7A 0.9700 C17—H17 0.9300
C7—H7B 0.9700 C18—C19 1.365 (2)
C8—C9 1.5057 (17) C18—H18 0.9300
C8—H8A 0.9700 C19—C20 1.377 (2)
C8—H8B 0.9700 C19—H19 0.9300
C9—C14 1.3819 (18) C20—H20 0.9300
C9—C10 1.3879 (18)
C7—O1—C4 109.55 (11) C10—C9—C8 121.06 (12)
C5—N2—C8 110.46 (10) C11—C10—C9 121.07 (12)
C5—N2—C6 108.59 (10) C11—C10—H10 119.5
C8—N2—C6 110.24 (9) C9—C10—H10 119.5
O1—C4—C5 111.35 (12) C10—C11—C12 121.17 (12)
O1—C4—H4A 109.4 C10—C11—H11 119.4
C5—C4—H4A 109.4 C12—C11—H11 119.4
O1—C4—H4B 109.4 C13—C12—C11 117.81 (12)
C5—C4—H4B 109.4 C13—C12—C15 122.46 (11)
H4A—C4—H4B 108.0 C11—C12—C15 119.73 (11)
N2—C5—C4 110.69 (12) C14—C13—C12 120.86 (12)
N2—C5—H5A 109.5 C14—C13—H13 119.6
C4—C5—H5A 109.5 C12—C13—H13 119.6
N2—C5—H5B 109.5 C13—C14—C9 121.47 (13)
C4—C5—H5B 109.5 C13—C14—H14 119.3
H5A—C5—H5B 108.1 C9—C14—H14 119.3
N2—C6—C7 110.63 (11) C20—C15—C16 116.92 (12)
N2—C6—H6A 109.5 C20—C15—C12 120.77 (12)
C7—C6—H6A 109.5 C16—C15—C12 122.27 (11)
N2—C6—H6B 109.5 C17—C16—C15 121.23 (13)
C7—C6—H6B 109.5 C17—C16—C21 117.81 (13)
H6A—C6—H6B 108.1 C15—C16—C21 120.89 (11)
O1—C7—C6 111.65 (12) C18—C17—C16 119.94 (15)
O1—C7—H7A 109.3 C18—C17—H17 120.0
C6—C7—H7A 109.3 C16—C17—H17 120.0
O1—C7—H7B 109.3 C19—C18—C17 119.81 (14)
C6—C7—H7B 109.3 C19—C18—H18 120.1
H7A—C7—H7B 108.0 C17—C18—H18 120.1
N2—C8—C9 114.47 (10) C18—C19—C20 120.64 (14)
N2—C8—H8A 108.6 C18—C19—H19 119.7
C9—C8—H8A 108.6 C20—C19—H19 119.7
N2—C8—H8B 108.6 C19—C20—C15 121.46 (14)
C9—C8—H8B 108.6 C19—C20—H20 119.3
H8A—C8—H8B 107.6 C15—C20—H20 119.3
C14—C9—C10 117.62 (12) N3—C21—C16 177.11 (16)
C14—C9—C8 121.26 (12)
C7—O1—C4—C5 58.34 (19) C10—C9—C14—C13 −0.67 (19)
C8—N2—C5—C4 177.40 (11) C8—C9—C14—C13 −177.75 (12)
C6—N2—C5—C4 56.40 (14) C13—C12—C15—C20 −128.35 (15)
O1—C4—C5—N2 −58.71 (18) C11—C12—C15—C20 51.08 (18)
C5—N2—C6—C7 −56.05 (15) C13—C12—C15—C16 53.85 (18)
C8—N2—C6—C7 −177.18 (12) C11—C12—C15—C16 −126.71 (14)
C4—O1—C7—C6 −58.19 (17) C20—C15—C16—C17 0.0 (2)
N2—C6—C7—O1 58.11 (16) C12—C15—C16—C17 177.92 (13)
C5—N2—C8—C9 73.85 (14) C20—C15—C16—C21 −176.91 (13)
C6—N2—C8—C9 −166.14 (11) C12—C15—C16—C21 1.0 (2)
N2—C8—C9—C14 −130.98 (13) C15—C16—C17—C18 0.0 (2)
N2—C8—C9—C10 52.04 (16) C21—C16—C17—C18 177.05 (15)
C14—C9—C10—C11 0.17 (18) C16—C17—C18—C19 −0.2 (3)
C8—C9—C10—C11 177.25 (11) C17—C18—C19—C20 0.3 (3)
C9—C10—C11—C12 0.45 (18) C18—C19—C20—C15 −0.2 (2)
C10—C11—C12—C13 −0.56 (18) C16—C15—C20—C19 0.1 (2)
C10—C11—C12—C15 179.98 (11) C12—C15—C20—C19 −177.84 (13)
C11—C12—C13—C14 0.05 (19) C17—C16—C21—N3 −25 (3)
C15—C12—C13—C14 179.50 (12) C15—C16—C21—N3 152 (3)
C12—C13—C14—C9 0.6 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB7014).

References

  1. Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Chan, W., Butler, R. G. & Smith, R. G. (1994). J. Med. Chem. 37, 897–906. [DOI] [PubMed]
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Hadizad, T., Kirkpatrick, A. S., Mason, S., Burns, K., Beanlands, R. S. & Dasilva, J. N. (2009). Bioorg. Med. Chem. 23, 7971–7977. [DOI] [PubMed]
  5. Kamble, R. R., Biradar, D. B., Meti, G. Y., Tasneem, T., Tegginamath, G., Khazi, I. M., Vaidynathan, S. T., Mohandoss, R. & Balasubramanian, S. V. P. (2011). J. Chem. Sci. 123, 393–401.
  6. Larsen, R. D., King, A. O., Chen, C. Y., Corley, E. G., Foster, B. S., Roberts, F. E., Yang, C., Lieberman, D. R. & Reamer, R. A. (1994). J. Org. Chem. 59, 6391–6394.
  7. Li, W., Xu, Z., Sun, P., Jiang, X. & Fang, M. (2011). Org. Lett. 13, 1286–1289. [DOI] [PubMed]
  8. Sheldrick, G. M. (2007). SADABS University of Göttingen, Germany.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Zhang, H., Yang, B., Zheng, Y., Yang, G., Ye, L., Ma, Y., Chen, X., Cheng, G. & Liu, S. (2004). J. Phys. Chem. B, 108, 9571–9573.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812050957/hb7014sup1.cif

e-69-0o129-sup1.cif (18.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812050957/hb7014Isup2.hkl

e-69-0o129-Isup2.hkl (114.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812050957/hb7014Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES