Abstract
Introduction:
Demyelinating diseases of the central nervous system (CNS) comprise a group of neurological dis-orders characterized by progressive (and eventually irreversible) loss of oligodendrocytes and myelin sheaths in the white matter tracts. Some of myelin disorders include: Multiple sclerosis, Guillain-Barré syndrome, peripheral nerve polyneuropa-thy and others. To date, the etiology of these disorders is not well known and no effective treatments are currently available against them. Therefore, further research is needed to gain a better understand and treat these patients. To accomplish this goal, it is necessary to have appropriate animal models that closely resemble the pathophysiolo-gy and clinical signs of these diseases. Herein, we describe the model of toxic demyelination induced by cuprizone (CPZ), a copper chelator that reduces the cytochrome and monoamine oxidase activity into the brain, produces mitochondrial stress and triggers the local immune response. These biochemical and cellular responses ultimately result in selective loss of oli-godendrocytes and microglia accumulation, which conveys to extensive areas of demyelination and gliosis in corpus callo-sum, superior cerebellar peduncles and cerebral cortex. Remarkably, some aspects of the histological pattern induced by CPZ are similar to those found in multiple sclerosis. CPZ exposure provokes behavioral changes, impairs motor skills and affects mood as that observed in several de-myelinating diseases. Upon CPZ removal, the pathological and histological changes gradually revert. Therefore, some au-thors have postulated that the CPZ model allows to partially mimic the disease relapses observed in some demyelinating dis-eases.
Conclusion:
for five decades, the model of CPZ-induced demyelination is a good experimental approach to study demye-linating diseases that has maintained its validity, and is a suitable pharmacological model for reproducing some key features of demyelinating diseases, including multiple sclerosis.
Keywords: Cuprizone, myelin, oligodendrocyte, demyelination, remyelination, white matter, neuroinflammation, multiple sclerosis, demyelinating disease, microglia
1. Introduction
Demyelinating diseases are neural disorders characterized by inflammation and damage or selective destruction of myelin associated with diffuse primary synaptic loss and progressive axonal degeneration [1-3]. Clinical deficits include ataxia, loss of dexterity, myoclony, spasticity, paraparesis or hemiparesis, vision loss and cognitive deficits. These alterations are due to disrupted electrical transmission along axons because of myelin loss. A crucial characteristic of demyelinating diseases is the limited ability to rapidly regenerate myelin and the extension of secondary damage of axons. There are several causes of myelin destruction, including immunological action, chemicals and infections [4]. Multiple sclerosis (MS) is associated with focal white matter plaques of demyelination, which are partially repaired during remyelination. Reappearance of oligodendrocytes within active lesions is frequently seen in patients at early stages of MS. Some authors suggest that remyelination is a transient phenomenon and remyelinated shadow plaques may be affected by new bouts of demyelination, which ultimately lead to incomplete myelin repair [5, 6]. There are several animal models that resemble the clinical and pathophysiologic course of MS. To date, four experimental approaches to induce demyelination have been well-characterized and include: genetic myelin mutations, autoimmune inflammatory-induced demyelination (experimental autoimmune encephalomyelitis -EAE), virus-induced demyelination and toxic demyelination (cuprizone and lysolecithin models). All these models partially mimic the MS pathology. Although EAE is a commonly used model that reproduces some of the autoimmune aspects of MS, the toxic demyelination with cuprizone can be still considered an appropriate model to study the remyelination process [7, 8].
Cuprizone (CPZ) is a copper chelator that targets many metalloenzymes as ceruloplasmin, impairs the activity of the copper dependent cytochrome oxidase, decreases oxidative phosphorylation and produces degenerative changes in oligodendrocytes (OLs). This cascade of events eventually end in demyelination [9, 10]. In 2007, Zucconi, et al. found the copper deficiency induced by CPZ was related to microglial activation in cerebral cortex and thalamus [11]. This evidence suggests that CPZ may reproduce different pathological aspects of some neurodegenerative diseases [11]. The supplementation of animal diet with CPZ has been used as demyelinating model that mimics some histological hallmarks of demyelinating diseases [12]. Cuprizone intoxication induces apoptosis of oligodendrocyte cell population that leads to extensive demyelination of white matter tracts in the corpus callosum, internal capsule, the thalamus, anterior commissure and cerebellar peduncles [13, 14]. Interestingly, when CPZ treatment is withdrawn, there is rapid remyelination and myelin proteins re-expression [15].
