Skip to main content
Current Neuropharmacology logoLink to Current Neuropharmacology
. 2018 May;16(4):371–387. doi: 10.2174/1570159X15666170720092442

Nicotinic Cholinergic System in the Hypothalamus Modulates the Activity of the Hypothalamic Neuropeptides during the Stress Response

Burcu Balkan a,b,*, Sakire Pogun a
PMCID: PMC6018196  PMID: 28730966

Abstract

Background

The hypothalamus harbors high levels of cholinergic neurons and axon terminals. Nicotinic acetylcholine receptors, which play an important role in cholinergic neurotransmission, are expressed abundantly in the hypothalamus. Accumulating evidence reveals a regulatory role for nicotine in the regulation of the stress responses. The present review will discuss the hypothalamic neuropeptides and their interaction with the nicotinic cholinergic system. The anatomical distribution of the cholinergic neurons, axon terminals and nicotinic receptors in discrete hypothalamic nuclei will be described. The effect of nicotinic cholinergic neurotransmission and nicotine exposure on hypothalamic-pituitaryadrenal (HPA) axis regulation at the hypothalamic level will be analyzed in view of the different neuropeptides involved.

Methods

Published research related to nicotinic cholinergic regulation of the HPA axis activity at the hypothalamic level is reviewed.

Results

The nicotinic cholinergic system is one of the major modulators of the HPA axis activity. There is substantial evidence supporting the regulation of hypothalamic neuropeptides by nicotinic acetylcholine receptors. However, most of the studies showing the nicotinic regulation of hypothalamic neuropeptides have employed systemic administration of nicotine. Additionally, we know little about the nicotinic receptor distribution on neuropeptide-synthesizing neurons in the hypothalamus and the physiological responses they trigger in these neurons.

Conclusion

Disturbed functioning of the HPA axis and hypothalamic neuropeptides results in pathologies such as depression, anxiety disorders and obesity, which are common and significant health problems. A better understanding of the nicotinic regulation of hypothalamic neuropeptides will aid in drug development and provide means to cope with these diseases. Considering that nicotine is also an abused substance, a better understanding of the role of the nicotinic cholinergic system on the HPA axis will aid in developing improved therapeutic strategies for smoking cessation.

Keywords: Hypothalamus, nicotine, nicotinic receptors, stress, HPA axis, neuropeptides

1. INTRODUCTION

Stress, reward and eating behavior all have evolutionary significance, display similar neurobiological regulation in shared brain regions, and interact. Several reviews published during the past decade emphasize the role of the hypothalamus and the hypothalamic neuropeptides in addiction, including nicotine/tobacco addiction, and the stress response [1-9]. The hypothalamus lies at the intersection of homeostatic and reward pathways, and harbors high levels of cholinergic neurons and axon terminals [10, 11]. Nicotinic acetylcholine receptors, which play an important role in cholinergic neurotransmission, are expressed abundantly in the hypothalamus [12-14]. Accumulating evidence reveals a regulatory role for nicotine in diverse functions mediated by the hypothalamus, including the regulation of stress (Reviewed in [1, 15]).

Neuropeptides were discovered nearly five decades ago [16]. Although neuropeptides are produced by neurons, they reach farther and affect not only synaptic but also extrasynaptic receptors; this provides them with the opportunity to regulate different behaviors harmoniously. Neuropeptides released by hypothalamic neurons regulate stress, reward and feeding as well as autonomic nervous system activity. Most of these neuropeptides [melanin-concentrating hormone (MCH), hypocretins/orexins, α-melanocyte stimulating hormone (α-MSH), agouti-gene related protein (AgRP), neuropeptide Y, oxytocin, ghrelin, cocaine and amphetamine-regulated transcript (CART), neuropeptide W and the galanin-like peptides] have been initially noted for their impact on feeding behavior [17]. Eating is a complex behavior and is closely related to addiction and stress. Subsequently, following the discovery and localization of most of the hypothalamic peptides involved in feeding behavior, other functions and modulatory mechanisms were evaluated. This review will describe the anatomical distribution of the cholinergic neurons, axon terminals and nicotinic receptors in discrete hypothalamic nuclei, and will examine the possible regulatory role of the nicotinic cholinergic system and exogenous nicotine on the stress response. It is worth noting that, although this review will cover only stress, nicotine and the nicotinic cholinergic system are implicated as important actors in the modulation of almost all of the physiological functions of the hypothalamic neuroactive peptides that are included in this review. The hypothalamic neuropeptides that will be evaluated in the current review are:

  • Corticotropin-Releasing Hormone (CRH)

  • Orexin

  • Melanin Concentrating Hormone (MCH)

  • Pro-OpioMelanoCortin (POMC) and Alpha- Melanocyte Stimulating Hormone (α-MSH

  • Cocaine and Amphetamine Regulated Transcript (CART)

  • Neuropeptide Y (NPY) and Agouti-Related Peptide (AgRP)

  • Opioid Peptides

2. HYPOTHALAMIC-PITUITARY-ADRENAL AXIS

The hypothalamic-pituitary-adrenal (HPA) axis initiates the main endocrine response to a homeostatic challenge [18]. When the organism is confronted with a stressful condition, neural mechanisms activate the HPA and this activation is required for both basal and stress-induced glucocorticoid hormone release from the adrenal cortex. Neuroendocrine cells located in the medial parvocellular subdivision of the paraventricular nucleus (PVN) of the hypothalamus release CRH, into the hypothalamo-hypophysial portal system, which in turn induces adrenocorticotropic hormone (ACTH) secretion from the anterior pituitary cells. Neuroendocrine CRH cells co-express arginine-vasopressin (AVP) as well as other neuropeptides. The AVP synthesis in the parvocellular PVN is remarkably upregulated with chronic stress (reviewed in [19]). Thus, chronic stress increases the number of CRH+AVP co-expressing cells in the PVN and axons in the median eminence [20, 21]. AVP is co-released with CRH from the axon terminals in the external layer of median eminence and potentiates CRH-induced ACTH release from anterior pituitary. Adrenal cortex is a major target for ACTH in the systemic circulation. In the final step of the HPA axis, ACTH stimulates glucocorticoid hormone release from the adrenocortical fasciculata cells [22].

Sex hormones are among the important regulators of the HPA axis activity and the stress response [23]. Although today we know that there are sex hormone receptors throughout the entire brain that affect brain and behavior, these receptors were initially discovered in the hypothalamus [24]. Sex hormone receptors are expressed in various hypothalamic nuclei including the PVN, as well as in other brain regions, which project directly, or indirectly to the PVN [23, 25]. Sex differences in reactivity to stress are reported in rodent studies, and women are more vulnerable to stress related pathologies, e.g. post traumatic stress disorder, than men [26]. Sex differences depicted in the hypothalamus and hypothalamic functions point to the importance of including sex as a variable in experimental studies and in designing therapeutic interventions in pathologies involving the hypothalamus.

3. CORTICOTROPIN-RELEASING HORMONE:

The key role of the hypothalamus in the stress response is secreting corticotropin-releasing hormone (CRH), which triggers ACTH release. However, CRH is not only a releasing factor, but is also involved in different functions in the central and peripheral nervous system. CRH -expressing neurons are distributed widely in the neocortex, limbic system and brainstem. CRH neurons are located mainly in the prefrontal, cingulate and insular cerebral cortices, central nucleus of the amygdala, bed nucleus of the stria terminalis, hypothalamus, central gray matter, parabrachial nucleus, locus coeruleus and the nucleus of the solitary tract [22]. CRH neurons integrate neuronal and hormonal inputs and serve as a final common pathway to regulate the HPA axis. CRH not only activates the HPA-axis and mediates the stress response, but also plays an important role in addiction; transition from use to dependence, maintenance of dependence [27] and relapse [28] are closely related to stress and CRH.

In the hypothalamus, choline acetyltransferase (ChAT) immunoreactive (IR) cells are found in the periventricular and arcuate (ARC) nuclei, posterior and lateral hypothalamic areas and in the perifornical region [29]. However, PVN does not exhibit ChAT-IR cells. Instead, ChAT-IR cells are demonstrated in the matrix surrounding the PVN [29]. Additionally, although the PVN contains few or no nerve terminals immunoreactive for ChAT at the light microscopic level, they are demonstrated in the hypothalamic areas that immediately surround the PVN, such as zona incerta, perifornical nucleus, and dorsal hypothalamic nuclei [30]. Cholinergic afferents may innervate the neurons in the peri-PVN region which, in turn, project to the PVN CRH cells [31].

Nicotinic acetylcholine receptors (nAChRs) are present in the PVN. Radioligand binding [12, 14, 32], in situ hybridization [32, 33] and immunohistochemistry [13, 34] studies show that there are significant numbers of nAChRs (especially α7, α4, β2 subtypes) in the parvocellular PVN and in the neuropil surrounding PVN. The activity of the CRH neurons, hence the activity of the HPA axis, may be regulated through these nicotinic receptors in the PVN or in the vicinity of the PVN. In vitro studies in the rat hypothalamus show that nicotine increases hypothalamic CRH content and CRH release [35, 36]. Acetylcholine (ACh) induces hypothalamic CRH release in vitro and nicotinic receptor antagonists, hexamethonium or mecamylamine inhibits this release [35-37]. In parallel, in rats, when mecamylamine is injected into the third ventricle, which lies adjacent to the PVN, basal plasma corticosterone (CORT) levels decrease [38]. Also, nicotine injections into the third ventricle elevates plasma ACTH levels in a dose-dependent manner [39]. In rats, intracerebroventricular (ICV) ACh induces CRH release into the hypothalamo-hypophyseal portal system, which is attenuated by the administration of ICV nicotinic receptor antagonists [40]. However, ICV hexamethonium did not abolish the increase in plasma ACTH levels induced by ACh microinjection into the dorsolateral border of the PVN [41]. The mechanisms by which nicotinic receptors regulate the CRH neuron activity in the PVN need further clarification.

CRH synthesized in the parvocellular PVN is released into the hypothalamo-hypophysial portal system in the median eminence. Intense localization of cholinergic axon terminals have been identified in the external layer of the median eminence [42]. Demonstration of vesicular acetylcholine transporter mRNA [43] and ChAT immunoreactivity [29] in many hypothalamic nuclei such as the ARC nucleus and lateral hypothalamic area (LHA) have led to the idea that there may be a short cholinergic projection system extending from the hypothalamic nuclei [e.g. ARC nucleus] to the median eminence [42]. Together with the evidence that the nicotinic receptors are present on CRH-IR axon terminals in the median eminence [44], these observations imply that nicotinic receptors may regulate CRH release in the median eminence.

Nicotine, when administered systemically, readily crosses the blood brain barrier and acts upon nicotinic receptors located in the brain [45, 46]. In rats, acute systemic nicotine administration activates PVN CRH neurons [47] and increases plasma ACTH and CORT [48, 49]. However, this increase in ACTH and CORT levels following a single dose of nicotine displays sex differences: the effect on female rats is more pronounced than in males [50-52]. These sex differences observed in rodents may also have implications in clinical settings. Higher salivary cortisol levels are reported in boys below the age of eight than girls of the same age, but this difference is reversed in adulthood [53]. Sex differences in nicotine/tobacco addiction are also clearly demonstrated in rodents and human smokers [54]. Smokers aiming to quit attended two stress sessions, one before and one after quitting smoking. About 60% of the subjects relapsed during the 4-week follow-up; lower cortisol in men and higher cortisol levels in women predicted relapse [55]. Additionally, when smoking precedes a stressful situation, cardiovascular responses (e.g. increased blood pressure) observed in men are more pronounced than those in women [56]. These findings point to the importance of sex differences in hormonal responses to stress and may have implications in developing protocols with higher success rates for smokers wishing to quit.

Pretreatment with systemic dihydro-β-erythroidine, a nicotinic chlolinergic antagonist, prevents the CORT elevation induced by a single subcutaneous nicotine injection; this observation supports the role of α4β2 nicotinic receptors in the effects of systemic nicotine [57]. On the other hand, chronic systemic nicotine administrations lead to the desensitization of the HPA axis activity in both male and female rats [50]. Chronic nicotine self-administration reduces CRH mRNA expression in the parvocellular PVN [58]. The rise in plasma ACTH and CORT levels following the first dose of nicotine is transient, gradually decreases and completely disappeares on the third day of nicotine exposure [59]. Interestingly, a large number of studies report that desensitization response is not observed in humans receiving chronic systemic nicotine [9]. Nicotine increases the activity of the HPA axis in habitual smokers [60-62]. Systemic nicotine may regulate the HPA axis activity via a direct action on nicotinic receptors in the hypothalamic nuclei surrounding the third cerebral ventricle, such as the PVN. Bugajski et al. [63] showed that ICV mecamylamine abolished the ACTH and CORT elevations induced by systemic nicotine. On the other hand, Fu et al. [64] had shown that microinjection of mecamylamine into the PVN did not block the ACTH elevation in response to intravenous nicotine. Consequently, the authors proposed that the nicotinic receptors localized in the PVN are not involved in the stimulation of the HPA axis by systemic nicotine. Instead, nicotinic receptors present in the noradrenergic brainstem nuclei are suggested to play an important role during this regulatory action [46].

Nicotinic receptors in the hypothalamus may play important roles in the mediation of stress-induced HPA axis activity. ICV mecamylamine abolished the plasma CORT response to auditory stress in rats [38]. In parallel, ICV administration of anti-nicotinic acetylcholine receptor antibodies inhibited the CORT response to acute ether stress [65]. Subcutaneous injection of a blood brain barrier crossing antagonist, mecamylamine, blunted predator stress-induced rise in plasma CORT levels [66]. Similarly, chronic daily systemic administration of mecamylamine in rats also reduced chronic restraint stress-induced increase of CORT levels in blood [67]. Additionally, there are numerous studies which show that there is an interaction between the regulatory effects of stress and systemic nicotine on HPA axis activity in rodents [38, 58, 59, 63, 68-72] and in humans [9].

Nicotine is suggested to regulate the axonal release of neurotransmitters such as noradrenaline, glutamate and gamma-aminobutyric acid (GABA), which are well known for their regulatory effects on PVN CRH neurons. PVN receives dense catecholaminergic innervation from brainstem nuclei [46]. Nicotinic receptors are located presynaptically on catecholaminergic axon terminals in the hypothalamus [73]. In vitro studies show that nicotine induces noradrenaline release from rat hypothalamic slices [74-76]. Acute, systemic nicotine administration also increases paraventricular noradrenaline release [77]. However, mecamylamine administration into the PVN does not prevent the noradrenaline release induced by acute systemic nicotine exposure [64]. Thus, the same group [46] proposed that nicotinic receptors located in the brainstem nuclei rather than in the PVN mediate the paraventricular noradrenaline release induced by systemic nicotine. When nicotine is self-administered chronically, increased noradrenaline release is sustained throughout the acquisition, early and late maintenance phases [78].

Parvocellular PVN CRH neurons receive both glutamatergic and GABAergic afferents [79, 80] and express ionotropic GABAA and glutamate receptors [81, 82]. Within the hypothalamus, inhibitory GABAergic axons arise from peri-PVN region, medial preoptic area, dorsomedial (DMH) and LHA [10]. Similarly, DMH, LHA and posterior hypothalamic nuclei are suggested as the potential sources of hypothalamic glutamatergic inputs to the PVN [18]. Interestingly, nicotinic receptors are present in all of these hypothalamic nuclei, which regulate CRH neuron activity [12, 34, 83]. Furthermore, glutamate and GABA release in PVN is regulated by nicotine, an effect that may occur via presynaptic nicotinic receptors on axon terminals in the PVN. In a study by Yu et al. [84], chronic nicotine self-administration did not affect basal levels of glutamate and GABA in the PVN. However, footshock-induced PVN glutamate release was augmented and GABA release was further decreased by chronic nicotine self-administration when compared to rats self-administering saline. On the other hand, an electrophysiological study in hypothalamic slices showed that nicotine caused membrane depolarization and increased spike firing rate in the CRH mRNA-expressing neurons of the parvocellular PVN in a concentration-dependent manner, which is abolished by the addition of ionotropic glutamate receptor antagonist [85]. The authors suggested that nicotine excited PVN CRH mRNA-expressing neurons indirectly, through the enhancement of the presynaptic glutamate release.

Overall, nicotine and nicotinic receptor stimulation mediate stress induced HPA-axis activity and modulate the release of neurotransmitters that regulate PVN CRH neurons. ACTH and CORT levels are increased; this effect shows sex differences and is more pronounced in females than males.

4. OREXIN

The orexin (hypocretin) neuropeptides are important in motivated behaviors and reward, including feeding [86]. Orexin is also implicated in various physiological processes such as sleep and wakefulness and the stress response [87]. Accumulating evidence supports the role of orexins in drug reward and stress [88]. Orexin/hypocretin neurons are located mainly in the lateral, posterior and perifornical areas of the hypothalamus and project widely throughout the brain [89], including reward [90] and cardiovascular control centers [91]. Nicotine is one of the major abused drugs whose reinforcing properties are regulated by the orexin neuropeptide system [92]. Drugs targeting orexin signalling in the hypothalamus may present a possibility for treating addictions and related pathologies [93].

Studies suggest that the orexin system may play an important role in the endocrine and autonomic stress response. Orexin neurons are activated by psychological and physical stressors such as immobilization, restraint, cold exposure and swim stress [94-98]. Orexin peptides have been shown to increase the autonomic nervous system responses (e.g. elevation of blood pressure, heart rate and body temperature) to stress [95, 99-102].

Orexin neurons residing in the LHA directly innervate the PVN [103]. Orexin receptor 1 (OX-R1) immunoreactivity was demonstrated on parvocellular CRH neurons in the PVN [104]. High levels of OX-R2 mRNA is also expressed in in the PVN [105]. Electrophysiological studies demonstrate that orexin peptides depolarize parvocellular PVN neurons in hypothalamic slices [106-108]. Furthermore, ICV injection of orexin peptides activate the HPA axis resulting in increased CRH synthesis [109] and a consequent release of ACTH and CORT [109-111]. Moreover, a reciprocal interaction between CRH and orexin is suggested. Winsky-Sommerer et al. [98] showed that CRH axons terminated on LHA orexin neurons expressing high levels of CRH-R1/2 receptors. Furthermore, CRH depolarized membrane potential and increased firing rate in some orexin neurons. Based on these results, the authors proposed that CRH induces orexin neuron activity, which in turn, triggers arousal during the stress response.

Regulation of the CRH neurons through nicotinic receptors located on LHA orexin neurons is possible. Nicotinic receptors (α4 subunit) are expressed on LHA orexin neurons [86]. In parallel, a number of studies demonstrated that orexin neurons are regulated via nAChRs. Acute systemic nicotine increased the number of Fos co-expressing orexin neurons [112]. This effect was reduced following treatment with nicotinic receptor antagonists mecamylamine and dihydro-beta- erythroidine, indicating the role of α4β2 subunits. Nicotinic receptor blokade with systemic mecamylamine injections also reduced chronic nicotine-induced Fos immunoreactivity in orexin neurons [113]. Furthermore, chronic systemic nicotine injections increased prepro-orexin mRNA levels in rat hypothalamus, orexin A and B peptide levels in the rat PVN and dorsomedial nucleus [114] and orexin immunoreactivity in piglet hypothalamus [115]. Chronic exposure to cigarette smoke also upregulated prepro-orexin mRNA and orexin A peptide levels in rat hypothalamus [116]. Zhou et al. [117] showed that orexin neuron activity is modulated by postsynaptic nAChRs on orexin neurons and presynaptic nAChRs on glutamatergic terminals. ACh enhanced the firing rate in a subset of orexin neurons through postsynaptic nAChRs. The authors concluded that α4β2* and, to a lesser extent, α7 subunits contribute to this response. In another study by Pasumarthi and Fadel [118], a single dose of nicotine administration into the LHA increased ACh and glutamate release from axon terminals, which in turn may regulate orexin neuron activity. Furthermore, pretreatment with systemic OX-R1 antagonists blocked nicotine-induced anxiogenic effects and the activation of CRH neurons, which expressed OX-R1 [119].

In conclusion, there appears to be a reciprocal relationship between nicotinic and orexinergic systems. Nicotinic receptors located on the orexin neurons in the LHA may regulate CRH neuron activity. On the other hand, the rewarding properties of nicotine are modulated by orexins, which are released under stress and increase HPA axis activity and the autonomic responses.

5. MELANIN CONCENTRATING HORMONE

Melanin concentrating hormone (MCH) is involved in the regulation of energy homeostasis (i.e. feeding and metabolism), sleep/wakefulness, anxiety and the HPA axis [120-122]. Similar to orexin neurons, MCH-synthesizing neurons are found principally in the LHA with widespread projections throughout the central nervous system [123]. In the LHA, orexin and MCH neurons constitute distinct neuronal populations [124].

MCH-IR fibers are demonstrated in the PVN [125]. Furthermore, MCH receptor 1 expression is found on parvocellular PVN CRH neurons [126]. MCH increases CRH release from hypothalamic explants [127]. ICV [127-129] and intra-PVN [127] MCH injections increase plasma ACTH and CORT. On the contrary, there are studies which show that ICV MCH inhibited ACTH release induced by stress such as mild handling [130] or ether stress [131]. Additionally, stress regulates MCH expression, indicating a possible role during the stress response. MCH responses under stress may vary according to the type of stressor encountered. Chronic restraint stress increased MCH immunoreactivity in the LHA [132], whereas chronic footshock stress decreased MCH mRNA levels in the hypothalamus [133].

In vitro studies showed that the cholinergic agonist carbachol increased MCH mRNA in hypothalamic slices, an effect that was abolished by hexamethonium [134]. In parallel, Chang et al. [135] showed that prenatal nicotine exposure increased MCH mRNA levels and MCH-IR cells in the perifornical lateral hypothalamus. Anatomical studies also support the nicotinic regulation of MCH. ChAT-positive [134] and vesicular ACh transporter containing nerve fibers are located in close proximity with MCH neurons [136]. Bayer et al. [134] reported that most of the ChAT-positive axons in the LHA originated in the laterodorsal and pedunculopontine tegmental nuclei of the brainstem. Moreover, high levels of nicotinic receptors (α2, α4, α7, β2) are expressed in the LHA [32, 137]. Jo et al. [136] suggested that endogenous ACh and nicotine enhances GABAergic transmission and inhibits LHA MCH neurons via activation of presynaptic α7 nicotinic receptors. All of these data imply that nAChRs in the LHA may exert control over CRH neurons (hence the HPA axis) via modulation of LHA MCH neuron activity.

6. PRO-OPIOMELANOCORTIN AND α-MELANOCYTE STIMULATING HORMONE

Pro-opiomelanocortin (POMC) is a polypeptide that is cleaved by converting enzymes to produce peptide products, including melanocortins. Melanocortins are involved in feeding, sexual behavior and stress [138]. POMC is synthesized in two principle sites in rodent brain: ARC nucleus in the hypothalamus and nucleus tractus solitarius in the brainstem (reviewed in [139]). Hypothalamic ARC nucleus harbors two main groups of neuropeptide co-expressing neurons: POMC/cocaine-and amphetamine-regulated transcript (CART) [140] and neuropeptide Y (NPY)/agouti-related peptide (AgRP) [141]. In the hypothalamus, as mentioned above, POMC is cleaved to yield several biologically active peptides such as melanocortins [e.g. α-melanocyte stimulating hormone (α-MSH)] and the opioid peptide, β-endorphin [142]. Alpha-MSH binds to the melanocortin 3 (MC3R) and melanocortin 4 (MC4R) receptors, which are the main melanocortin receptor subtypes expressed in the brain [143]. α-MSH plays important roles in the regulation of appetite, energy balance, reward and HPA axis activity [139, 144]

Hypothalamic CRH neurons in the PVN receive extensive innervation from POMC neurons located in the ARC [145]. In parallel, melanocortin 4 receptors (MC4R) are expressed on PVN CRH neurons [146]. There are conflicting results regarding the regulatory action of α-MSH on HPA axis activity. Administration of α-MSH to the rat hypothalamic explants increased CRH release when compared to the basal release [147]. Acute ICV injection of melanocortin receptor agonists activated the HPA axis, induced PVN CRH gene transcription [146] and increased plasma CORT both in control rats and stressed rats [146, 148]. Furthermore, intra-PVN injection of an α-MSH analogue increased plasma ACTH and CORT [147]. On the other hand, there are also studies which suggest that α-MSH supresses the HPA axis activity [149-153]. Additionally, stress has been shown to regulate POMC expression. Acute restraint stress increases [154, 155], whereas acute and chronic immobilization stress decreases POMC [156, 157] in the ARC nucleus.

Chronic nicotine exposure also yielded apparently conflicting results. Both up-regulation [158-160] and down-regulation [7, 161, 162] of the POMC mRNA in the ARC has been reported in response to chronic systemic nicotine administration. Additionally, maternal nicotine exposure during lactation increased α-MSH-containing fibers in the PVN [163]. Immunocytochemistry studies show that cholinergic axons innervate ARC POMC neurons [164]. This indicates that endogenous ACh may signal through nicotinic receptors in the ARC nucleus to regulate POMC expression. Indeed, electrophysiological studies demonstrated that nicotine excites hypothalamic POMC neurons in mice through activation of α4β2 and α7 nAChRs present on these neurons [164]. In this patch clamp study, nicotine depolarized the membrane and increased spike frequency of POMC neurons in hypothalamic slices. Mineur et al. [165] also reported that POMC neurons in the ARC nucleus express β4 nAChRs and signaling through α3β4 nAChRs activates POMC neurons, which leads to the activation of MC4Rs in the PVN. Taken together, these data suggest that regulation of the HPA axis through nicotinic receptors located on POMC neurons is possible.

7. COCAINE- AND AMPHETAMINE-REGULATED TRANSCRIPT

Cocaine- and amphetamine-regulated transcript (CART) peptide is involved in the regulation of reward and reinforcement [166], feeding [167], endocrine and autonomic regulation [168, 169], anxiety [170], and stress [171]. In 1995, Douglass et al. [172] described CART mRNA as a transcript that increases after acute administration of cocaine and amphetamine, in the striatum of rat brain. CART was a novel cDNA with no significant homology to any known cDNA. Later, CART peptide fragments were identified in the brain [173] and accepted as mediators of the interaction between stress, addiction and feeding [171]. Anatomical studies show that CART neurons are widely distributed throughout the brain [174]. In the hypothalamus, CART mRNA and peptides are highly expressed in the medial parvocellular PVN, ARC and LHA [174, 175].

Functional studies demonstrate that CART regulates HPA axis activity [171]. ICV CART injections induce c-Fos expression in the CRH-synthesizing PVN neurons [176]. Addition of CART peptides increases CRH release from hypothalamic explants [177]. In parallel, ICV and intra-PVN CART injections increase blood ACTH and CORT levels [177]. Interestingly, there is a bidirectional relation between glucocorticoids and CART. Studies show that CORT regulates CART mRNA expression and CART immunoreactivity in the hypothalamus [178, 179]. Additionally, various psychological and physical stress procedures affect CART expression in the hypothalamus [180-187].

Systemic nicotine injections regulate hypothalamic CART expression and reduce body weight. Acute (two days) systemic nicotine treatment increased CART-IR cells and fibers in the PVN, CART-IR fibers in the ARC [188] and CART mRNA in the PVN [189]. Chronic systemic nicotine treatment also enhanced CART mRNA in the hypothalamus while reducing body weight [159]. However, maternal nicotine exposure during lactation decreased CART-IR cells in the PVN [163]. In the ARC, 90% of the CART neurons co-express POMC [140]. Furthermore, axon varicosities which co-contain CART and α-MSH are demonstrated in close apposition to PVN CRH nerons [190]. Additionally, CART neurons in the LHA and perifornical area also innervate the PVN [191] and 70% of the CART neurons in this area co-express MCH [192]. High level of CART co-expression with these two neuropeptides implies that nicotinic regulation of CART in the ARC nucleus and LHA is also possible. Consequently, HPA axis activity may be altered through nicotinic regulation of CART in the ARC or LHA.

8. NEUROPEPTIDE Y AND AGOUTI-RELATED PEPTIDE

Neuropeptide Y (NPY) has important roles in food intake, energy homeostasis, sleep, anxiety and the stress response [193-195]. NPY neurons are distributed widely in rodent brain [196]. The highest NPY mRNA levels are found in the ARC nucleus [197]. On the contrary, agouti-related peptide (AgRP)-synthesizing neurons are restricted to the hypothalamic ARC nucleus [198]. 95% of ARC NPY neurons co-express AgRP [199]. Initially, AgRP proteins were described by their important role in controlling body weight and leptin signaling [200]. Later, in addition to its role in the regulation of feeding behavior, AgRP is indicated in reward and HPA axis activity [144, 201]. NPY mainly binds to Y1, Y2 and Y5 receptors in the brain (reviewed in [195]). On the other hand, AgRP binds to MC3R and MC4R with high affinity and acts as a competitive antagonist of α-MSH at these receptors [200].

NPY/AgRP neurons highly innervate parvocellular CRH neurons in the PVN [145, 202] and 80% of PVN CRH neurons express NPY Y1 receptors [203]. Studies demonstrate contradictory results regarding the regulatory effect of NPY on HPA activity. In vitro studies show that NPY increased CRH release from rat hypothalamus [204]. In parallel, ICV NPY administration increased CRH gene expression, plasma ACTH and CORT levels [203, 205]. Furthermore, microinjection of NPY into the PVN also increased plasma ACTH and CORT levels [206]. On the other hand, an inhibitory action on HPA axis activity is indicated by several studies [207, 208]. AgRP may bind to the MC4Rs expressed on PVN CRH neurons and may regulate HPA axis activity. Indeed, AgRP administration to the hypothalamic explants elevated CRH and AVP release and injection of AgRP into the PVN increased plasma ACTH levels in rats [147]. ICV AgRP treatment increased basal ACTH and cortisol release also in primates [209]. Furthermore, in this study, ICV AgRP enhanced interleukin-1 beta-induced ACTH levels.

Various stress procedures regulate NPY and AgRP expression in the ARC. Acute restraint [210], immobilization [211] and inescapable footshock stress [148] upregulated NPY mRNA in the ARC nucleus. Data regarding the effects of chronic stress is contradictory. One study showed an increase in the ARC NPY mRNA levels [211], whereas another showed a decrease in the ARC NPY immunoreactivity [212] following chronic immobilization stress. On the other hand, AgRP mRNA levels and the number of AgRP-IR cells decreased in the ARC nucleus with acute inescapable footshock stress [148] and acute restraint stress [213], respectively. Chronic footshock stress upregulated AgRP mRNA [214], whereas chronic restraint stress downregulated the number of AgRP-IR cells in the ARC [213]. Interestingly, some of the AgRP neurons are innervated by PVN CRH neurons and express CRH-R1 type receptors [215]. This may be one factor contributing to the stress-induced AgRP response.

Regulation of the HPA axis through nicotinic receptors located on ARC NPY/AgRP neurons is possible. Nicotine regulates NPY neurons in hypothalamus. Acute systemic nicotine exposure decreased hypothalamic NPY mRNA and ARC NPY immunoreactivity [216]. Similarly, acute ICV administration of nicotine reduced ARC NPY immunoreactivity [217]. By contrast, Rangani et al. [218] reported that acute systemic nicotine treatment enhanced and restored colchicine-induced reduction in ARC NPY-IR cells to basal levels. Studies report conflicting results regarding the effects of chronic nicotine treatment on ARC NPY. Some studies showed that chronic systemic nicotine administration in rats increased hypothalamic NPY mRNA levels [216, 219]. However, Martínez de Morentin et al. [162] reported a decrease in ARC NPY mRNA expression. Chronic maternal nicotine exposure reduced ARC NPY mRNA also in newborn monkeys [220]. On the other hand, chronic systemic nicotine decreased ARC NPY immonureactivity in some studies [216, 217] and increased in another [219]. In the literature, several studies also investigated the effect of nicotine on hypothalamic AgRP expression. Some of these studies [158, 159] reported that chronic systemic nicotine treatment increased AgRP mRNA expression in rodent hypothalamus, whereas Martínez de Morentin et al. [162] reported a reduction in ARC AgRP mRNA expression. In the study by Younes-Rapozo et al. [163], maternal nicotine exposure during lactation did not change the number of AgRP-IR cells in the ARC nucleus of adult progeny. Some anatomical and electrophysiological findings also support the nicotinic regulation of NPY/AgRP neurons in the ARC nucleus. Cholinergic axons terminate on NPY neurons [164] and nicotinic receptors (α4, α7, β2) are expressed in the ARC nucleus [13, 137, 221]. Furthermore, nicotine depolarized NPY neurons, and increased the frequency of action potentials through α4β2 and α7 nicotinic receptors in hypothalamic ARC slices [164]. Based on the observation that NPY neurons highly coexpress AgRP in the ARC nucleus, it is possible that these nicotinic receptors may also regulate AgRP activity. In parallel, Huang and Winzer-Serhan [158] showed that chronic systemic nicotine administration increased both NPY and AgRP mRNAs, an effect that was blocked by α4β2 nAChR antagonists.

Different groups, using different types of stressors and different nicotine exposure regimens, have investigated the regulation of NPY and AgRP neuron activity by nicotine during the stress response. However the results are somewhat contradictory and preclude reaching definite conclusions. Further research in this field is warranted.

9. OPIOID PEPTIDES

Opioid peptides play essential roles in diverse physiological processes such as pain, feeding behavior, learning and memory, reward and stress [222-226]. Endogenous opioid peptides, β-endorphin, enkephalins and dynorphins are derived from three precursor peptides in the brain: POMC, proenkephalin (PENK) and prodynorphin (PDYN), respectively. As mentioned above, the one principle site for POMC-expressing neurons in the brain is the ARC nucleus in the hypothalamus. β-endorphin is released from the axon terminals of ARC POMC neurons [227]. On the other hand, the expression sites for PENK and PDYN mRNAs are more widespread in the rodent brain. PENK mRNA is highly expressed in the hypothalamus, especially in the anterior nucleus, parvocellular PVN, ventromedial nucleus, LHA and perifornical area [228]. Hypothalamus also displays intense PDYN mRNA labeling. Among the regions expressing the highest levels of PDYN mRNA are the magnocellular PVN, supraoptic nucleus, ventromedial and dorsomedial hypothalamic nuclei, LHA and perifornical area [229]. Interestingly, enkephalin is co-expressed in 20% of PVN CRH neurons and CRH is co-expressed in 40% of PVN enkephalin neurons [230]. Paraventricular CRH neurons also co-express dynorphin immunoreactivity [231]. Endogenous opioid peptides exert their effects via, μ- (MOR), δ- (DOR), and κ- (KOR) opioid receptors. MORs and DORs are the main receptors for β-endorphin and enkephalins. β-endorphin binds with a higher affinity to MOR, whereas enkephalins have a higher affinity for DOR [232]. Dynorphins are the main endogenous ligands for KOR [233].

β-endorphin, enkephalin and dynorphin-containing neurons innervate the PVN [234, 235]. In parallel, MOR, DOR and KOR mRNAs are expressed in the PVN [236, 237]. Additionally, MOR-IR and KOR-IR fibers are also present in the PVN [238, 239]. Opioid peptides are generally considered as inhibitors of the HPA axis by many studies. ICV [240] or intra-PVN [241] administration of β-endorphin or dynorphin decreased CRH secretion. Furthermore, ICV β-endorphin blocked the hypotension induced elevation of CRH [240]. Addition of β-endorphin and other MOR agonists, enkephalin analogs, or KOR agonists suppressed in vitro release of CRH from the hypothalamus [242, 243]. However, there are other studies, which show the excitatory effects of opioid peptides on the HPA axis. These studies showed that β-endorphin and other MOR agonists, enkephalin analogs or KOR agonists increased CRH release from hypothalamus in vitro [244-246]. ICV administration of β-endorphin in rats increased PVN CRH mRNA [247], plasma ACTH [248] and CORT [249]. Furthermore, ICV anti-β-endorphin gamma globulin injection attenuated restraint stress-induced ACTH increase [248]. Acute ICV administration of MOR-and DOR agonists increased plasma ACTH and CORT in rats, whereas chronic treatments led to tolerance [250, 251]. ICV enkephalin administration also potentiated mild stress-induced plasma ACTH and CORT elevations [252].

Studies show that opioid peptides and their mRNAs are regulated by stress. Psychological stress such as tail-pinch and fox odour [253] or forced walking stress [254] significantly increased β-endorphin in the ARC nucleus. However, conditioned fear-induced stress decreased β-endorphin levels in the hypothalamus [255]. Cold stress, a type of physical stress, enhanced β-endorphin immunoreactivity and reduced dynorphin immunoreactivity in the hypothalamus [256]. Acute footshock stress increased dynorphin immunoreactivity in the hypothalamus [257]. Environment-induced conditioned suppression of motility and forced swimming-induced immobility increased dynorphin and decreased met- and leu-enkephalin levels in the hypothalamus [258]. In parallel, prolonged single housing down-regulated met-enkephalin-Arg(6) Phe(7) levels in the hypothalamus [259]. However, chronic mild stress increased enkephalin gene expression in the PVN of hypothalamus [260]. Chronic variable stress [261] and social deprivation [262] also increased enkephalin mRNA and immunoreactivity in the hypothalamus. Additionally, maternal separation increased Met-enkephalin-Arg6Phe7 levels in the hypothalamus. These findings indicate that the response of the opioidergic systems to stress varies according to the type of stress encountered.

Approximately 90% and 30% of the orexin neurons in the LHA contain dynorphin and enkephalin, respectively [263, 264]. Additionally, 30% of POMC neurons in the ARC co-express dynorphin [265]. A substantial amount of evidence indicating the presence of nicotinic receptors on the ARC POMC neurons and LHA orexin neurons implies that nicotinic regulation of β-endorphin and enkephalin synthesis in the ARC nucleus and LHA is possible. Consequently, nicotine may also regulate the opioid peptide release from the axon terminals of these neurons in the PVN and modulate HPA axis activity. Indeed, numerous studies demonstrate that systemic nicotine administration changes the opioid peptide and mRNA levels in the hypothalamus. Acute nicotine injections increased β-endorphin release from hypothalamic cultures, whereas the response desensitized with the chronic treatment [266]. In vivo studies showed that acute and chronic systemic nicotine treatments decreased β-endorphin content in the hypothalamus [161, 267]. Höllt and Horn [268] reported that acute systemic nicotine injection and chronic systemic nicotine infusion via osmotic minipump for 4 days increased PDYN mRNA levels in the whole hypothalamus [268], whereas in other studies an opposite finding was obtained. Isola et al. [269] showed that chronic systemic nicotine injections for 14 days decreased dynorphin immunoreactivity in the hypothalamus. We [270] also observed decreased PDYN mRNA expression in the LHA following chronic systemic nicotine injections for 6 days. Acute and chronic systemic nicotine administration did not change PENK mRNA [268] or [met5]-enkephalin [267] in the hypothalamus. Also, six nicotine injections repeated every 30 minutes did not alter met-enkephalin levels in the hypothalamus [271]. However, these studies used whole hypothalamus and did not analyze subregional effects. On the other hand, enkephalinergic cells localized in the hypothalamic PVN may be yet other targets for nicotine. Nicotine administration by gavage for 5 days increased enkephalin mRNA in the PVN [272]. In parallel, Loughlin et al. [273] also showed that an acute single dose of nicotine induced c-fos expression in the enkephalin cells of PVN. Although the evidence mentioned above supports the possibility that opioidergic signaling in the hypothalamus may participate in the nicotine-induced activation of the HPA axis activity, there are some studies that argue the opposite. These studies reported that systemic injection of opioid receptor antagonists, naloxone or naltrexone, did not suppress nicotine or epibatidine (an agonist of nAChR)-induced blood CORT levels [57, 274]. However, when selective KOR antagonists are injected, nicotine-induced CORT elevations were blocked in rats [275].

Human studies also show that chronic nicotine exposure regulates the HPA axis activity through altered opioid signaling. Stress responses are reduced in smokers and stress increases the vulnerability to relapse in those who quitted [276]. Opioid receptor antagonists increase serum ACTH levels both in smokers and nonsmokers with smokers exhibiting less ACTH elevation than nonsmokers [277].

While various stressors affect the hypothalamic opioidergic systems differently, the effect of nicotine on opioid signaling is also inconsistent. Different opioidergic peptides, acting on different receptors located in the hypothalamus and different routes and durations of nicotine administration employed in reported findings preclude making direct comparisons. Future research may elucidate the effect of nicotine and the nicotinic cholinergic system on opioidergic activity in the hypothalamus during the stress response.

CONCLUSION

Hypothalamus and hypothalamic neuroactive peptides are key players in the stress response, which is the major survival tool an organism possesses. These peptides not only integrate the stess response, but also mediate in other physiological functions, including, but not limited to feeding and energy balance, reward, autonomic responses, sleep/wakefulness, and sexual behavior. The localization and connections of the neuropeptide neurons, their receptors and mRNAs within the hypothalamic nuclei provide clues to their functions and interactions. The nicotinic cholinergic system is apparently one of the major modulators of the HPA axis and there is substantial evidence supporting its regulatory role in the hypothalamus on the neuractive peptides discussed in this review. However, most of the studies showing the nicotinic regulation of hypothalamic neuropeptides have employed systemic administration of nicotine. Currently, we know little about the nicotinic receptor distribution on neuropeptide-synthesizing neurons in the hypothalamus and the physiological responses they trigger in these neurons. In addition, the effects of selective nicotinic agonists/antagonists on the HPA axis activity should be investigated with administration of the drugs directly into the discrete hypothalamic nuclei during basal and stress-induced conditions. Although sex, region and stressor type related differences are observed, based on our current understanding, overall nicotine and the nicotinic cholinergic system evidently supports the HPA axis driven stress response and modulates the activity of the neuropeptides involved. However, considering the controversial reports in some cases, one should be cautious and avoid making generalizations. Especially studies that aim at elucidating the mechanisms underlying the nicotinic regulation of the hypothalamic neuropeptides directly through the hypothalamic nicotinic receptors are warranted for a clearer picture. Disturbed functioning of the HPA axis and hypothalamic neuropeptides results in pathologies such as depression, anxiety disorders and obesity, which are common and significant health problems. A better understanding of the hypothalamic peptides, their interrelations and their nicotinic regulation will also aid in drug development and provide means to cope with these diseases. Considering that nicotine, specifically in the form of tobacco products, is also an abused substance and the major cause of preventable deaths, a better understanding of the role of the nicotinic cholinergic system on the HPA axis will aid in developing improved therapeutic strategies for smoking cessation.

Acknowledgements

Declared none.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no conflict of interest, financial or otherwise.

REFERENCES

  • 1.Bruijnzeel A.W. Tobacco addiction and the dysregulation of brain stress systems. Neurosci. Biobehav. Rev. 2012;36(5):1418–1441. doi: 10.1016/j.neubiorev.2012.02.015. [http://dx.doi.org/10.1016/j.neubiorev.2012.02.015]. [PMID: 22405889]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Burke A.R., Miczek K.A. Stress in adolescence and drugs of abuse in rodent models: role of dopamine, CRF, and HPA axis. Psychopharmacology (Berl.) 2014;231(8):1557–1580. doi: 10.1007/s00213-013-3369-1. [http:// dx.doi.org/10.1007/s00213-013-3369-1]. [PMID: 24370534]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Hunter R.G. Stress and the α7 nicotinic acetylcholine receptor. Curr. Drug Targets. 2012;13(5):607–612. doi: 10.2174/138945012800398982. [http://dx.doi.org/10.2174/ 138945012800398982]. [PMID: 22300027]. [DOI] [PubMed] [Google Scholar]
  • 4.Lovallo W.R. Cortisol secretion patterns in addiction and addiction risk. Int. J. Psychophysiol. 2006;59(3):195–202. doi: 10.1016/j.ijpsycho.2005.10.007. [http://dx.doi. org/10.1016/j.ijpsycho.2005.10.007]. [PMID: 16434116]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.McCormick C.M. An animal model of social instability stress in adolescence and risk for drugs of abuse. Physiol. Behav. 2010;99(2):194–203. doi: 10.1016/j.physbeh.2009.01.014. [http://dx.doi.org/10.1016/j.physbeh.2009.01.014]. [PMID: 19419678]. [DOI] [PubMed] [Google Scholar]
  • 6.Perreau-Lenz S., Spanagel R. Clock genes × stress × reward interactions in alcohol and substance use disorders. Alcohol. 2015;49(4):351–357. doi: 10.1016/j.alcohol.2015.04.003. [http://dx.doi.org/10.1016/j.alcohol.2015.04.003]. [PMID: 25943583]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Rasmusson A.M., Picciotto M.R., Krishnan-Sarin S. Smoking as a complex but critical covariate in neurobiological studies of posttraumatic stress disorders: a review. J. Psychopharmacol. (Oxford) 2006;20(5):693–707. doi: 10.1177/0269881106060193. [http://dx.doi.org/10.1177/0269881106060193]. [PMID: 16401662]. [DOI] [PubMed] [Google Scholar]
  • 8.Richards J.M., Stipelman B.A., Bornovalova M.A., Daughters S.B., Sinha R., Lejuez C.W. Biological mechanisms underlying the relationship between stress and smoking: state of the science and directions for future work. Biol. Psychol. 2011;88(1):1–12. doi: 10.1016/j.biopsycho.2011.06.009. [http://dx.doi.org/10.1016/j.biopsycho.2011.06.009]. [PMID: 21741435]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Rohleder N., Kirschbaum C. The hypothalamic-pituitary-adrenal (HPA) axis in habitual smokers. Int. J. Psychophysiol. 2006;59(3):236–243. doi: 10.1016/j.ijpsycho.2005.10.012. [http://dx.doi.org/10.1016/j.ijpsycho.2005.10.012]. [PMID: 16325948]. [DOI] [PubMed] [Google Scholar]
  • 10.Ulrich-Lai Y.M., Herman J.P. Neural regulation of endocrine and autonomic stress responses. Nat. Rev. Neurosci. 2009;10(6):397–409. doi: 10.1038/nrn2647. [http://dx.doi.org/10.1038/nrn2647]. [PMID: 19469025]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Volkow N.D., Wang G.J., Baler R.D. 2011. [Google Scholar]
  • 12.Clarke P.B., Schwartz R.D., Paul S.M., Pert C.B., Pert A. Nicotinic binding in rat brain: autoradiographic comparison of [3H]acetylcholine, [3H]nicotine, and [125I]-alpha-bungarotoxin. J. Neurosci. 1985;5(5):1307–1315. doi: 10.1523/JNEUROSCI.05-05-01307.1985. [PMID: 3998824]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Okuda H., Shioda S., Nakai Y., Nakayama H., Okamoto M., Nakashima T. Immunocytochemical localization of nicotinic acetylcholine receptor in rat hypothalamus. Brain Res. 1993;625(1):145–151. doi: 10.1016/0006-8993(93)90147-f. [http://dx.doi.org/10.1016/0006-8993(93)90147-F]. [PMID: 8242393]. [DOI] [PubMed] [Google Scholar]
  • 14.Sharp B.M., Nicol S., Cummings S., Seybold V. Distribution of nicotinic binding sites with respect to CRF and neurophysin immunoreactive perikarya within the rat hypothalamus. Brain Res. 1987;422(2):361–366. doi: 10.1016/0006-8993(87)90945-0. [http://dx.doi.org/10.1016/0006-8993(87) 90945-0]. [PMID: 3499957]. [DOI] [PubMed] [Google Scholar]
  • 15.Fosnocht A.Q., Briand L.A. Substance use modulates stress reactivity: Behavioral and physiological outcomes. Physiol. Behav. 2016;166:32–42. doi: 10.1016/j.physbeh.2016.02.024. [http://dx.doi.org/10.1016/j.physbeh.2016.02. 024]. [PMID: 26907955]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Burbach J.P. What are neuropeptides? Methods Mol. Biol. 2011;789:1–36. doi: 10.1007/978-1-61779-310-3_1. [http://dx.doi.org/10.1007/978-1-61779-310-3_1]. [PMID: 21922398]. [DOI] [PubMed] [Google Scholar]
  • 17.Parker J.A., Bloom S.R. Hypothalamic neuropeptides and the regulation of appetite. Neuropharmacology. 2012;63(1):18–30. doi: 10.1016/j.neuropharm.2012.02.004. [http://dx.doi.org/10.1016/j.neuropharm.2012.02.004]. [PMID: 22369786]. [DOI] [PubMed] [Google Scholar]
  • 18.Herman J.P., McKlveen J.M., Ghosal S., Kopp B., Wulsin A., Makinson R., Scheimann J., Myers B. Regulation of the Hypothalamic-Pituitary-Adrenocortical Stress Response. Compr. Physiol. 2016;6(2):603–621. doi: 10.1002/cphy.c150015. [http://dx.doi.org/10.1002/cphy. c150015]. [PMID: 27065163]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Herman J.P., Tasker J.G. Paraventricular Hypothalamic Mechanisms of Chronic Stress Adaptation. Front. Endocrinol. (Lausanne) 2016;7:137. doi: 10.3389/fendo.2016.00137. [http://dx.doi.org/10.3389/fendo.2016. 00137]. [PMID: 27843437]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.de Goeij D.C., Jezova D., Tilders F.J. Repeated stress enhances vasopressin synthesis in corticotropin releasing factor neurons in the paraventricular nucleus. Brain Res. 1992;577(1):165–168. doi: 10.1016/0006-8993(92)90552-k. [http://dx.doi.org/10.1016/0006-8993(92)90552-K]. [PMID: 1521142]. [DOI] [PubMed] [Google Scholar]
  • 21.de Goeij D.C., Kvetnansky R., Whitnall M.H., Jezova D., Berkenbosch F., Tilders F.J. Repeated stress-induced activation of corticotropin-releasing factor neurons enhances vasopressin stores and colocalization with corticotropin-releasing factor in the median eminence of rats. Neuroendocrinology. 1991;53(2):150–159. doi: 10.1159/000125712. [http://dx.doi.org/10.1159/000125712]. [PMID: 1849619]. [DOI] [PubMed] [Google Scholar]
  • 22.Hauger R.L., Dautzenberg F.M. Regulation of the Stress Response by Corticotropin-Releasing Factor Receptors. In: Conn P.M., Freeman M.E., editors. Neuroendocrinology in Physiology and Medicine. Totowa, New Jersey: Humana Press; 2000. pp. 261–286. [http://dx.doi.org/10.1007/978-1-59259-707-9_15] [Google Scholar]
  • 23.Goel N., Workman J.L., Lee T.T., Innala L., Viau V. Sex differences in the HPA axis. Compr. Physiol. 2014;4(3):1121–1155. doi: 10.1002/cphy.c130054. [http://dx.doi.org/10.1002/cphy.c130054]. [PMID: 24944032]. [DOI] [PubMed] [Google Scholar]
  • 24.McEwen B.S., Milner T.A. Understanding the broad influence of sex hormones and sex differences in the brain. J. Neurosci. Res. 2017;95(1-2):24–39. doi: 10.1002/jnr.23809. [http://dx.doi.org/10.1002/jnr.23809]. [PMID: 27870427]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Jennes L., Langub M.C. Endocrine Targets in the Brain. In: Conn P.M., Freeman M.E., editors. Neuroendocrinology in Physiology and Medicine. Totowa, New Jersey: Humana Press; 2000. pp. 101–103. [http://dx.doi.org/10.1007/978-1-59259-707-9_6] [Google Scholar]
  • 26.Bangasser D.A., Wicks B. Sex-specific mechanisms for responding to stress. J. Neurosci. Res. 2017;95(1-2):75–82. doi: 10.1002/jnr.23812. [http://dx.doi. org/10.1002/jnr.23812]. [PMID: 27870416]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Koob G.F. The role of CRF and CRF-related peptides in the dark side of addiction. Brain Res. 2010;1314:3–14. doi: 10.1016/j.brainres.2009.11.008. [http://dx.doi.org/ 10.1016/j.brainres.2009.11.008]. [PMID: 19912996]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Shalev U., Erb S., Shaham Y. Role of CRF and other neuropeptides in stress-induced reinstatement of drug seeking. Brain Res. 2010;1314:15–28. doi: 10.1016/j.brainres.2009.07.028. [http://dx.doi.org/10.1016/j.brainres.2009. 07.028]. [PMID: 19631614]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Tago H., McGeer P.L., Bruce G., Hersh L.B. Distribution of choline acetyltransferase-containing neurons of the hypothalamus. Brain Res. 1987;415(1):49–62. doi: 10.1016/0006-8993(87)90268-x. [http://dx.doi.org/10.1016/0006-8993(87)90268-X]. [PMID: 3304532]. [DOI] [PubMed] [Google Scholar]
  • 30.Ruggiero D.A., Giuliano R., Anwar M., Stornetta R., Reis D.J. Anatomical substrates of cholinergic-autonomic regulation in the rat. J. Comp. Neurol. 1990;292(1):1–53. doi: 10.1002/cne.902920102. [http://dx.doi.org/ 10.1002/cne.902920102]. [PMID: 2312784]. [DOI] [PubMed] [Google Scholar]
  • 31.Shoji M., Share L., Crofton J.T., Brooks D.P. The effect on vasopressin release of microinjection of cholinergic agonists into the paraventricular nucleus of conscious rats. J. Neuroendocrinol. 1989;1(6):401–406. doi: 10.1111/j.1365-2826.1989.tb00138.x. [http://dx.doi.org/10.1111/j.1365-2826.1989. tb00138.x]. [PMID: 19210408]. [DOI] [PubMed] [Google Scholar]
  • 32.Mugnaini M., Tessari M., Tarter G., Merlo Pich E., Chiamulera C., Bunnemann B. Upregulation of [3H]methyllycaconitine binding sites following continuous infusion of nicotine, without changes of alpha7 or alpha6 subunit mRNA: an autoradiography and in situ hybridization study in rat brain. Eur. J. Neurosci. 2002;16(9):1633–1646. doi: 10.1046/j.1460-9568.2002.02220.x. [http://dx.doi.org/10.1046/j.1460-9568.2002. 02220.x]. [PMID: 12431215]. [DOI] [PubMed] [Google Scholar]
  • 33.Deneris E.S., Connolly J., Boulter J., Wada E., Wada K., Swanson L.W., Patrick J., Heinemann S. Primary structure and expression of beta 2: a novel subunit of neuronal nicotinic acetylcholine receptors. Neuron. 1988;1(1):45–54. doi: 10.1016/0896-6273(88)90208-5. [http://dx.doi.org/10.1016/ 0896-6273(88)90208-5]. [PMID: 3272154]. [DOI] [PubMed] [Google Scholar]
  • 34.Hill J.A., Jr, Zoli M., Bourgeois J.P., Changeux J.P. Immunocytochemical localization of a neuronal nicotinic receptor: the beta 2-subunit. J. Neurosci. 1993;13(4):1551–1568. doi: 10.1523/JNEUROSCI.13-04-01551.1993. [PMID: 8463835]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Buckingham J.C., Hodges J.R. Hypothalamic receptors influencing the secretion of corticotrophin releasing hormone in the rat. J. Physiol. 1979;290(2):421–431. doi: 10.1113/jphysiol.1979.sp012780. [http://dx.doi.org/10.1113/ jphysiol.1979.sp012780]. [PMID: 38334]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Hillhouse E.W., Milton N.G. Effect of acetylcholine and 5-hydroxytryptamine on the secretion of corticotrophin-releasing factor-41 and arginine vasopressin from the rat hypothalamus in vitro. J. Endocrinol. 1989;122(3):713–718. doi: 10.1677/joe.0.1220713. [http://dx.doi.org/10.1677/ joe.0.1220713]. [PMID: 2572662]. [DOI] [PubMed] [Google Scholar]
  • 37.Raber J., Koob G.F., Bloom F.E. Interleukin-2 (IL-2) induces corticotropin-releasing factor (CRF) release from the amygdala and involves a nitric oxide-mediated signaling; comparison with the hypothalamic response. J. Pharmacol. Exp. Ther. 1995;272(2):815–824. [PMID: 7853199]. [PubMed] [Google Scholar]
  • 38.Sithichoke N., Marotta S.F. Cholinergic influences on hypothalamic-pituitary-adrenocortical activity of stressed rats: an approach utilizing agonists and antagonists. Acta Endocrinol. (Copenh.) 1978;89(4):726–736. doi: 10.1530/acta.0.0890726. [PMID: 716778]. [DOI] [PubMed] [Google Scholar]
  • 39.Matta S.G., Beyer H.S., McAllen K.M., Sharp B.M. Nicotine elevates rat plasma ACTH by a central mechanism. J. Pharmacol. Exp. Ther. 1987;243(1):217–226. [PMID: 2822898]. [PubMed] [Google Scholar]
  • 40.Plotsky P.M., Otto S., Sutton S. Neurotransmitter modulation of corticotropin releasing factor secretion into the hypophysial-portal circulation. Life Sci. 1987;41(10):1311–1317. doi: 10.1016/0024-3205(87)90211-6. [http://dx.doi.org/ 10.1016/0024-3205(87)90211-6]. [PMID: 3498106]. [DOI] [PubMed] [Google Scholar]
  • 41.Ohmori N., Itoi K., Tozawa F., Sakai Y., Sakai K., Horiba N., Demura H., Suda T. Effect of acetylcholine on corticotropin-releasing factor gene expression in the hypothalamic paraventricular nucleus of conscious rats. Endocrinology. 1995;136(11):4858–4863. doi: 10.1210/endo.136.11.7588217. [http://dx.doi.org/10.1210/endo.136.11.7588217]. [PMID: 7588217]. [DOI] [PubMed] [Google Scholar]
  • 42.Schäfer M.K., Eiden L.E., Weihe E. Cholinergic neurons and terminal fields revealed by immunohistochemistry for the vesicular acetylcholine transporter. II. The peripheral nervous system. Neuroscience. 1998;84(2):361–376. doi: 10.1016/s0306-4522(97)80196-0. [http://dx.doi.org/10.1016/S0306-4522(97)80196-0]. [PMID: 9539210]. [DOI] [PubMed] [Google Scholar]
  • 43.Schäfer M.K., Weihe E., Varoqui H., Eiden L.E., Erickson J.D. Distribution of the vesicular acetylcholine transporter (VAChT) in the central and peripheral nervous systems of the rat. J. Mol. Neurosci. 1994;5(1):1–26. doi: 10.1007/BF02736691. [http://dx.doi.org/10.1007/BF02736691]. [PMID: 7857778]. [DOI] [PubMed] [Google Scholar]
  • 44.Okuda H., Shioda S., Nakai Y., Nakayama H., Okamoto M., Nakashima T. The presence of corticotropin-releasing factor-like immunoreactive synaptic vesicles in axon terminals with nicotinic acetylcholine receptor-like immunoreactivity in the median eminence of the rat. Neurosci. Lett. 1993;161(2):183–186. doi: 10.1016/0304-3940(93)90289-w. [http:// dx.doi.org/10.1016/0304-3940(93)90289-W]. [PMID: 8272263]. [DOI] [PubMed] [Google Scholar]
  • 45.Matta S.G., Balfour D.J., Benowitz N.L., Boyd R.T., Buccafusco J.J., Caggiula A.R., Craig C.R., Collins A.C., Damaj M.I., Donny E.C., Gardiner P.S., Grady S.R., Heberlein U., Leonard S.S., Levin E.D., Lukas R.J., Markou A., Marks M.J., McCallum S.E., Parameswaran N., Perkins K.A., Picciotto M.R., Quik M., Rose J.E., Rothenfluh A., Schafer W.R., Stolerman I.P., Tyndale R.F., Wehner J.M., Zirger J.M. Guidelines on nicotine dose selection for in vivo research. Psychopharmacology (Berl.) 2007;190(3):269–319. doi: 10.1007/s00213-006-0441-0. [http://dx.doi.org/10.1007/s00213-006-0441-0]. [PMID: 16896961]. [DOI] [PubMed] [Google Scholar]
  • 46.Matta S.G., Fu Y., Valentine J.D., Sharp B.M. Response of the hypothalamo-pituitary-adrenal axis to nicotine. Psychoneuroendocrinology. 1998;23(2):103–113. doi: 10.1016/s0306-4530(97)00079-6. [http://dx.doi.org/10.1016/S0306-4530(97)00079-6]. [PMID: 9621392]. [DOI] [PubMed] [Google Scholar]
  • 47.Matta S.G., Foster C.A., Sharp B.M. Nicotine stimulates the expression of cFos protein in the parvocellular paraventricular nucleus and brainstem catecholaminergic regions. Endocrinology. 1993;132(5):2149–2156. doi: 10.1210/endo.132.5.8386611. [http://dx.doi.org/10.1210/endo.132.5. 8386611]. [PMID: 8386611]. [DOI] [PubMed] [Google Scholar]
  • 48.Balfour D.J., Khullar A.K., Longden A. Effects of nicotine on plasma corticosterone and brain amines in stressed and unstressed rats. Pharmacol. Biochem. Behav. 1975;3(2):179–184. doi: 10.1016/0091-3057(75)90145-8. [http://dx. doi.org/10.1016/0091-3057(75)90145-8]. [PMID: 1170575]. [DOI] [PubMed] [Google Scholar]
  • 49.Siegel R.A., Andersson K., Fuxe K., Eneroth P., Lindbom L.O., Agnati L.F. Rapid and discrete changes in hypothalamic catecholamine nerve terminal systems induced by audiogenic stress, and their modulation by nicotine-relationship to neuroendocrine function. Eur. J. Pharmacol. 1983;91(1):49–56. doi: 10.1016/0014-2999(83)90360-6. [http://dx.doi.org/ 10.1016/0014-2999(83)90360-6]. [PMID: 6617738]. [DOI] [PubMed] [Google Scholar]
  • 50.Gentile N.E., Andrekanic J.D., Karwoski T.E., Czambel R.K., Rubin R.T., Rhodes M.E. Sexually diergic hypothalamic-pituitary-adrenal (HPA) responses to single-dose nicotine, continuous nicotine infusion, and nicotine withdrawal by mecamylamine in rats. Brain Res. Bull. 2011;85(3-4):145–152. doi: 10.1016/j.brainresbull.2011.03.001. [http://dx.doi.org/ 10.1016/j.brainresbull.2011.03.001]. [PMID: 21396990]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.McKlveen J.M., Wilson J.M., Rubin R.T., Rhodes M.E. Sexually diergic, dose-dependent hypothalamic-pituitary-adrenal axis responses to nicotine in a dynamic in vitro perfusion system. J. Pharmacol. Toxicol. Methods. 2010;61(3):311–318. doi: 10.1016/j.vascn.2010.01.009. [http://dx. doi.org/10.1016/j.vascn.2010.01.009]. [PMID: 20117222]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Rhodes M.E., O’Toole S.M., Czambel R.K., Rubin R.T. Male-female differences in rat hypothalamic-pituitary-adrenal axis responses to nicotine stimulation. Brain Res. Bull. 2001;54(6):681–688. doi: 10.1016/s0361-9230(01)00488-9. [http://dx.doi.org/10.1016/S0361-9230(01)00488-9]. [PMID: 11403996]. [DOI] [PubMed] [Google Scholar]
  • 53.van der Voorn B., Hollanders J.J., Ket J.C., Rotteveel J., Finken M.J. Gender-specific differences in hypothalamus-pituitary-adrenal axis activity during childhood: A systematic review and meta-analysis. Biol. Sex Differ. 2017;8:3. doi: 10.1186/s13293-016-0123-5. [http://dx.doi.org/10.1186/ s13293-016-0123-5]. [PMID: 28116043]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Pogun S., Yararbas G. Sex differences in nicotine action. Handb. Exp. Pharmacol. 2009;(192):261–291. doi: 10.1007/978-3-540-69248-5_10. [http://dx.doi.org/10.1007/ 978-3-540-69248-5_10]. [PMID: 19184653]. [DOI] [PubMed] [Google Scholar]
  • 55.al’Absi M., Nakajima M., Allen S., Lemieux A., Hatsukami D. Sex differences in hormonal responses to stress and smoking relapse: a prospective examination. Nicotine Tob. Res. 2015;17(4):382–389. doi: 10.1093/ntr/ntu340. [http://dx.doi.org/10.1093/ntr/ntu340]. [PMID: 25762747]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Kotlyar M., Thuras P., Hatsukami D.K., al’Absi M. Sex differences in physiological response to the combination of stress and smoking. Int. J. Psychophysiol. 2017;118:27–31. doi: 10.1016/j.ijpsycho.2017.05.008. [http://dx.doi. org/10.1016/j.ijpsycho.2017.05.008]. [PMID: 28549539]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57.Yamamoto A., Kiguchi N., Kobayashi Y., Maeda T., Ueno K., Yamamoto C., Kishioka S. Pharmacological relationship between nicotinic and opioid systems in analgesia and corticosterone elevation. Life Sci. 2011;89(25-26):956–961. doi: 10.1016/j.lfs.2011.10.004. [http://dx.doi. org/10.1016/j.lfs.2011.10.004]. [PMID: 22036617]. [DOI] [PubMed] [Google Scholar]
  • 58.Yu G., Chen H., Zhao W., Matta S.G., Sharp B.M. Nicotine self-administration differentially regulates hypothalamic corticotropin-releasing factor and arginine vasopressin mRNAs and facilitates stress-induced neuronal activation. J. Neurosci. 2008;28(11):2773–2782. doi: 10.1523/JNEUROSCI.3837-07.2008. [http://dx.doi.org/10.1523/JNEUROSCI.3837-07.2008]. [PMID: 18337407]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.Chen H., Fu Y., Sharp B.M. Chronic nicotine self-administration augments hypothalamic-pituitary-adrenal responses to mild acute stress. Neuropsychopharmacology. 2008;33(4):721–730. doi: 10.1038/sj.npp.1301466. [http://dx.doi.org/10.1038/sj.npp.1301466]. [PMID: 17551542]. [DOI] [PubMed] [Google Scholar]
  • 60.Kirschbaum C., Wüst S., Hellhammer D. Consistent sex differences in cortisol responses to psychological stress. Psychosom. Med. 1992;54(6):648–657. doi: 10.1097/00006842-199211000-00004. [http://dx.doi.org/10.1097/00006842-199211000-00004]. [PMID: 1454958]. [DOI] [PubMed] [Google Scholar]
  • 61.Mendelson J.H., Sholar M.B., Goletiani N., Siegel A.J., Mello N.K. Effects of low- and high-nicotine cigarette smoking on mood states and the HPA axis in men. Neuropsychopharmacology. 2005;30(9):1751–1763. doi: 10.1038/sj.npp.1300753. [http://dx.doi.org/10.1038/sj.npp.1300753]. [PMID: 15870834]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Wilkins J.N., Carlson H.E., Van Vunakis H., Hill M.A., Gritz E., Jarvik M.E. Nicotine from cigarette smoking increases circulating levels of cortisol, growth hormone, and prolactin in male chronic smokers. Psychopharmacology (Berl.) 1982;78(4):305–308. doi: 10.1007/BF00433730. [http://dx.doi.org/10.1007/BF00433730]. [PMID: 6818588]. [DOI] [PubMed] [Google Scholar]
  • 63.Bugajski J., Gadek-Michalska A., Bugajski A.J. Involvement of prostaglandins in the nicotine-induced pituitary-adrenocortical response during social stress. J. Physiol. Pharmacol. 2002;53(4 Pt 2):847–857. [PMID: 12510868]. [PubMed] [Google Scholar]
  • 64.Fu Y., Matta S.G., Valentine J.D., Sharp B.M. Adrenocorticotropin response and nicotine-induced norepinephrine secretion in the rat paraventricular nucleus are mediated through brainstem receptors. Endocrinology. 1997;138(5):1935–1943. doi: 10.1210/endo.138.5.5122. [http://dx. doi.org/10.1210/endo.138.5.5122]. [PMID: 9112390]. [DOI] [PubMed] [Google Scholar]
  • 65.Brenner T., Mizrachi R., Bodoff M., Weidenfeld J. Evidence that central nicotinic-acetylcholine receptors are involved in the modulation of basal and stress-induced adrenocortical responses. Exp. Neurol. 1986;94(3):735–743. doi: 10.1016/0014-4886(86)90251-7. [http://dx.doi.org/10.1016/ 0014-4886(86)90251-7]. [PMID: 3491000]. [DOI] [PubMed] [Google Scholar]
  • 66.Newman M.B., Nazian S.J., Sanberg P.R., Diamond D.M., Shytle R.D. Corticosterone-attenuating and anxiolytic properties of mecamylamine in the rat. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2001;25(3):609–620. doi: 10.1016/s0278-5846(00)00178-0. [http://dx.doi.org/10.1016/S0278-5846(00)00178-0]. [PMID: 11371000]. [DOI] [PubMed] [Google Scholar]
  • 67.Aboul-Fotouh S. Behavioral effects of nicotinic antagonist mecamylamine in a rat model of depression: prefrontal cortex level of BDNF protein and monoaminergic neurotransmitters. Psychopharmacology (Berl.) 2015;232(6):1095–1105. doi: 10.1007/s00213-014-3745-5. [http://dx.doi.org/ 10.1007/s00213-014-3745-5]. [PMID: 25315361]. [DOI] [PubMed] [Google Scholar]
  • 68.Benwell M.E., Balfour D.J. Effects of chronic nicotine administration on the response and adaptation to stress. Psychopharmacology (Berl.) 1982;76(2):160–162. doi: 10.1007/BF00435271. [http://dx.doi.org/10.1007/ BF00435271]. [PMID: 6805027]. [DOI] [PubMed] [Google Scholar]
  • 69.Cam G.R., Bassett J.R. Effect of prolonged exposure to nicotine and stress on the pituitary-adrenocortical response; the possibility of cross-adaptation. Pharmacol. Biochem. Behav. 1984;20(2):221–226. doi: 10.1016/0091-3057(84)90246-6. [http://dx.doi.org/10.1016/0091-3057(84)90246-6]. [PMID: 6326163]. [DOI] [PubMed] [Google Scholar]
  • 70.Lutfy K., Aimiuwu O., Mangubat M., Shin C.S., Nerio N., Gomez R., Liu Y., Friedman T.C. Nicotine stimulates secretion of corticosterone via both CRH and AVP receptors. J. Neurochem. 2012;120(6):1108–1116. doi: 10.1111/j.1471-4159.2011.07633.x. [PMID: 22191943]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71.Lutfy K., Brown M.C., Nerio N., Aimiuwu O., Tran B., Anghel A., Friedman T.C. Repeated stress alters the ability of nicotine to activate the hypothalamic-pituitary-adrenal axis. J. Neurochem. 2006;99(5):1321–1327. doi: 10.1111/j.1471-4159.2006.04217.x. [http://dx.doi.org/10.1111/j.1471-4159. 2006.04217.x]. [PMID: 17064351]. [DOI] [PubMed] [Google Scholar]
  • 72.Yu G., Sharp B.M. Nicotine modulates multiple regions in the limbic stress network regulating activation of hypophysiotrophic neurons in hypothalamic paraventricular nucleus. J. Neurochem. 2012;122(3):628–640. doi: 10.1111/j.1471-4159.2012.07785.x. [http://dx.doi.org/10.1111/j.1471-4159. 2012.07785.x]. [PMID: 22578217]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73.Schwartz R.D., Lehmann J., Kellar K.J. Presynaptic nicotinic cholinergic receptors labeled by [3H]acetylcholine on catecholamine and serotonin axons in brain. J. Neurochem. 1984;42(5):1495–1498. doi: 10.1111/j.1471-4159.1984.tb02818.x. [http://dx.doi.org/10.1111/j.1471-4159.1984.tb02818.x]. [PMID: 6707650]. [DOI] [PubMed] [Google Scholar]
  • 74.Hall G.H., Turner D.M. Effects of nicotine on the release of 3 H-noradrenaline from the hypothalamus. Biochem. Pharmacol. 1972;21(13):1829–1838. doi: 10.1016/0006-2952(72)90179-7. [http://dx.doi.org/10.1016/0006-2952(72) 90179-7]. [PMID: 4646185]. [DOI] [PubMed] [Google Scholar]
  • 75.O’Leary K.T., Leslie F.M. Enhanced nicotinic acetylcholine receptor-mediated [3H]norepinephrine release from neonatal rat hypothalamus. Neuropharmacology. 2006;50(1):81–88. doi: 10.1016/j.neuropharm.2005.08.013. [http://dx. doi.org/10.1016/j.neuropharm.2005.08.013]. [PMID: 16213535]. [DOI] [PubMed] [Google Scholar]
  • 76.Westfall T.C. Effect of nicotine and other drugs on the release of 3H-norepinephrine and 3H-dopamine from rat brain slices. Neuropharmacology. 1974;13(8):693–700. doi: 10.1016/0028-3908(74)90015-x. [http://dx.doi.org/10.1016/ 0028-3908(74)90015-X]. [PMID: 4216859]. [DOI] [PubMed] [Google Scholar]
  • 77.Sharp B.M., Matta S.G. Detection by in vivo microdialysis of nicotine-induced norepinephrine secretion from the hypothalamic paraventricular nucleus of freely moving rats: dose-dependency and desensitization. Endocrinology. 1993;133(1):11–19. doi: 10.1210/endo.133.1.8391419. [http://dx.doi.org/10.1210/endo.133.1.8391419]. [PMID: 8391419]. [DOI] [PubMed] [Google Scholar]
  • 78.Fu Y., Matta S.G., Brower V.G., Sharp B.M. Norepinephrine secretion in the hypothalamic paraventricular nucleus of rats during unlimited access to self-administered nicotine: An in vivo microdialysis study. J. Neurosci. 2001;21(22):8979–8989. doi: 10.1523/JNEUROSCI.21-22-08979.2001. [PMID: 11698608]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 79.Miklós I.H., Kovács K.J. GABAergic innervation of corticotropin-releasing hormone (CRH)-secreting parvocellular neurons and its plasticity as demonstrated by quantitative immunoelectron microscopy. Neuroscience. 2002;113(3):581–592. doi: 10.1016/s0306-4522(02)00147-1. [http://dx.doi.org/ 10.1016/S0306-4522(02)00147-1]. [PMID: 12150778]. [DOI] [PubMed] [Google Scholar]
  • 80.Wittmann G., Lechan R.M., Liposits Z., Fekete C. Glutamatergic innervation of corticotropin-releasing hormone- and thyrotropin-releasing hormone-synthesizing neurons in the hypothalamic paraventricular nucleus of the rat. Brain Res. 2005;1039(1-2):53–62. doi: 10.1016/j.brainres.2005.01.090. [http://dx.doi.org/10.1016/j.brainres.2005.01.090]. [PMID: 15781046]. [DOI] [PubMed] [Google Scholar]
  • 81.Aubry J.M., Bartanusz V., Pagliusi S., Schulz P., Kiss J.Z. Expression of ionotropic glutamate receptor subunit mRNAs by paraventricular corticotropin-releasing factor (CRF) neurons. Neurosci. Lett. 1996;205(2):95–98. doi: 10.1016/0304-3940(96)12380-6. [http://dx.doi.org/10.1016/0304-3940(96)12380-6]. [PMID: 8907325]. [DOI] [PubMed] [Google Scholar]
  • 82.Cullinan W.E. GABA(A) receptor subunit expression within hypophysiotropic CRH neurons: a dual hybridization histochemical study. J. Comp. Neurol. 2000;419(3):344–351. doi: 10.1002/(sici)1096-9861(20000410)419:3<344::aid-cne6>3.0.co;2-z. [http://dx.doi.org/ 10.1002/(SICI)1096-9861(20000410)419:3<344:AID-CNE6>3.0.CO;2-Z]. [PMID: 10723009]. [DOI] [PubMed] [Google Scholar]
  • 83.Séguéla P., Wadiche J., Dineley-Miller K., Dani J.A., Patrick J.W. Molecular cloning, functional properties, and distribution of rat brain alpha 7: a nicotinic cation channel highly permeable to calcium. J. Neurosci. 1993;13(2):596–604. doi: 10.1523/JNEUROSCI.13-02-00596.1993. [PMID: 7678857]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 84.Yu G., Chen H., Wu X., Matta S.G., Sharp B.M. Nicotine self-administration differentially modulates glutamate and GABA transmission in hypothalamic paraventricular nucleus to enhance the hypothalamic-pituitary-adrenal response to stress. J. Neurochem. 2010;113(4):919–929. doi: 10.1111/j.1471-4159.2010.06654.x. [http://dx.doi.org/10.1111/j.1471-4159.2010.06654.x]. [PMID: 20202080]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 85.Cui B.R., Zhang B.B., Chu C.P., Cui X., Qiu D.L. Nicotine excites corticotropin-releasing hormone mRNA-expressing neuron in the hypothalamic paraventricular nucleus in vitro in rats. Neuroreport. 2016;27(8):580–586. doi: 10.1097/WNR.0000000000000573. [http://dx.doi.org/10.1097/ WNR.0000000000000573]. [PMID: 27022819]. [DOI] [PubMed] [Google Scholar]
  • 86.García A.P., Aitta-aho T., Schaaf L., Heeley N., Heuschmid L., Bai Y., Barrantes F.J., Apergis-Schoute J. Nicotinic α4 Receptor-Mediated Cholinergic Influences on Food Intake and Activity Patterns in Hypothalamic Circuits. PLoS One. 2015;10(8):e0133327. doi: 10.1371/journal.pone.0133327. [http://dx.doi.org/10.1371/journal.pone.0133327]. [PMID: 26247203]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 87.Tsujino N., Sakurai T. Role of orexin in modulating arousal, feeding, and motivation. Front. Behav. Neurosci. 2013;7:28. doi: 10.3389/fnbeh.2013.00028. [http://dx.doi.org/10.3389/fnbeh.2013.00028]. [PMID: 23616752]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 88.Sharf R., Sarhan M., Dileone R.J. Role of orexin/hypocretin in dependence and addiction. Brain Res. 2010;1314:130–138. doi: 10.1016/j.brainres.2009.08.028. [http:// dx.doi.org/10.1016/j.brainres.2009.08.028]. [PMID: 19699189]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 89.Sakurai T., Amemiya A., Ishii M., Matsuzaki I., Chemelli R.M., Tanaka H., Williams S.C., Richardson J.A., Kozlowski G.P., Wilson S., Arch J.R., Buckingham R.E., Haynes A.C., Carr S.A., Annan R.S., McNulty D.E., Liu W.S., Terrett J.A., Elshourbagy N.A., Bergsma D.J., Yanagisawa M. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell. 1998;92(4):573–585. doi: 10.1016/s0092-8674(00)80949-6. [http://dx.doi.org/10.1016/S0092-8674(00) 80949-6]. [PMID: 9491897]. [DOI] [PubMed] [Google Scholar]
  • 90.Sakurai T. Orexins and orexin receptors: implication in feeding behavior. Regul. Pept. 1999;85(1):25–30. doi: 10.1016/s0167-0115(99)00076-2. [http://dx.doi.org/10. 1016/S0167-0115(99)00076-2]. [PMID: 10588447]. [DOI] [PubMed] [Google Scholar]
  • 91.Ferguson A.V., Samson W.K. The orexin/hypocretin system: a critical regulator of neuroendocrine and autonomic function. Front. Neuroendocrinol. 2003;24(3):141–150. doi: 10.1016/s0091-3022(03)00028-1. [http://dx.doi.org/10. 1016/S0091-3022(03)00028-1]. [PMID: 14596809]. [DOI] [PubMed] [Google Scholar]
  • 92.Kenny P.J. Tobacco dependence, the insular cortex and the hypocretin connection. Pharmacol. Biochem. Behav. 2011;97(4):700–707. doi: 10.1016/j.pbb.2010.08.015. [http://dx.doi.org/10.1016/j.pbb.2010.08.015]. [PMID: 20816891]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 93.Baimel C., Borgland S.L., Corrigall W. Cocaine and nicotine research illustrates a range of hypocretin mechanisms in addiction. Vitam. Horm. 2012;89:291–313. doi: 10.1016/B978-0-12-394623-2.00016-0. [http://dx.doi.org/10.1016/B978-0-12-394623-2.00016-0]. [PMID: 22640620]. [DOI] [PubMed] [Google Scholar]
  • 94.Chang H., Saito T., Ohiwa N., Tateoka M., Deocaris C.C., Fujikawa T., Soya H. Inhibitory effects of an orexin-2 receptor antagonist on orexin A- and stress-induced ACTH responses in conscious rats. Neurosci. Res. 2007;57(3):462–466. doi: 10.1016/j.neures.2006.11.009. [http://dx.doi. org/10.1016/j.neures.2006.11.009]. [PMID: 17188385]. [DOI] [PubMed] [Google Scholar]
  • 95.Furlong T.M., Vianna D.M., Liu L., Carrive P. Hypocretin/ orexin contributes to the expression of some but not all forms of stress and arousal. Eur. J. Neurosci. 2009;30(8):1603–1614. doi: 10.1111/j.1460-9568.2009.06952.x. [http://dx.doi.org/10.1111/j.1460-9568.2009.06952.x]. [PMID: 19811530]. [DOI] [PubMed] [Google Scholar]
  • 96.Ida T., Nakahara K., Murakami T., Hanada R., Nakazato M., Murakami N. Possible involvement of orexin in the stress reaction in rats. Biochem. Biophys. Res. Commun. 2000;270(1):318–323. doi: 10.1006/bbrc.2000.2412. [http://dx.doi.org/10.1006/bbrc.2000.2412]. [PMID: 10733946]. [DOI] [PubMed] [Google Scholar]
  • 97.Sakamoto F., Yamada S., Ueta Y. Centrally administered orexin-A activates corticotropin-releasing factor-containing neurons in the hypothalamic paraventricular nucleus and central amygdaloid nucleus of rats: possible involvement of central orexins on stress-activated central CRF neurons. Regul. Pept. 2004;118(3):183–191. doi: 10.1016/j.regpep.2003.12.014. [http://dx.doi.org/10.1016/j.regpep.2003.12.014]. [PMID: 15003835]. [DOI] [PubMed] [Google Scholar]
  • 98.Winsky-Sommerer R., Yamanaka A., Diano S., Borok E., Roberts A.J., Sakurai T., Kilduff T.S., Horvath T.L., de Lecea L. Interaction between the corticotropin-releasing factor system and hypocretins (orexins): a novel circuit mediating stress response. J. Neurosci. 2004;24(50):11439–11448. doi: 10.1523/JNEUROSCI.3459-04.2004. [http://dx.doi.org/ 10.1523/JNEUROSCI.3459-04.2004]. [PMID: 15601950]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 99.Kayaba Y., Nakamura A., Kasuya Y., Ohuchi T., Yanagisawa M., Komuro I., Fukuda Y., Kuwaki T. Attenuated defense response and low basal blood pressure in orexin knockout mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2003;285(3):R581–R593. doi: 10.1152/ajpregu.00671.2002. [http://dx.doi.org/10.1152/ajpregu.00671.2002]. [PMID: 12750151]. [DOI] [PubMed] [Google Scholar]
  • 100.Shirasaka T., Nakazato M., Matsukura S., Takasaki M., Kannan H. Sympathetic and cardiovascular actions of orexins in conscious rats. Am. J. Physiol. 1999;277(6 Pt 2):R1780–R1785. doi: 10.1152/ajpregu.1999.277.6.R1780. [PMID: 10600926]. [DOI] [PubMed] [Google Scholar]
  • 101.Yoshimichi G., Yoshimatsu H., Masaki T., Sakata T. Orexin-A regulates body temperature in coordination with arousal status. Exp. Biol. Med. (Maywood) 2001;226(5):468–476. doi: 10.1177/153537020122600513. [http://dx.doi. org/10.1177/153537020122600513]. [PMID: 11393177]. [DOI] [PubMed] [Google Scholar]
  • 102.Zhang W., Sakurai T., Fukuda Y., Kuwaki T. Orexin neuron-mediated skeletal muscle vasodilation and shift of baroreflex during defense response in mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2006;290(6):R1654–R1663. doi: 10.1152/ajpregu.00704.2005. [http://dx.doi.org/10.1152/ ajpregu.00704.2005]. [PMID: 16410401]. [DOI] [PubMed] [Google Scholar]
  • 103.Plaza-Zabala A., Flores Á., Maldonado R., Berrendero F. Hypocretin/orexin signaling in the hypothalamic paraventricular nucleus is essential for the expression of nicotine withdrawal. Biol. Psychiatry. 2012;71(3):214–223. doi: 10.1016/j.biopsych.2011.06.025. [http://dx.doi.org/10.1016/ j.biopsych.2011.06.025]. [PMID: 21831361]. [DOI] [PubMed] [Google Scholar]
  • 104.Bäckberg M., Hervieu G., Wilson S., Meister B. Orexin receptor-1 (OX-R1) immunoreactivity in chemically identified neurons of the hypothalamus: focus on orexin targets involved in control of food and water intake. Eur. J. Neurosci. 2002;15(2):315–328. doi: 10.1046/j.0953-816x.2001.01859.x. [http://dx.doi.org/10.1046/j.0953-816x.2001.01859.x]. [PMID: 11849298]. [DOI] [PubMed] [Google Scholar]
  • 105.Marcus J.N., Aschkenasi C.J., Lee C.E., Chemelli R.M., Saper C.B., Yanagisawa M., Elmquist J.K. Differential expression of orexin receptors 1 and 2 in the rat brain. J. Comp. Neurol. 2001;435(1):6–25. doi: 10.1002/cne.1190. [http://dx.doi.org/10.1002/cne.1190]. [PMID: 11370008]. [DOI] [PubMed] [Google Scholar]
  • 106.Follwell M.J., Ferguson A.V. Cellular mechanisms of orexin actions on paraventricular nucleus neurones in rat hypothalamus. J. Physiol. 2002;545(Pt 3):855–867. doi: 10.1113/jphysiol.2002.030049. [http://dx.doi.org/10.1113/ jphysiol.2002.030049]. [PMID: 12482891]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 107.Samson W.K., Taylor M.M., Follwell M., Ferguson A.V. Orexin actions in hypothalamic paraventricular nucleus: physiological consequences and cellular correlates. Regul. Pept. 2002;104(1-3):97–103. doi: 10.1016/s0167-0115(01)00353-6. [http://dx.doi.org/10.1016/S0167-0115(01)00353-6]. [PMID: 11830283]. [DOI] [PubMed] [Google Scholar]
  • 108.Shirasaka T., Miyahara S., Kunitake T., Jin Q.H., Kato K., Takasaki M., Kannan H. Orexin depolarizes rat hypothalamic paraventricular nucleus neurons. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2001;281(4):R1114–R1118. doi: 10.1152/ajpregu.2001.281.4.R1114. [http://dx.doi.org/ 10.1152/ajpregu.2001.281.4.R1114]. [PMID: 11557617]. [DOI] [PubMed] [Google Scholar]
  • 109.Al-Barazanji K.A., Wilson S., Baker J., Jessop D.S., Harbuz M.S. Central orexin-A activates hypothalamic-pituitary-adrenal axis and stimulates hypothalamic corticotropin releasing factor and arginine vasopressin neurones in conscious rats. J. Neuroendocrinol. 2001;13(5):421–424. doi: 10.1046/j.1365-2826.2001.00655.x. [http://dx.doi.org/10.1046/j.1365-2826.2001. 00655.x]. [PMID: 11328451]. [DOI] [PubMed] [Google Scholar]
  • 110.Jászberényi M., Bujdosó E., Pataki I., Telegdy G. Effects of orexins on the hypothalamic-pituitary-adrenal system. J. Neuroendocrinol. 2000;12(12):1174–1178. doi: 10.1046/j.1365-2826.2000.00572.x. [http://dx.doi.org/10.1046/j. 1365-2826.2000.00572.x]. [PMID: 11106974]. [DOI] [PubMed] [Google Scholar]
  • 111.Russell S.H., Small C.J., Dakin C.L., Abbott C.R., Morgan D.G., Ghatei M.A., Bloom S.R. The central effects of orexin-A in the hypothalamic-pituitary-adrenal axis in vivo and in vitro in male rats. J. Neuroendocrinol. 2001;13(6):561–566. doi: 10.1046/j.1365-2826.2001.00672.x. [http://dx.doi.org/ 10.1046/j.1365-2826.2001.00672.x]. [PMID: 11412343]. [DOI] [PubMed] [Google Scholar]
  • 112.Pasumarthi R.K., Reznikov L.R., Fadel J. Activation of orexin neurons by acute nicotine. Eur. J. Pharmacol. 2006;535(1-3):172–176. doi: 10.1016/j.ejphar.2006.02.021. [http://dx.doi.org/10.1016/j.ejphar.2006.02.021]. [PMID: 16545369]. [DOI] [PubMed] [Google Scholar]
  • 113.Simmons S.J., Gentile T.A., Mo L., Tran F.H., Ma S., Muschamp J.W. Nicotinic receptor blockade decreases fos immunoreactivity within orexin/hypocretin-expressing neurons of nicotine-exposed rats. Behav. Brain Res. 2016;314:226–233. doi: 10.1016/j.bbr.2016.07.053. [http://dx.doi.org/10.1016/j.bbr.2016.07.053]. [PMID: 27491589]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 114.Kane J.K., Parker S.L., Matta S.G., Fu Y., Sharp B.M., Li M.D. Nicotine up-regulates expression of orexin and its receptors in rat brain. Endocrinology. 2000;141(10):3623–3629. doi: 10.1210/endo.141.10.7707. [http://dx.doi. org/10.1210/endo.141.10.7707]. [PMID: 11014216]. [DOI] [PubMed] [Google Scholar]
  • 115.Hunt N.J., Russell B., Du M.K., Waters K.A., Machaalani R. Changes in orexinergic immunoreactivity of the piglet hypothalamus and pons after exposure to chronic postnatal nicotine and intermittent hypercapnic hypoxia. Eur. J. Neurosci. 2016;43(12):1612–1622. doi: 10.1111/ejn.13246. [http://dx.doi.org/10.1111/ejn.13246]. [PMID: 27038133]. [DOI] [PubMed] [Google Scholar]
  • 116.Liu Z.B., Song N.N., Geng W.Y., Jin W.Z., Li L., Cao Y.X., Qian Y., Zhu D.N., Shen L.L. Orexin-A and respiration in a rat model of smoke-induced chronic obstructive pulmonary disease. Clin. Exp. Pharmacol. Physiol. 2010;37(10):963–968. doi: 10.1111/j.1440-1681.2010.05411.x. [http://dx. doi.org/10.1111/j.1440-1681.2010.05411.x]. [PMID: 20528981]. [DOI] [PubMed] [Google Scholar]
  • 117.Zhou W.L., Gao X.B., Picciotto M.R. Acetylcholine Acts through Nicotinic Receptors to Enhance the Firing Rate of a Subset of Hypocretin Neurons in the Mouse Hypothalamus through Distinct Presynaptic and Postsynaptic Mechanisms. eNeuro. 2015;2(1):e0052. doi: 10.1523/ENEURO.0052-14.2015. [http://dx.doi.org/10.1523/ENEURO.0052-14.2015]. [PMID: 26322330]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 118.Pasumarthi R.K., Fadel J. Stimulation of lateral hypothalamic glutamate and acetylcholine efflux by nicotine: implications for mechanisms of nicotine-induced activation of orexin neurons. J. Neurochem. 2010;113(4):1023–1035. doi: 10.1111/j.1471-4159.2010.06666.x. [http://dx.doi.org/10.1111/ j.1471-4159.2010.06666.x]. [PMID: 20236223]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 119.Plaza-Zabala A., Martín-García E., de Lecea L., Maldonado R., Berrendero F. Hypocretins regulate the anxiogenic-like effects of nicotine and induce reinstatement of nicotine-seeking behavior. J. Neurosci. 2010;30(6):2300–2310. doi: 10.1523/JNEUROSCI.5724-09.2010. [http://dx.doi.org/10.1523/ JNEUROSCI.5724-09.2010]. [PMID: 20147556]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 120.Chung S., Parks G.S., Lee C., Civelli O. Recent updates on the melanin-concentrating hormone (MCH) and its receptor system: lessons from MCH1R antagonists. J. Mol. Neurosci. 2011;43(1):115–121. doi: 10.1007/s12031-010-9411-4. [http://dx.doi.org/10.1007/s12031-010-9411-4]. [PMID: 20582487]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 121.Hervieu G. Melanin-concentrating hormone functions in the nervous system: food intake and stress. Expert Opin. Ther. Targets. 2003;7(4):495–511. doi: 10.1517/14728222.7.4.495. [http://dx.doi.org/10.1517/14728222.7.4.495]. [PMID: 12885269]. [DOI] [PubMed] [Google Scholar]
  • 122.Saito Y., Nagasaki H. The melanin-concentrating hormone system and its physiological functions. Results Probl. Cell Differ. 2008;46:159–179. doi: 10.1007/400_2007_052. [http://dx.doi.org/10.1007/400_2007_052]. [PMID: 18227983]. [DOI] [PubMed] [Google Scholar]
  • 123.Bittencourt J.C. Anatomical organization of the melanin-concentrating hormone peptide family in the mammalian brain. Gen. Comp. Endocrinol. 2011;172(2):185–197. doi: 10.1016/j.ygcen.2011.03.028. [http://dx.doi.org/ 10.1016/j.ygcen.2011.03.028]. [PMID: 21463631]. [DOI] [PubMed] [Google Scholar]
  • 124.Broberger C., De Lecea L., Sutcliffe J.G., Hökfelt T. Hypocretin/orexin- and melanin-concentrating hormone-expressing cells form distinct populations in the rodent lateral hypothalamus: relationship to the neuropeptide Y and agouti gene-related protein systems. J. Comp. Neurol. 1998;402(4):460–474. [http://dx. doi.org/10.1002/(SICI)1096-9861(19981228)402:4<460:AID-CNE3>3.0.CO;2-S]. [PMID: 9862321]. [PubMed] [Google Scholar]
  • 125.Bittencourt J.C., Presse F., Arias C., Peto C., Vaughan J., Nahon J.L., Vale W., Sawchenko P.E. The melanin-concentrating hormone system of the rat brain: an immuno- and hybridization histochemical characterization. J. Comp. Neurol. 1992;319(2):218–245. doi: 10.1002/cne.903190204. [http://dx.doi.org/10.1002/cne.903190204]. [PMID: 1522246]. [DOI] [PubMed] [Google Scholar]
  • 126.Chee M.J., Pissios P., Maratos-Flier E. Neurochemical characterization of neurons expressing melanin-concentrating hormone receptor 1 in the mouse hypothalamus. J. Comp. Neurol. 2013;521(10):2208–2234. doi: 10.1002/cne.23273. [http://dx.doi.org/10.1002/cne.23273]. [PMID: 23605441]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 127.Kennedy A.R., Todd J.F., Dhillo W.S., Seal L.J., Ghatei M.A., O’Toole C.P., Jones M., Witty D., Winborne K., Riley G., Hervieu G., Wilson S., Bloom S.R. Effect of direct injection of melanin-concentrating hormone into the paraventricular nucleus: further evidence for a stimulatory role in the adrenal axis via SLC-1. J. Neuroendocrinol. 2003;15(3):268–272. doi: 10.1046/j.1365-2826.2003.00997.x. [http://dx.doi.org/10. 1046/j.1365-2826.2003.00997.x]. [PMID: 12588515]. [DOI] [PubMed] [Google Scholar]
  • 128.Jezová D., Bartanusz V., Westergren I., Johansson B.B., Rivier J., Vale W., Rivier C. Rat melanin-concentrating hormone stimulates adrenocorticotropin secretion: evidence for a site of action in brain regions protected by the blood-brain barrier. Endocrinology. 1992;130(2):1024–1029. doi: 10.1210/endo.130.2.1310274. [PMID: 1310274]. [DOI] [PubMed] [Google Scholar]
  • 129.Smith D.G., Hegde L.G., Wolinsky T.D., Miller S., Papp M., Ping X., Edwards T., Gerald C.P., Craig D.A. The effects of stressful stimuli and hypothalamic-pituitary-adrenal axis activation are reversed by the melanin-concentrating hormone 1 receptor antagonist SNAP 94847 in rodents. Behav. Brain Res. 2009;197(2):284–291. doi: 10.1016/j.bbr.2008.08.026. [http://dx.doi.org/10.1016/j.bbr.2008.08.026]. [PMID: 18793675]. [DOI] [PubMed] [Google Scholar]
  • 130.Ludwig D.S., Mountjoy K.G., Tatro J.B., Gillette J.A., Frederich R.C., Flier J.S., Maratos-Flier E. Melanin-concentrating hormone: a functional melanocortin antagonist in the hypothalamus. Am. J. Physiol. 1998;274(4 Pt 1):E627–E633. doi: 10.1152/ajpendo.1998.274.4.E627. [PMID: 9575823]. [DOI] [PubMed] [Google Scholar]
  • 131.Bluet-Pajot M.T., Presse F., Voko Z., Hoeger C., Mounier F., Epelbaum J., Nahon J.L. Neuropeptide-E-I antagonizes the action of melanin-concentrating hormone on stress-induced release of adrenocorticotropin in the rat. J. Neuroendocrinol. 1995;7(4):297–303. doi: 10.1111/j.1365-2826.1995.tb00761.x. [http://dx.doi.org/10.1111/j.1365-2826.1995.tb00761.x]. [PMID: 7647772]. [DOI] [PubMed] [Google Scholar]
  • 132.Kim T.K., Han P.L. Physical Exercise Counteracts Stress-induced Upregulation of Melanin-concentrating Hormone in the Brain and Stress-induced Persisting Anxiety-like Behaviors. Exp. Neurobiol. 2016;25(4):163–173. doi: 10.5607/en.2016.25.4.163. [http://dx.doi.org/10.5607/en.2016.25.4.163]. [PMID: 27574483]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 133.Presse F., Hervieu G., Imaki T., Sawchenko P.E., Vale W., Nahon J.L. Rat melanin-concentrating hormone messenger ribonucleic acid expression: marked changes during development and after stress and glucocorticoid stimuli. Endocrinology. 1992;131(3):1241–1250. doi: 10.1210/endo.131.3.1505462. [http://dx.doi.org/10.1210/endo.131.3.1505462]. [PMID: 1505462]. [DOI] [PubMed] [Google Scholar]
  • 134.Bayer L., Risold P.Y., Griffond B., Fellmann D. Rat diencephalic neurons producing melanin-concentrating hormone are influenced by ascending cholinergic projections. Neuroscience. 1999;91(3):1087–1101. doi: 10.1016/s0306-4522(98)00678-2. [http://dx.doi.org/10.1016/S0306-4522(98) 00678-2]. [PMID: 10391486]. [DOI] [PubMed] [Google Scholar]
  • 135.Chang G.Q., Karatayev O., Leibowitz S.F. Prenatal exposure to nicotine stimulates neurogenesis of orexigenic peptide-expressing neurons in hypothalamus and amygdala. J. Neurosci. 2013;33(34):13600–13611. doi: 10.1523/JNEUROSCI.5835-12.2013. [http://dx.doi.org/10.1523/JNEUROSCI.5835-12.2013]. [PMID: 23966683]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 136.Jo Y.H., Wiedl D., Role L.W. Cholinergic modulation of appetite-related synapses in mouse lateral hypothalamic slice. J. Neurosci. 2005;25(48):11133–11144. doi: 10.1523/JNEUROSCI.3638-05.2005. [http://dx.doi.org/10.1523/ JNEUROSCI.3638-05.2005]. [PMID: 16319313]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 137.Wada E., Wada K., Boulter J., Deneris E., Heinemann S., Patrick J., Swanson L.W. Distribution of alpha 2, alpha 3, alpha 4, and beta 2 neuronal nicotinic receptor subunit mRNAs in the central nervous system: a hybridization histochemical study in the rat. J. Comp. Neurol. 1989;284(2):314–335. doi: 10.1002/cne.902840212. [http://dx.doi.org/ 10.1002/cne.902840212]. [PMID: 2754038]. [DOI] [PubMed] [Google Scholar]
  • 138.Voisey J., Carroll L., van Daal A. Melanocortins and their receptors and antagonists. Curr. Drug Targets. 2003;4(7):586–597. doi: 10.2174/1389450033490858. [http://dx.doi.org/10.2174/1389450033490858]. [PMID: 14535656]. [DOI] [PubMed] [Google Scholar]
  • 139.Anderson E.J., Çakir I., Carrington S.J., Cone R.D., Ghamari-Langroudi M., Gillyard T., Gimenez L.E., Litt M.J. 60 YEARS OF POMC: Regulation of feeding and energy homeostasis by α-MSH. J. Mol. Endocrinol. 2016;56(4):T157–T174. doi: 10.1530/JME-16-0014. [http://dx. doi.org/10.1530/JME-16-0014]. [PMID: 26939593]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 140.Elias C.F., Lee C., Kelly J., Aschkenasi C., Ahima R.S., Couceyro P.R., Kuhar M.J., Saper C.B., Elmquist J.K. Leptin activates hypothalamic CART neurons projecting to the spinal cord. Neuron. 1998;21(6):1375–1385. doi: 10.1016/s0896-6273(00)80656-x. [http://dx.doi.org/10.1016/S0896-6273(00)80656-X]. [PMID: 9883730]. [DOI] [PubMed] [Google Scholar]
  • 141.Hahn T.M., Breininger J.F., Baskin D.G., Schwartz M.W. Coexpression of Agrp and NPY in fasting-activated hypothalamic neurons. Nat. Neurosci. 1998;1(4):271–272. doi: 10.1038/1082. [http://dx.doi.org/ 10.1038/1082]. [PMID: 10195157]. [DOI] [PubMed] [Google Scholar]
  • 142.Cawley N.X., Li Z., Loh Y.P. 60 YEARS OF POMC: Biosynthesis, trafficking, and secretion of pro-opiomelanocortin-derived peptides. J. Mol. Endocrinol. 2016;56(4):T77–T97. doi: 10.1530/JME-15-0323. [http://dx.doi.org/ 10.1530/JME-15-0323]. [PMID: 26880796]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 143.Chaki S., Okuyama S. Involvement of melanocortin-4 receptor in anxiety and depression. Peptides. 2005;26(10):1952–1964. doi: 10.1016/j.peptides.2004.11.029. [http:// dx.doi.org/10.1016/j.peptides.2004.11.029]. [PMID: 15979204]. [DOI] [PubMed] [Google Scholar]
  • 144.Roseberry A.G., Stuhrman K., Dunigan A.I. Regulation of the mesocorticolimbic and mesostriatal dopamine systems by α-melanocyte stimulating hormone and agouti-related protein. Neurosci. Biobehav. Rev. 2015;56:15–25. doi: 10.1016/j.neubiorev.2015.06.020. [http://dx.doi.org/10.1016/ j.neubiorev.2015.06.020]. [PMID: 26116876]. [DOI] [PubMed] [Google Scholar]
  • 145.Liposits Z., Sievers L., Paull W.K. Neuropeptide-Y and ACTH-immunoreactive innervation of corticotropin releasing factor (CRF)-synthesizing neurons in the hypothalamus of the rat. An immunocytochemical analysis at the light and electron microscopic levels. Histochemistry. 1988;88(3-6):227–234. doi: 10.1007/BF00570278. [PMID: 2835333]. [DOI] [PubMed] [Google Scholar]
  • 146.Lu X.Y., Barsh G.S., Akil H., Watson S.J. Interaction between alpha-melanocyte-stimulating hormone and corticotropin-releasing hormone in the regulation of feeding and hypothalamo-pituitary-adrenal responses. J. Neurosci. 2003;23(21):7863–7872. doi: 10.1523/JNEUROSCI.23-21-07863.2003. [PMID: 12944516]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 147.Dhillo W.S., Small C.J., Stanley S.A., Jethwa P.H., Seal L.J., Murphy K.G., Ghatei M.A., Bloom S.R. Hypothalamic interactions between neuropeptide Y, agouti-related protein, cocaine- and amphetamine-regulated transcript and alpha-melanocyte-stimulating hormone in vitro in male rats. J. Neuroendocrinol. 2002;14(9):725–730. doi: 10.1046/j.1365-2826.2002.00832.x. [http://dx.doi.org/10.1046/j.1365-2826.2002. 00832.x]. [PMID: 12213133]. [DOI] [PubMed] [Google Scholar]
  • 148.Kas M.J., Bruijnzeel A.W., Haanstra J.R., Wiegant V.M., Adan R.A. Differential regulation of agouti-related protein and neuropeptide Y in hypothalamic neurons following a stressful event. J. Mol. Endocrinol. 2005;35(1):159–164. doi: 10.1677/jme.1.01819. [http://dx.doi.org/10.1677/ jme.1.01819]. [PMID: 16087729]. [DOI] [PubMed] [Google Scholar]
  • 149.Lyson K., McCann S.M. Alpha-melanocyte-stimulating hormone abolishes IL-1- and IL-6-induced corticotropin-releasing factor release from the hypothalamus in vitro. Neuroendocrinology. 1993;58(2):191–195. doi: 10.1159/000126532. [http://dx.doi.org/10.1159/000126532]. [PMID: 8264864]. [DOI] [PubMed] [Google Scholar]
  • 150.Milligan E.D., Nguyen K.T., Deak T., Hinde J.L., Fleshner M., Watkins L.R., Maier S.F. The long term acute phase-like responses that follow acute stressor exposure are blocked by alpha-melanocyte stimulating hormone. Brain Res. 1998;810(1-2):48–58. doi: 10.1016/s0006-8993(98)00869-5. [http://dx.doi.org/10.1016/S0006-8993(98)00869-5]. [PMID: 9813238]. [DOI] [PubMed] [Google Scholar]
  • 151.Papadopoulos A.D., Wardlaw S.L. Endogenous alpha-MSH modulates the hypothalamic-pituitary-adrenal response to the cytokine interleukin-1beta. J. Neuroendocrinol. 1999;11(4):315–319. doi: 10.1046/j.1365-2826.1999.00327.x. [http://dx.doi.org/10.1046/j.1365-2826.1999.00327.x]. [PMID: 10223286]. [DOI] [PubMed] [Google Scholar]
  • 152.Weiss J.M., Sundar S.K., Cierpial M.A., Ritchie J.C. Effects of interleukin-1 infused into brain are antagonized by alpha-MSH in a dose-dependent manner. Eur. J. Pharmacol. 1991;192(1):177–179. doi: 10.1016/0014-2999(91)90087-7. [http://dx.doi.org/10.1016/0014-2999(91)90087-7]. [PMID: 1645674]. [DOI] [PubMed] [Google Scholar]
  • 153.Zelazowski P., Patchev V.K., Zelazowska E.B., Chrousos G.P., Gold P.W., Sternberg E.M. Release of hypothalamic corticotropin-releasing hormone and arginine-vasopressin by interleukin 1 beta and alpha MSH: studies in rats with different susceptibility to inflammatory disease. Brain Res. 1993;631(1):22–26. doi: 10.1016/0006-8993(93)91181-q. [http:// dx.doi.org/10.1016/0006-8993(93)91181-Q]. [PMID: 8298992]. [DOI] [PubMed] [Google Scholar]
  • 154.García-Gutiérrez M.S., Manzanares J. Overexpression of CB2 cannabinoid receptors decreased vulnerability to anxiety and impaired anxiolytic action of alprazolam in mice. J. Psychopharmacol. (Oxford) 2011;25(1):111–120. doi: 10.1177/0269881110379507. [http://dx.doi.org/10.1177/ 0269881110379507]. [PMID: 20837564]. [DOI] [PubMed] [Google Scholar]
  • 155.Larsen P.J., Mau S.E. Effect of acute stress on the expression of hypothalamic messenger ribonucleic acids encoding the endogenous opioid precursors preproenkephalin A and proopiomelanocortin. Peptides. 1994;15(5):783–790. doi: 10.1016/0196-9781(94)90030-2. [http://dx.doi.org/10.1016/ 0196-9781(94)90030-2]. [PMID: 7984495]. [DOI] [PubMed] [Google Scholar]
  • 156.Baubet V., Fèvre-Montange M., Gay N., Debilly G., Bobillier P., Cespuglio R. Effects of an acute immobilization stress upon proopiomelanocortin (POMC) mRNA levels in the mediobasal hypothalamus: a quantitative in situ hybridization study. Brain Res. Mol. Brain Res. 1994;26(1-2):163–168. doi: 10.1016/0169-328x(94)90087-6. [http://dx.doi.org/10. 1016/0169-328X(94)90087-6]. [PMID: 7854043]. [DOI] [PubMed] [Google Scholar]
  • 157.Makino S., Asaba K., Nishiyama M., Hashimoto K. Decreased type 2 corticotropin-releasing hormone receptor mRNA expression in the ventromedial hypothalamus during repeated immobilization stress. Neuroendocrinology. 1999;70(3):160–167. doi: 10.1159/000054472. [http://dx. doi.org/10.1159/000054472]. [PMID: 10516478]. [DOI] [PubMed] [Google Scholar]
  • 158.Huang L.Z., Winzer-Serhan U.H. Nicotine regulates mRNA expression of feeding peptides in the arcuate nucleus in neonatal rat pups. Dev. Neurobiol. 2007;67(3):363–377. doi: 10.1002/dneu.20348. [http://dx.doi.org/10. 1002/dneu.20348]. [PMID: 17443794]. [DOI] [PubMed] [Google Scholar]
  • 159.Hur Y.N., Hong G.H., Choi S.H., Shin K.H., Chun B.G. High fat diet altered the mechanism of energy homeostasis induced by nicotine and withdrawal in C57BL/6 mice. Mol. Cells. 2010;30(3):219–226. doi: 10.1007/s10059-010-0110-3. [http://dx.doi.org/10.1007/s10059-010-0110-3]. [PMID: 20803089]. [DOI] [PubMed] [Google Scholar]
  • 160.Tapinc D.E., Ilgin R., Kaya E., Gozen O., Ugur M., Koylu E.O., Kanit L., Keser A., Balkan B. Gene expression of pro-opiomelanocortin and melanocortin receptors is regulated in the hypothalamus and mesocorticolimbic system following nicotine administration. Neurosci. Lett. 2017;637:75–79. doi: 10.1016/j.neulet.2016.11.049. [http://dx. doi.org/10.1016/j.neulet.2016.11.049]. [PMID: 27890744]. [DOI] [PubMed] [Google Scholar]
  • 161.Gudehithlu K.P., Duchemin A.M., Tejwani G.A., Neff N.H., Hadjiconstantinou M. Nicotine-induced changes of brain β-endorphin. Neuropeptides. 2012;46(3):125–131. doi: 10.1016/j.npep.2012.03.001. [http://dx.doi. org/10.1016/j.npep.2012.03.001]. [PMID: 22483037]. [DOI] [PubMed] [Google Scholar]
  • 162.Martínez de Morentin P.B., Whittle A.J., Fernø J., Nogueiras R., Diéguez C., Vidal-Puig A., López M. Nicotine induces negative energy balance through hypothalamic AMP-activated protein kinase. Diabetes. 2012;61(4):807–817. doi: 10.2337/db11-1079. [http://dx.doi.org/10.2337/ db11-1079]. [PMID: 22315316]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 163.Younes-Rapozo V., Moura E.G., Manhães A.C., Pinheiro C.R., Santos-Silva A.P., de Oliveira E., Lisboa P.C. Maternal nicotine exposure during lactation alters hypothalamic neuropeptides expression in the adult rat progeny. Food Chem. Toxicol. 2013;58:158–168. doi: 10.1016/j.fct.2013.04.036. [http://dx.doi.org/10.1016/j.fct.2013.04.036]. [PMID: 23623838]. [DOI] [PubMed] [Google Scholar]
  • 164.Huang H., Xu Y., van den Pol A.N. Nicotine excites hypothalamic arcuate anorexigenic proopiomelanocortin neurons and orexigenic neuropeptide Y neurons: similarities and differences. J. Neurophysiol. 2011;106(3):1191–1202. doi: 10.1152/jn.00740.2010. [http://dx.doi.org/10.1152/ jn.00740.2010]. [PMID: 21653710]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 165.Mineur Y.S., Abizaid A., Rao Y., Salas R., DiLeone R.J., Gündisch D., Diano S., De Biasi M., Horvath T.L., Gao X.B., Picciotto M.R. Nicotine decreases food intake through activation of POMC neurons. Science. 2011;332(6035):1330–1332. doi: 10.1126/science.1201889. [http://dx.doi.org/10.1126/science.1201889]. [PMID: 21659607]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 166.Hunter R.G., Kuhar M.J. CART peptides as targets for CNS drug development. Curr. Drug Targets CNS Neurol. Disord. 2003;2(3):201–205. doi: 10.2174/1568007033482896. [http://dx.doi.org/10.2174/1568007033482896]. [PMID: 12769800]. [DOI] [PubMed] [Google Scholar]
  • 167.Kristensen P., Judge M.E., Thim L., Ribel U., Christjansen K.N., Wulff B.S., Clausen J.T., Jensen P.B., Madsen O.D., Vrang N., Larsen P.J., Hastrup S. Hypothalamic CART is a new anorectic peptide regulated by leptin. Nature. 1998;393(6680):72–76. doi: 10.1038/29993. [http://dx.doi.org/10.1038/29993]. [PMID: 9590691]. [DOI] [PubMed] [Google Scholar]
  • 168.Dun S.L., Brailoiu G.C., Yang J., Chang J.K., Dun N.J. Cocaine- and amphetamine-regulated transcript peptide and sympatho-adrenal axis. Peptides. 2006;27(8):1949–1955. doi: 10.1016/j.peptides.2005.10.027. [http://dx. doi.org/10.1016/j.peptides.2005.10.027]. [PMID: 16707193]. [DOI] [PubMed] [Google Scholar]
  • 169.Fekete C., Lechan R.M. Neuroendocrine implications for the association between cocaine- and amphetamine regulated transcript (CART) and hypophysiotropic thyrotropin-releasing hormone (TRH). Peptides. 2006;27(8):2012–2018. doi: 10.1016/j.peptides.2005.11.029. [http://dx.doi.org/10.1016/j. peptides.2005.11.029]. [PMID: 16730860]. [DOI] [PubMed] [Google Scholar]
  • 170.Stanek L.M. Cocaine- and amphetamine related transcript (CART) and anxiety. Peptides. 2006;27(8):2005–2011. doi: 10.1016/j.peptides.2006.01.027. [http://dx.doi.org/ 10.1016/j.peptides.2006.01.027]. [PMID: 16774797]. [DOI] [PubMed] [Google Scholar]
  • 171.Koylu E.O., Balkan B., Kuhar M.J., Pogun S. Cocaine and amphetamine regulated transcript (CART) and the stress response. Peptides. 2006;27(8):1956–1969. doi: 10.1016/j.peptides.2006.03.032. [http://dx.doi.org/10.1016/ j.peptides.2006.03.032]. [PMID: 16822586]. [DOI] [PubMed] [Google Scholar]
  • 172.Douglass J., McKinzie A.A., Couceyro P. PCR differential display identifies a rat brain mRNA that is transcriptionally regulated by cocaine and amphetamine. J. Neurosci. 1995;15(3 Pt 2):2471–2481. doi: 10.1523/JNEUROSCI.15-03-02471.1995. [PMID: 7891182]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 173.Kuhar M.J., Adams S., Dominguez G., Jaworski J., Balkan B. CART peptides. Neuropeptides. 2002;36(1):1–8. doi: 10.1054/npep.2002.0887. [http://dx.doi. org/10.1054/npep.2002.0887]. [PMID: 12147208]. [DOI] [PubMed] [Google Scholar]
  • 174.Koylu E.O., Couceyro P.R., Lambert P.D., Ling N.C., DeSouza E.B., Kuhar M.J. Immunohistochemical localization of novel CART peptides in rat hypothalamus, pituitary and adrenal gland. J. Neuroendocrinol. 1997;9(11):823–833. doi: 10.1046/j.1365-2826.1997.00651.x. [http://dx.doi.org/10. 1046/j.1365-2826.1997.00651.x]. [PMID: 9419833]. [DOI] [PubMed] [Google Scholar]
  • 175.Vrang N., Larsen P.J., Clausen J.T., Kristensen P. Neurochemical characterization of hypothalamic cocaine- amphetamine-regulated transcript neurons. J. Neurosci. 1999;19(10):RC5. doi: 10.1523/JNEUROSCI.19-10-j0006.1999. [PMID: 10234051]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 176.Vrang N., Larsen P.J., Kristensen P., Tang-Christensen M. Central administration of cocaine-amphetamine-regulated transcript activates hypothalamic neuroendocrine neurons in the rat. Endocrinology. 2000;141(2):794–801. doi: 10.1210/endo.141.2.7295. [http://dx.doi.org/10.1210/endo. 141.2.7295]. [PMID: 10650962]. [DOI] [PubMed] [Google Scholar]
  • 177.Stanley S.A., Small C.J., Murphy K.G., Rayes E., Abbott C.R., Seal L.J., Morgan D.G., Sunter D., Dakin C.L., Kim M.S., Hunter R., Kuhar M., Ghatei M.A., Bloom S.R. Actions of cocaine- and amphetamine-regulated transcript (CART) peptide on regulation of appetite and hypothalamo-pituitary axes in vitro and in vivo in male rats. Brain Res. 2001;893(1-2):186–194. doi: 10.1016/s0006-8993(00)03312-6. [http:// dx.doi.org/10.1016/S0006-8993(00)03312-6]. [PMID: 11223006]. [DOI] [PubMed] [Google Scholar]
  • 178.Balkan B., Koylu E., Pogun S., Kuhar M.J. Effects of adrenalectomy on CART expression in the rat arcuate nucleus. Synapse. 2003;50(1):14–19. doi: 10.1002/syn.10213. [http://dx.doi.org/10.1002/syn.10213]. [PMID: 12872289]. [DOI] [PubMed] [Google Scholar]
  • 179.Balkan B., Koylu E.O., Kuhar M.J., Pogun S. The effect of adrenalectomy on cocaine and amphetamine-regulated transcript (CART) expression in the hypothalamic nuclei of the rat. Brain Res. 2001;917(1):15–20. doi: 10.1016/s0006-8993(01)02899-2. [http://dx.doi.org/10.1016/S0006-8993(01)02899-2]. [PMID: 11602226]. [DOI] [PubMed] [Google Scholar]
  • 180.Balkan B., Gozen O., Koylu E.O., Keser A., Kuhar M.J., Pogun S. Region- and sex-specific changes in CART mRNA in rat hypothalamic nuclei induced by forced swim stress. Brain Res. 2012;1479:62–71. doi: 10.1016/j.brainres.2012.08.043. [http://dx.doi.org/10.1016/j.brainres.2012. 08.043]. [PMID: 22960117]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 181.Balkan B., Gozen O., Yararbas G., Koylu E.O., Akinturk S., Kuhar M.J., Pogun S. CART expression in limbic regions of rat brain following forced swim stress: sex differences. Neuropeptides. 2006;40(3):185–193. doi: 10.1016/j.npep.2006.02.001. [http://dx.doi.org/10.1016/j.npep.2006.02. 001]. [PMID: 16644010]. [DOI] [PubMed] [Google Scholar]
  • 182.Balkan B., Keser A., Gozen O., Koylu E.O., Dagci T., Kuhar M.J., Pogun S. Forced swim stress elicits region-specific changes in CART expression in the stress axis and stress regulatory brain areas. Brain Res. 2012;1432:56–65. doi: 10.1016/j.brainres.2011.11.006. [http://dx.doi.org/10.1016/ j.brainres.2011.11.006]. [PMID: 22137563]. [DOI] [PubMed] [Google Scholar]
  • 183.Chigr F., Rachidi F., Tardivel C., Najimi M., Moyse E. Modulation of orexigenic and anorexigenic peptides gene expression in the rat DVC and hypothalamus by acute immobilization stress. Front. Cell. Neurosci. 2014;8:198. doi: 10.3389/fncel.2014.00198. [http://dx.doi.org/10.3389/fncel. 2014.00198]. [PMID: 25100947]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 184.Dandekar M.P., Singru P.S., Kokare D.M., Subhedar N.K. Cocaine- and amphetamine-regulated transcript peptide plays a role in the manifestation of depression: social isolation and olfactory bulbectomy models reveal unifying principles. Neuropsychopharmacology. 2009;34(5):1288–1300. doi: 10.1038/npp.2008.201. [http://dx.doi.org/10.1038/npp. 2008.201]. [PMID: 19005467]. [DOI] [PubMed] [Google Scholar]
  • 185.Gozen O., Balkan B., Yararbas G., Koylu E.O., Kuhar M.J., Pogun S. Sex differences in the regulation of cocaine and amphetamine-regulated transcript expression in hypothalamic nuclei of rats by forced swim stress. Synapse. 2007;61(7):561–568. doi: 10.1002/syn.20395. [http://dx.doi.org/10.1002/syn.20395]. [PMID: 17447258]. [DOI] [PubMed] [Google Scholar]
  • 186.Kong W., Stanley S., Gardiner J., Abbott C., Murphy K., Seth A., Connoley I., Ghatei M., Stephens D., Bloom S. A role for arcuate cocaine and amphetamine-regulated transcript in hyperphagia, thermogenesis, and cold adaptation. FASEB J. 2003;17(12):1688–1690. doi: 10.1096/fj.02-0805fje. [http://dx.doi.org/10.1096/fj.02-0805fje]. [PMID: 12958177]. [DOI] [PubMed] [Google Scholar]
  • 187.Ruginsk S.G., Uchoa E.T., Elias L.L., Antunes-Rodrigues J., Llewellyn-Smith I.J. Hypothalamic cocaine- and amphetamine-regulated transcript and corticotrophin releasing factor neurons are stimulated by extracellular volume and osmotic changes. Neuroscience. 2011;186:57–64. doi: 10.1016/j.neuroscience.2011.04.047. [http://dx.doi.org/10.1016/j.neuroscience. 2011.04.047]. [PMID: 21539900]. [DOI] [PubMed] [Google Scholar]
  • 188.Dandekar M.P., Nakhate K.T., Kokare D.M., Subhedar N.K. Effect of nicotine on feeding and body weight in rats: involvement of cocaine- and amphetamine-regulated transcript peptide. Behav. Brain Res. 2011;219(1):31–38. doi: 10.1016/j.bbr.2010.12.007. [http://dx.doi.org/10.1016/j.bbr. 2010.12.007]. [PMID: 21147173]. [DOI] [PubMed] [Google Scholar]
  • 189.Kramer P.R., Kramer S.F., Marr K., Guan G., Wellman P.J., Bellinger L.L. Nicotine administration effects on feeding and cocaine-amphetamine-regulated transcript (CART) expression in the hypothalamus. Regul. Pept. 2007;138(2-3):66–73. doi: 10.1016/j.regpep.2006.08.002. [http://dx. doi.org/10.1016/j.regpep.2006.08.002]. [PMID: 16979766]. [DOI] [PubMed] [Google Scholar]
  • 190.Wittmann G., Liposits Z., Lechan R.M., Fekete C. Origin of cocaine- and amphetamine-regulated transcript-containing axons innervating hypophysiotropic corticotropin-releasing hormone-synthesizing neurons in the rat. Endocrinology. 2005;146(7):2985–2991. doi: 10.1210/en.2005-0178. [http://dx.doi.org/10.1210/en.2005-0178]. [PMID: 15831569]. [DOI] [PubMed] [Google Scholar]
  • 191.Fekete C., Wittmann G., Liposits Z., Lechan R.M. Origin of cocaine- and amphetamine-regulated transcript (CART)-immunoreactive innervation of the hypothalamic paraventricular nucleus. J. Comp. Neurol. 2004;469(3):340–350. doi: 10.1002/cne.10999. [http://dx.doi. org/10.1002/cne.10999]. [PMID: 14730586]. [DOI] [PubMed] [Google Scholar]
  • 192.Elias C.F., Lee C.E., Kelly J.F., Ahima R.S., Kuhar M., Saper C.B., Elmquist J.K. Characterization of CART neurons in the rat and human hypothalamus. J. Comp. Neurol. 2001;432(1):1–19. doi: 10.1002/cne.1085. [http://dx.doi.org/10.1002/cne.1085]. [PMID: 11241374]. [DOI] [PubMed] [Google Scholar]
  • 193.Dyzma M., Boudjeltia K.Z., Faraut B., Kerkhofs M. Neuropeptide Y and sleep. Sleep Med. Rev. 2010;14(3):161–165. doi: 10.1016/j.smrv.2009.09.001. [http://dx.doi.org/10.1016/j.smrv.2009.09.001]. [PMID: 20122859]. [DOI] [PubMed] [Google Scholar]
  • 194.Loh K., Herzog H., Shi Y.C. Regulation of energy homeostasis by the NPY system. Trends Endocrinol. Metab. 2015;26(3):125–135. doi: 10.1016/j.tem.2015.01.003. [http://dx.doi.org/10.1016/j.tem.2015.01.003]. [PMID: 25662369]. [DOI] [PubMed] [Google Scholar]
  • 195.Reichmann F., Holzer P., Neuropeptide Y., Neuropeptide Y. A stressful review. Neuropeptides. 2016;55:99–109. doi: 10.1016/j.npep.2015.09.008. [http:// dx.doi.org/10.1016/j.npep.2015.09.008]. [PMID: 26441327]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 196.Kask A., Harro J., von Hörsten S., Redrobe J.P., Dumont Y., Quirion R. The neurocircuitry and receptor subtypes mediating anxiolytic-like effects of neuropeptide Y. Neurosci. Biobehav. Rev. 2002;26(3):259–283. doi: 10.1016/s0149-7634(01)00066-5. [http://dx.doi.org/10.1016/S0149-7634(01)00066-5]. [PMID: 12034130]. [DOI] [PubMed] [Google Scholar]
  • 197.Morris B.J. Neuronal localisation of neuropeptide Y gene expression in rat brain. J. Comp. Neurol. 1989;290(3):358–368. doi: 10.1002/cne.902900305. [http://dx.doi.org/10.1002/cne.902900305]. [PMID: 2592617]. [DOI] [PubMed] [Google Scholar]
  • 198.Shutter J.R., Graham M., Kinsey A.C., Scully S., Lüthy R., Stark K.L. Hypothalamic expression of ART, a novel gene related to agouti, is up-regulated in obese and diabetic mutant mice. Genes Dev. 1997;11(5):593–602. doi: 10.1101/gad.11.5.593. [http://dx.doi.org/10.1101/gad.11.5. 593]. [PMID: 9119224]. [DOI] [PubMed] [Google Scholar]
  • 199.Broberger C., Johansen J., Johansson C., Schalling M., Hökfelt T. The neuropeptide Y/agouti gene-related protein (AGRP) brain circuitry in normal, anorectic, and monosodium glutamate-treated mice. Proc. Natl. Acad. Sci. USA. 1998;95(25):15043–15048. doi: 10.1073/pnas.95.25.15043. [http://dx.doi.org/10.1073/pnas.95.25.15043]. [PMID: 9844012]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 200.Ollmann M.M., Wilson B.D., Yang Y.K., Kerns J.A., Chen Y., Gantz I., Barsh G.S. Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein. Science. 1997;278(5335):135–138. doi: 10.1126/science.278.5335.135. [http://dx.doi.org/10.1126/science.278.5335. 135]. [PMID: 9311920]. [DOI] [PubMed] [Google Scholar]
  • 201.Sternson S.M., Atasoy D. Agouti-related protein neuron circuits that regulate appetite. Neuroendocrinology. 2014;100(2-3):95–102. doi: 10.1159/000369072. [http://dx.doi.org/10.1159/000369072]. [PMID: 25402352]. [DOI] [PubMed] [Google Scholar]
  • 202.Haskell-Luevano C., Chen P., Li C., Chang K., Smith M.S., Cameron J.L., Cone R.D. Characterization of the neuroanatomical distribution of agouti-related protein immunoreactivity in the rhesus monkey and the rat. Endocrinology. 1999;140(3):1408–1415. doi: 10.1210/endo.140.3.6544. [http://dx.doi.org/10.1210/endo.140.3.6544]. [PMID: 10067869]. [DOI] [PubMed] [Google Scholar]
  • 203.Dimitrov E.L., DeJoseph M.R., Brownfield M.S., Urban J.H. Involvement of neuropeptide Y Y1 receptors in the regulation of neuroendocrine corticotropin-releasing hormone neuronal activity. Endocrinology. 2007;148(8):3666–3673. doi: 10.1210/en.2006-1730. [http://dx.doi.org/ 10.1210/en.2006-1730]. [PMID: 17463058]. [DOI] [PubMed] [Google Scholar]
  • 204.Tsagarakis S., Rees L.H., Besser G.M., Grossman A. Neuropeptide-Y stimulates CRF-41 release from rat hypothalami in vitro. Brain Res. 1989;502(1):167–170. doi: 10.1016/0006-8993(89)90472-1. [http://dx.doi.org/10.1016/ 0006-8993(89)90472-1]. [PMID: 2819453]. [DOI] [PubMed] [Google Scholar]
  • 205.Suda T., Tozawa F., Iwai I., Sato Y., Sumitomo T., Nakano Y., Yamada M., Demura H. Neuropeptide Y increases the corticotropin-releasing factor messenger ribonucleic acid level in the rat hypothalamus. Brain Res. Mol. Brain Res. 1993;18(4):311–315. doi: 10.1016/0169-328x(93)90094-6. [http://dx.doi.org/10.1016/0169-328X(93)90094-6]. [PMID: 8392133]. [DOI] [PubMed] [Google Scholar]
  • 206.Wahlestedt C., Skagerberg G., Ekman R., Heilig M., Sundler F., Håkanson R., Neuropeptide Y., Neuropeptide Y. NPY) in the area of the hypothalamic paraventricular nucleus activates the pituitary-adrenocortical axis in the rat. Brain Res. 1987;417(1):33–38. doi: 10.1016/0006-8993(87)90176-4. [http://dx.doi.org/10.1016/0006-8993(87)90176-4]. [PMID: 3040184]. [DOI] [PubMed] [Google Scholar]
  • 207.Blasquez C., Jégou S., Friard O., Tonon M.C., Fournier A., Vaudry H. Effect of centrally administered neuropeptide Y on hypothalamic and hypophyseal proopiomelanocortin-derived peptides in the rat. Neuroscience. 1995;68(1):221–227. doi: 10.1016/0306-4522(95)00119-4. [http://dx.doi.org/ 10.1016/0306-4522(95)00119-4]. [PMID: 7477927]. [DOI] [PubMed] [Google Scholar]
  • 208.Laukova M., Alaluf L.G., Serova L.I., Arango V., Sabban E.L. Early intervention with intranasal NPY prevents single prolonged stress-triggered impairments in hypothalamus and ventral hippocampus in male rats. Endocrinology. 2014;155(10):3920–3933. doi: 10.1210/en.2014-1192. [http://dx.doi.org/10.1210/en.2014-1192]. [PMID: 25057792]. [DOI] [PubMed] [Google Scholar]
  • 209.Xiao E., Xia-Zhang L., Vulliémoz N.R., Ferin M., Wardlaw S.L. Agouti-related protein stimulates the hypothalamic-pituitary-adrenal (HPA) axis and enhances the HPA response to interleukin-1 in the primate. Endocrinology. 2003;144(5):1736–1741. doi: 10.1210/en.2002-220013. [http://dx.doi.org/10.1210/en.2002-220013]. [PMID: 12697678]. [DOI] [PubMed] [Google Scholar]
  • 210.Conrad C.D., McEwen B.S. Acute stress increases neuropeptide Y mRNA within the arcuate nucleus and hilus of the dentate gyrus. Brain Res. Mol. Brain Res. 2000;79(1-2):102–109. doi: 10.1016/s0169-328x(00)00105-4. [http://dx.doi. org/10.1016/S0169-328X(00)00105-4]. [PMID: 10925147]. [DOI] [PubMed] [Google Scholar]
  • 211.Makino S., Baker R.A., Smith M.A., Gold P.W. Differential regulation of neuropeptide Y mRNA expression in the arcuate nucleus and locus coeruleus by stress and antidepressants. J. Neuroendocrinol. 2000;12(5):387–395. doi: 10.1046/j.1365-2826.2000.00451.x. [http://dx.doi.org/10. 1046/j.1365-2826.2000.00451.x]. [PMID: 10792576]. [DOI] [PubMed] [Google Scholar]
  • 212.Pralong F.P., Corder R., Gaillard R.C. The effects of chronic glucocorticoid excess, adrenalectomy and stress on neuropeptide Y in individual rat hypothalamic nuclei. Neuropeptides. 1993;25(4):223–231. doi: 10.1016/0143-4179(93)90107-l. [http://dx.doi.org/10.1016/0143-4179(93)90107-L]. [PMID: 8255400]. [DOI] [PubMed] [Google Scholar]
  • 213.Chagra S.L., Zavala J.K., Hall M.V., Gosselink K.L. Acute and repeated restraint differentially activate orexigenic pathways in the rat hypothalamus. Regul. Pept. 2011;167(1):70–78. doi: 10.1016/j.regpep.2010.11.006. [http:// dx.doi.org/10.1016/j.regpep.2010.11.006]. [PMID: 21130814]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 214.Helmreich D.L., Parfitt D.B., Lu X.Y., Akil H., Watson S.J. Relation between the hypothalamic-pituitary-thyroid (HPT) axis and the hypothalamic-pituitary-adrenal (HPA) axis during repeated stress. Neuroendocrinology. 2005;81(3):183–192. doi: 10.1159/000087001. [http://dx. doi.org/10.1159/000087001]. [PMID: 16020927]. [DOI] [PubMed] [Google Scholar]
  • 215.Kuperman Y., Weiss M., Dine J., Staikin K., Golani O., Ramot A., Nahum T., Kühne C., Shemesh Y., Wurst W., Harmelin A., Deussing J.M., Eder M., Chen A. CRFR1 in AgRP Neurons Modulates Sympathetic Nervous System Activity to Adapt to Cold Stress and Fasting. Cell Metab. 2016;23(6):1185–1199. doi: 10.1016/j.cmet.2016.04.017. [http://dx.doi.org/10.1016/j.cmet.2016.04.017]. [PMID: 27211900]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 216.Frankish H.M., Dryden S., Wang Q., Bing C., MacFarlane I.A., Williams G. Nicotine administration reduces neuropeptide Y and neuropeptide Y mRNA concentrations in the rat hypothalamus: NPY may mediate nicotine’s effects on energy balance. Brain Res. 1995;694(1-2):139–146. doi: 10.1016/0006-8993(95)00834-d. [http://dx.doi.org/10.1016/0006-8993 (95)00834-D]. [PMID: 8974638]. [DOI] [PubMed] [Google Scholar]
  • 217.Nakhate K.T., Dandekar M.P., Kokare D.M., Subhedar N.K. Involvement of neuropeptide Y Y(1) receptors in the acute, chronic and withdrawal effects of nicotine on feeding and body weight in rats. Eur. J. Pharmacol. 2009;609(1-3):78–87. doi: 10.1016/j.ejphar.2009.03.008. [http://dx.doi.org/ 10.1016/j.ejphar.2009.03.008]. [PMID: 19285064]. [DOI] [PubMed] [Google Scholar]
  • 218.Rangani R.J., Upadhya M.A., Nakhate K.T., Kokare D.M., Subhedar N.K. Nicotine evoked improvement in learning and memory is mediated through NPY Y1 receptors in rat model of Alzheimer’s disease. Peptides. 2012;33(2):317–328. doi: 10.1016/j.peptides.2012.01.004. [http://dx.doi.org/10.1016/ j.peptides.2012.01.004]. [PMID: 22266216]. [DOI] [PubMed] [Google Scholar]
  • 219.Li M.D., Kane J.K., Parker S.L., McAllen K., Matta S.G., Sharp B.M. Nicotine administration enhances NPY expression in the rat hypothalamus. Brain Res. 2000;867(1-2):157–164. doi: 10.1016/s0006-8993(00)02283-6. [http:// dx.doi.org/10.1016/S0006-8993(00)02283-6]. [PMID: 10837809]. [DOI] [PubMed] [Google Scholar]
  • 220.Grove K.L., Sekhon H.S., Brogan R.S., Keller J.A., Smith M.S., Spindel E.R. Chronic maternal nicotine exposure alters neuronal systems in the arcuate nucleus that regulate feeding behavior in the newborn rhesus macaque. J. Clin. Endocrinol. Metab. 2001;86(11):5420–5426. doi: 10.1210/jcem.86.11.8033. [http://dx.doi.org/10.1210/jcem.86.11.8033]. [PMID: 11701716]. [DOI] [PubMed] [Google Scholar]
  • 221.Miller M.M., Silver J., Billiar R.B. Effects of ovariectomy on the binding of [125I]-alpha bungarotoxin (2.2 and 3.3) to the suprachiasmatic nucleus of the hypothalamus: an in vivo autoradiographic analysis. Brain Res. 1982;247(2):355–364. doi: 10.1016/0006-8993(82)91261-6. [http://dx.doi.org/10. 1016/0006-8993(82)91261-6]. [PMID: 7127134]. [DOI] [PubMed] [Google Scholar]
  • 222.Bali A., Randhawa P.K., Jaggi A.S. Stress and opioids: role of opioids in modulating stress-related behavior and effect of stress on morphine conditioned place preference. Neurosci. Biobehav. Rev. 2015;51:138–150. doi: 10.1016/j.neubiorev.2014.12.018. [http://dx.doi.org/10.1016/j.neubiorev.2014. 12.018]. [PMID: 25636946]. [DOI] [PubMed] [Google Scholar]
  • 223.Bodnar R.J. Endogenous opioids and feeding behavior: A decade of further progress (2004-2014). A Festschrift to Dr. Abba Kastin. Peptides. 2015;72:20–33. doi: 10.1016/j.peptides.2015.03.019. [http://dx.doi.org/10.1016/j.peptides. 2015.03.019]. [PMID: 25843025]. [DOI] [PubMed] [Google Scholar]
  • 224.Desroches J., Beaulieu P. Opioids and cannabinoids interactions: involvement in pain management. Curr. Drug Targets. 2010;11(4):462–473. doi: 10.2174/138945010790980303. [http://dx.doi.org/10.2174/138945010790980303]. [PMID: 20017728]. [DOI] [PubMed] [Google Scholar]
  • 225.Hadjiconstantinou M., Neff N.H. Nicotine and endogenous opioids: neurochemical and pharmacological evidence. Neuropharmacology. 2011;60(7-8):1209–1220. doi: 10.1016/j.neuropharm.2010.11.010. [http://dx.doi.org/10. 1016/j.neuropharm.2010.11.010]. [PMID: 21108953]. [DOI] [PubMed] [Google Scholar]
  • 226.Bodnar R.J. Endogenous opiates and behavior: 2012. Peptides. 2013;50:55–95. doi: 10.1016/j.peptides.2013.10.001. [http://dx.doi.org/10.1016/j.peptides.2013.10.001]. [PMID: 24126281]. [DOI] [PubMed] [Google Scholar]
  • 227.Millington G.W. The role of proopiomelanocortin (POMC) neurones in feeding behaviour. Nutr. Metab. (Lond.) 2007;4:18. doi: 10.1186/1743-7075-4-18. [http://dx.doi.org/10.1186/1743-7075-4-18]. [PMID: 17764572]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 228.Harlan R.E., Shivers B.D., Romano G.J., Howells R.D., Pfaff D.W. Localization of preproenkephalin mRNA in the rat brain and spinal cord by in situ hybridization. J. Comp. Neurol. 1987;258(2):159–184. doi: 10.1002/cne.902580202. [http://dx.doi.org/10.1002/cne.902580202]. [PMID: 3584538]. [DOI] [PubMed] [Google Scholar]
  • 229.Lin S., Boey D., Lee N., Schwarzer C., Sainsbury A., Herzog H. Distribution of prodynorphin mRNA and its interaction with the NPY system in the mouse brain. Neuropeptides. 2006;40(2):115–123. doi: 10.1016/j.npep.2005.11.006. [http://dx.doi.org/10.1016/j.npep.2005.11.006]. [PMID: 16439015]. [DOI] [PubMed] [Google Scholar]
  • 230.Ceccatelli S., Eriksson M., Hökfelt T. Distribution and coexistence of corticotropin-releasing factor-, neurotensin-, enkephalin-, cholecystokinin-, galanin- and vasoactive intestinal polypeptide/peptide histidine isoleucine-like peptides in the parvocellular part of the paraventricular nucleus. Neuroendocrinology. 1989;49(3):309–323. doi: 10.1159/000125133. [http://dx.doi.org/10.1159/000125133]. [PMID: 2469987]. [DOI] [PubMed] [Google Scholar]
  • 231.Roth K.A., Weber E., Barchas J.D., Chang D., Chang J.K. Immunoreactive dynorphin-(1-8) and corticotropin- releasing factor in subpopulation of hypothalamic neurons. Science. 1983;219(4581):189–191. doi: 10.1126/science.6129700. [http://dx.doi.org/10.1126/science.6129700]. [PMID: 6129700]. [DOI] [PubMed] [Google Scholar]
  • 232.Berrendero F., Robledo P., Trigo J.M., Martín-García E., Maldonado R. Neurobiological mechanisms involved in nicotine dependence and reward: participation of the endogenous opioid system. Neurosci. Biobehav. Rev. 2010;35(2):220–231. doi: 10.1016/j.neubiorev.2010.02.006. [http://dx.doi. org/10.1016/j.neubiorev.2010.02.006]. [PMID: 20170672]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 233.Noble F., Lenoir M., Marie N. The opioid receptors as targets for drug abuse medication. Br. J. Pharmacol. 2015;172(16):3964–3979. doi: 10.1111/bph.13190. [http://dx.doi.org/10.1111/bph.13190]. [PMID: 25988826]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 234.Bernstein H.G., Keilhoff G., Seidel B., Stanarius A., Huang P.L., Fishman M.C., Reiser M., Bogerts B., Wolf G. Expression of hypothalamic peptides in mice lacking neuronal nitric oxide synthase: reduced beta-END immunoreactivity in the arcuate nucleus. Neuroendocrinology. 1998;68(6):403–411. doi: 10.1159/000054390. [http://dx.doi.org/ 10.1159/000054390]. [PMID: 9873204]. [DOI] [PubMed] [Google Scholar]
  • 235.Fallon J.H., Leslie F.M. Distribution of dynorphin and enkephalin peptides in the rat brain. J. Comp. Neurol. 1986;249(3):293–336. doi: 10.1002/cne.902490302. [http://dx.doi.org/10.1002/cne.902490302]. [PMID: 2874159]. [DOI] [PubMed] [Google Scholar]
  • 236.Mansour A., Fox C.A., Meng F., Akil H., Watson S.J. Kappa 1 receptor mRNA distribution in the rat CNS: comparison to kappa receptor binding and prodynorphin mRNA. Mol. Cell. Neurosci. 1994;5(2):124–144. doi: 10.1006/mcne.1994.1015. [http://dx.doi.org/10.1006/mcne.1994.1015]. [PMID: 8032682]. [DOI] [PubMed] [Google Scholar]
  • 237.Zheng S.X., Bosch M.A., Rønnekleiv O.K. mu-opioid receptor mRNA expression in identified hypothalamic neurons. J. Comp. Neurol. 2005;487(3):332–344. doi: 10.1002/cne.20557. [http://dx.doi.org/10.1002/cne. 20557]. [PMID: 15892097]. [DOI] [PubMed] [Google Scholar]
  • 238.Mansour A., Burke S., Pavlic R.J., Akil H., Watson S.J. Immunohistochemical localization of the cloned kappa 1 receptor in the rat CNS and pituitary. Neuroscience. 1996;71(3):671–690. doi: 10.1016/0306-4522(95)00464-5. [http:// dx.doi.org/10.1016/0306-4522(95)00464-5]. [PMID: 8867040]. [DOI] [PubMed] [Google Scholar]
  • 239.Mansour A., Fox C.A., Akil H., Watson S.J. Opioid-receptor mRNA expression in the rat CNS: anatomical and functional implications. Trends Neurosci. 1995;18(1):22–29. doi: 10.1016/0166-2236(95)93946-u. [http://dx.doi.org/10. 1016/0166-2236(95)93946-U]. [PMID: 7535487]. [DOI] [PubMed] [Google Scholar]
  • 240.Plotsky P.M. Opioid inhibition of immunoreactive corticotropin-releasing factor secretion into the hypophysial-portal circulation of rats. Regul. Pept. 1986;16(3-4):235–242. doi: 10.1016/0167-0115(86)90022-4. [http://dx.doi.org/10. 1016/0167-0115(86)90022-4]. [PMID: 3031743]. [DOI] [PubMed] [Google Scholar]
  • 241.Boyadjieva N., Advis J.P., Sarkar D.K. Role of beta-endorphin, corticotropin-releasing hormone, and autonomic nervous system in mediation of the effect of chronic ethanol on natural killer cell cytolytic activity. Alcohol. Clin. Exp. Res. 2006;30(10):1761–1767. doi: 10.1111/j.1530-0277.2006.00209.x. [http://dx.doi.org/10.1111/j.1530-0277.2006.00209.x]. [PMID: 17010143]. [DOI] [PubMed] [Google Scholar]
  • 242.Tsagarakis S., Rees L.H., Besser M., Grossman A. Opiate receptor subtype regulation of CRF-41 release from rat hypothalamus in vitro. Neuroendocrinology. 1990;51(5):599–605. doi: 10.1159/000125397. [http://dx.doi. org/10.1159/000125397]. [PMID: 2162017]. [DOI] [PubMed] [Google Scholar]
  • 243.Yajima F., Suda T., Tomori N., Sumitomo T., Nakagami Y., Ushiyama T., Demura H., Shizume K. Effects of opioid peptides on immunoreactive corticotropin-releasing factor release from the rat hypothalamus in vitro. Life Sci. 1986;39(2):181–186. doi: 10.1016/0024-3205(86)90453-4. [http:// dx.doi.org/10.1016/0024-3205(86)90453-4]. [PMID: 2873496]. [DOI] [PubMed] [Google Scholar]
  • 244.Buckingham J.C. Stimulation and inhibition of corticotrophin releasing factor secretion by beta endorphin. Neuroendocrinology. 1986;42(2):148–152. doi: 10.1159/000124266. [http://dx.doi.org/10.1159/000124266]. [PMID: 2936971]. [DOI] [PubMed] [Google Scholar]
  • 245.Buckingham J.C., Cooper T.A. Pharmacological characterization of opioid receptors influencing the secretion of corticotrophin releasing factor in the rat. Neuroendocrinology. 1986;44(1):36–40. doi: 10.1159/000124618. [http://dx.doi.org/10.1159/000124618]. [PMID: 3024056]. [DOI] [PubMed] [Google Scholar]
  • 246.Calogero A.E., Scaccianoce S., Burrello N., Nicolai R., Muscolo L.A., Kling M.A., Angelucci L., D’Agata R. The kappa-opioid receptor agonist MR-2034 stimulates the rat hypothalamic-pituitary-adrenal axis: studies in vivo and in vitro. J. Neuroendocrinol. 1996;8(8):579–585. [http://dx.doi.org/10.1111/j.1365-2826.1996.tb00691.x]. [PMID: 8866244]. [PubMed] [Google Scholar]
  • 247.Wang X.Q., Imaki T., Shibasaki T., Yamauchi N., Demura H. Intracerebroventricular administration of beta-endorphin increases the expression of c-fos and of corticotropin-releasing factor messenger ribonucleic acid in the paraventricular nucleus of the rat. Brain Res. 1996;707(2):189–195. doi: 10.1016/0006-8993(95)01234-6. [http://dx.doi.org/10.1016/ 0006-8993(95)01234-6]. [PMID: 8919295]. [DOI] [PubMed] [Google Scholar]
  • 248.Yamauchi N., Shibasaki T., Wakabayashi I., Demura H. Brain beta-endorphin and other opioids are involved in restraint stress-induced stimulation of the hypothalamic-pituitary-adrenal axis, the sympathetic nervous system, and the adrenal medulla in the rat. Brain Res. 1997;777(1-2):140–146. doi: 10.1016/s0006-8993(97)01097-4. [PMID: 9449422]. [DOI] [PubMed] [Google Scholar]
  • 249.Haracz J.L., Bloom A.S., Wang R.I., Tseng L.F. Effect of intraventricular beta-endorphin and morphine on hypothalamic-pituitary-adrenal activity and the release of pituitary beta-endorphin. Neuroendocrinology. 1981;33(3):170–175. doi: 10.1159/000123224. [http://dx. doi.org/10.1159/000123224]. [PMID: 6270585]. [DOI] [PubMed] [Google Scholar]
  • 250.Gonzalvez M.L., Milanés M.V., Vargas M.L. Effects of acute and chronic administration of mu- and delta-opioid agonists on the hypothalamic-pituitary-adrenocortical (HPA) axis in the rat. Eur. J. Pharmacol. 1991;200(1):155–158. doi: 10.1016/0014-2999(91)90678-j. [http://dx.doi.org/10.1016/ 0014-2999(91)90678-J]. [PMID: 1663037]. [DOI] [PubMed] [Google Scholar]
  • 251.Pfeiffer A., Herz A., Loriaux D.L., Pfeiffer D.G. Central kappa- and mu-opiate receptors mediate ACTH-release in rats. Endocrinology. 1985;116(6):2688–2690. doi: 10.1210/endo-116-6-2688. [http://dx.doi.org/10.1210/endo-116-6-2688]. [PMID: 2986960]. [DOI] [PubMed] [Google Scholar]
  • 252.Hashimoto K., Suemaru S., Ono N., Hattori T., Inoue H., Takao T., Sugawara M., Kageyama J., Ota Z. Dual effects of (D-Ala2,Met5)-enkephalinamide on CRF and ACTH secretion. Peptides. 1987;8(1):113–118. doi: 10.1016/0196-9781(87)90173-2. [http://dx.doi.org/10.1016/0196-9781(87)90173-2]. [PMID: 3033617]. [DOI] [PubMed] [Google Scholar]
  • 253.Marinelli P.W., Quirion R., Gianoulakis C. An in vivo profile of beta-endorphin release in the arcuate nucleus and nucleus accumbens following exposure to stress or alcohol. Neuroscience. 2004;127(3):777–784. doi: 10.1016/j.neuroscience.2004.05.047. [http://dx.doi.org/10.1016/j.neuroscience.2004. 05.047]. [PMID: 15283974]. [DOI] [PubMed] [Google Scholar]
  • 254.Nakagawasai O., Tadano T., Tan No K., Niijima F., Sakurada S., Endo Y., Kisara K. Changes in beta-endorphin and stress-induced analgesia in mice after exposure to forced walking stress. Methods Find. Exp. Clin. Pharmacol. 1999;21(7):471–476. [PMID: 10544390]. [PubMed] [Google Scholar]
  • 255.Przewłocka B., Sumová A., Lasoń W. The influence of conditioned fear-induced stress on the opioid systems in the rat. Pharmacol. Biochem. Behav. 1990;37(4):661–666. doi: 10.1016/0091-3057(90)90543-q. [http://dx.doi.org/ 10.1016/0091-3057(90)90543-Q]. [PMID: 1982694]. [DOI] [PubMed] [Google Scholar]
  • 256.Vaswani K.K., Richard C.W., III, Tejwani G.A. Cold swim stress-induced changes in the levels of opioid peptides in the rat CNS and peripheral tissues. Pharmacol. Biochem. Behav. 1988;29(1):163–168. doi: 10.1016/0091-3057(88)90290-0. [http://dx.doi.org/10.1016/0091-3057(88)90290-0]. [PMID: 3353422]. [DOI] [PubMed] [Google Scholar]
  • 257.Millan M.J., Millan M.H., Tsang Y.F., Herz A. Response of brain and pituitary pools of dynorphin as compared to vasopressin to acute stress in the rat. Life Sci. 1983;33(Suppl. 1):29–32. doi: 10.1016/0024-3205(83)90436-8. [http://dx.doi.org/10.1016/0024-3205(83)90436-8]. [PMID: 6141491]. [DOI] [PubMed] [Google Scholar]
  • 258.Nabeshima T., Katoh A., Wada M., Kameyama T. Stress-induced changes in brain Met-enkephalin, Leu-enkephalin and dynorphin concentrations. Life Sci. 1992;51(3):211–217. doi: 10.1016/0024-3205(92)90077-3. [http:// dx.doi.org/10.1016/0024-3205(92)90077-3]. [PMID: 1352028]. [DOI] [PubMed] [Google Scholar]
  • 259.Granholm L., Roman E., Nylander I. Single housing during early adolescence causes time-, area- and peptide-specific alterations in endogenous opioids of rat brain. Br. J. Pharmacol. 2015;172(2):606–614. doi: 10.1111/bph.12753. [http://dx.doi.org/10.1111/bph.12753]. [PMID: 24821004]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 260.Melo I., Drews E., Zimmer A., Bilkei-Gorzo A. Enkephalin knockout male mice are resistant to chronic mild stress. Genes Brain Behav. 2014;13(6):550–558. doi: 10.1111/gbb.12139. [http://dx.doi.org/10.1111/gbb. 12139]. [PMID: 24804898]. [DOI] [PubMed] [Google Scholar]
  • 261.Christiansen A.M., Herman J.P., Ulrich-Lai Y.M. Regulatory interactions of stress and reward on rat forebrain opioidergic and GABAergic circuitry. Stress. 2011;14(2):205–215. doi: 10.3109/10253890.2010.531331. [http://dx. doi.org/10.3109/10253890.2010.531331]. [PMID: 21291318]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 262.Iglesias T., Montero S., Otero M.J., Parra L., Fuentes J.A. Preproenkephalin RNA increases in the hypothalamus of rats stressed by social deprivation. Cell. Mol. Neurobiol. 1992;12(6):547–555. doi: 10.1007/BF00711234. [http://dx.doi.org/10.1007/BF00711234]. [PMID: 1490274]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 263.Chou T.C., Lee C.E., Lu J., Elmquist J.K., Hara J., Willie J.T., Beuckmann C.T., Chemelli R.M., Sakurai T., Yanagisawa M., Saper C.B., Scammell T.E. Orexin (hypocretin) neurons contain dynorphin. J. Neurosci. 2001;21(19):RC168. doi: 10.1523/JNEUROSCI.21-19-j0003.2001. [PMID: 11567079]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 264.Ciriello J., Caverson M.M., McMurray J.C., Bruckschwaiger E.B. Co-localization of hypocretin-1 and leucine-enkephalin in hypothalamic neurons projecting to the nucleus of the solitary tract and their effect on arterial pressure. Neuroscience. 2013;250:599–613. doi: 10.1016/j.neuroscience.2013.07.054. [http://dx.doi.org/10.1016/j.neuroscience.2013.07.054]. [PMID: 23912034]. [DOI] [PubMed] [Google Scholar]
  • 265.Maolood N., Meister B. Dynorphin in pro-opiomelanocortin neurons of the hypothalamic arcuate nucleus. Neuroscience. 2008;154(3):1121–1131. doi: 10.1016/j.neuroscience.2008.04.011. [http://dx.doi.org/10.1016/j.neuroscience.2008. 04.011]. [PMID: 18479830]. [DOI] [PubMed] [Google Scholar]
  • 266.Boyadjieva N.I., Sarkar D.K. The secretory response of hypothalamic beta-endorphin neurons to acute and chronic nicotine treatments and following nicotine withdrawal. Life Sci. 1997;61(6):PL59–PL66. doi: 10.1016/s0024-3205(97)00444-x. [http://dx.doi.org/10.1016/S0024-3205(97)00444-X]. [PMID: 9250725]. [DOI] [PubMed] [Google Scholar]
  • 267.Rosecrans J.A., Hendry J.S., Hong J.S. Biphasic effects of chronic nicotine treatment on hypothalamic immunoreactive beta-endorphin in the mouse. Pharmacol. Biochem. Behav. 1985;23(1):141–143. doi: 10.1016/0091-3057(85)90141-8. [http://dx.doi.org/10.1016/0091-3057(85)90141-8]. [PMID: 2412241]. [DOI] [PubMed] [Google Scholar]
  • 268.Höllt V., Horn G. Effect of nicotine on mRNA levels encoding opioid peptides, vasopressin and alpha 3 nicotinic receptor subunit in the rat. Clin. Investig. 1992;70(3-4):224–231. doi: 10.1007/BF00184655. [PMID: 1521036]. [DOI] [PubMed] [Google Scholar]
  • 269.Isola R., Zhang H., Tejwani G.A., Neff N.H., Hadjiconstantinou M. Dynorphin and prodynorphin mRNA changes in the striatum during nicotine withdrawal. Synapse. 2008;62(6):448–455. doi: 10.1002/syn.20515. [http://dx.doi.org/10.1002/syn.20515]. [PMID: 18361441]. [DOI] [PubMed] [Google Scholar]
  • 270.Ugur M., Kaya E., Gozen O., Koylu E.O., Kanit L., Keser A., Balkan B. Chronic nicotine-induced changes in gene expression of delta and kappa-opioid receptors and their endogenous ligands in the mesocorticolimbic system of the rat. Synapse. 2017;71(9) doi: 10.1002/syn.21985. [http://dx.doi.org/10.1002/syn.21985]. [PMID: 28509375]. [DOI] [PubMed] [Google Scholar]
  • 271.Pierzchala K., Houdi A.A., Van Loon G.R. Nicotine-induced alterations in brain regional concentrations of native and cryptic Met- and Leu-enkephalin. Peptides. 1987;8(6):1035–1043. doi: 10.1016/0196-9781(87)90133-1. [http:// dx.doi.org/10.1016/0196-9781(87)90133-1]. [PMID: 3441443]. [DOI] [PubMed] [Google Scholar]
  • 272.Chang G.Q., Karatayev O., Barson J.R., Liang S.C., Leibowitz S.F. Common effects of fat, ethanol, and nicotine on enkephalin in discrete areas of the brain. Neuroscience. 2014;277:665–678. doi: 10.1016/j.neuroscience.2014.07.050. [http:// dx.doi.org/10.1016/j.neuroscience.2014.07.050]. [PMID: 25086310]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 273.Loughlin S.E., Islas M.I., Cheng M.Y., Lee A.G., Villegier A.S., Leslie F.M. Nicotine modulation of stress-related peptide neurons. J. Comp. Neurol. 2006;497(4):575–588. doi: 10.1002/cne.20999. [http://dx.doi. org/10.1002/cne.20999]. [PMID: 16739166]. [DOI] [PubMed] [Google Scholar]
  • 274.Mellon R.D., Bayer B.M. The effects of morphine, nicotine and epibatidine on lymphocyte activity and hypothalamic-pituitary-adrenal axis responses. J. Pharmacol. Exp. Ther. 1999;288(2):635–642. [PMID: 9918569]. [PubMed] [Google Scholar]
  • 275.Marco E.M., Llorente R., Pérez-Alvarez L., Moreno E., Guaza C., Viveros M.P. The kappa-opioid receptor is involved in the stimulating effect of nicotine on adrenocortical activity but not in nicotine induced anxiety. Behav. Brain Res. 2005;163(2):212–218. doi: 10.1016/j.bbr.2005.05.005. [http://dx.doi.org/10.1016/j.bbr.2005.05.005]. [PMID: 15979169]. [DOI] [PubMed] [Google Scholar]
  • 276.al’Absi M., Hatsukami D., Davis G.L. Attenuated adrenocorticotropic responses to psychological stress are associated with early smoking relapse. Psychopharmacology (Berl.) 2005;181(1):107–117. doi: 10.1007/s00213-005-2225-3. [http://dx.doi.org/10.1007/s00213-005-2225-3]. [PMID: 15834539]. [DOI] [PubMed] [Google Scholar]
  • 277.al’Absi M., Wittmers L.E., Hatsukami D., Westra R. Blunted opiate modulation of hypothalamic-pituitary-adrenocortical activity in men and women who smoke. Psychosom. Med. 2008;70(8):928–935. doi: 10.1097/PSY.0b013e31818434ab. [http://dx.doi.org/10.1097/PSY.0b013e31818434ab]. [PMID: 18799426]. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Current Neuropharmacology are provided here courtesy of Bentham Science Publishers

RESOURCES