The cuprizone-induced damage appears to be mediated by certain molecules, such as tumor necrosis factor alpha (TNFα), interleukin 1β (IL-1β) and interferon gamma (IFNγ) that are secreted by microglia/macrophages in the brain. These events are associated with a decrease in mitochondrial activity in OLs, low energy production, and high activity of reactive oxygen species [16]. The administration of CPZ in vivo leads to fast proliferation of microglia/macrophages surrounding the lesion area. These immune cells are known to produce TNFα, which seems to exacerbates acute demyelination and remains undetectable on untreated mice, as reported by Arnett et al. [17]. However, some important features of MS, such as inflamed blood vessels and the presence of CD3+ T cells, have not been described in the CPZ model [18].
2. Cuprizone
CPZ, also referred as to cyclohexylidene hydrazide (Fig. 1), is a condensation product of oxalylhydrazide and cyclohexanone. CPZ is an effective and selective copper chelating agent. The first description of CPZ was made by Gustav Nilsson in the 1950s, he discovered that CPZ induced a subtle blue color reaction upon chelating copper (Cu2+) salts [19]. In 1966, Carlton observed that CPZ administration in mice produced low serum Cu2+ levels and demyelination [20]. Later, it was found that oral administration of CPZ also produced severe status spongiosus, hydrocephalus and hepatic lesions [21, 22].
Fig. (1).
Molecular structure of N,N’-bis(cyclohexylideneamino) oxamide (cuprizone). Molecular formula: C14H22N4O2; molecular weight: 278.45008g/mol.
3. Copper metabolism
Copper is an essential element in all mammal’s nutrition. This element is a component of metalloenzymes in which it acts as an electron donor or acceptor [23]. Thus, copper is required for preserving tissue growth, cardiovascular integrity, neuroendocrine function, neovascularization, lung elasticity and iron metabolism. Cooper acts as a coenzyme in aerobic metabolism for cytochrome c oxidase in the mitochondria, lysyl-oxidase in the connective tissue, dopamine monooxygenase in the brain, and ceruloplasmin in the liver. Copper is also a cofactor for apo-copper-zinc superoxide dismutase (ApoCuZnSOD) that protects against oxygen-free-radical damage to proteins, membrane lipids, and nucleic acids in several systems. Severe copper deficiencies are relatively rare in humans and may occur by gene mutations or low dietary copper intake. Copper deficit may produce mental retardation, anemia, hypothermia, neutropenia, diarrhea, cardiac hypertrophy, bone fragility, immune deficiencies, connective tissue weakened, brain function impaired, peripheral neuropathy, and accelerate hair loss [24]. Therefore, the copper metabolism is strongly regulated by a complex homeostatic process [25].
In mammals, absorption of copper primarily occurs in the small intestine. Copper absorption is performed by the brush border of the intestinal mucosa and transferred across the basolateral membrane into interstitial fluid and blood. Once copper is absorbed from the intestine, it binds to albumin and copper transport protein (transcuprein), and reaches serum levels of 40 mg Cu/L, approximately. Most of the serum copper is then deposited into the liver (Fig. 2). Nonetheless, only ≈I80 µg Cu2+ remains associated with albumin in human plasma. The rest of the copper (≈1000 µg per liter plasma) is bound to ceruloplasmin (65%, approximately), transcuprein (12%), and other components of low molecular weight. Most of the incoming copper rapidly finds its way into the hepatic cells (Fig. 2), and minimal amounts of this metal enter the kidney. There are two phases of copper distribution into the blood serum. The first phase is mediated by transcuprein that facilitates copper intake into the liver. The second phase is mediated by ceruloplasmin that helps increase the copper levels into systemic organs (Fig. 2). The main role of copper is to function as a cofactor for specific enzymes and electron transport proteins involved in energetic or anti-oxidative metabolism [26].
Fig. (2).
Copper absorption and distribution. Copper values indicate the average of daily amounts of copper ingested, absorbed, secreted or excreted through different tissues. Modified from Linder & Hazeg-Azam [105].
4. Cuprizone as demyelination model
Since 1960s, several studies have been designed to determine the precise dose of CPZ to produce significant changes in the CNS. Significant myelin changes have been observed when 0.2% - 0.6% CPZ is mixed with standard rodent chow [22]. The most common protocol consists in feeding 8-week-old mice with 0.2% CPZ (w ⁄ w) for 5-6 weeks (Fig. 3). Lindner et al. in 2008 demonstrated that high levels of demyelination can be achieved by increasing the dosage to 0.3% CPZ (w ⁄ w) [27]. However, as the CPZ concentration increases (from 0.2% to 0.3%) the mortality rate rises from < 5% to more than 10% or 15% [28]. Thus, the 0.2% CPZ is the preferred concentration because it produces extensive demyelination with less side effects [29-34].
Fig. (3).
Cuprizone effects in the CD1 mouse brain. CD1 mice received 0.2% CPZ for 6 weeks. 30-µm-thick coronal sections immunostained with anti-myelin basic protein (MBP) and revealed with 3,3'-Diaminobenzidine. The control animal (A) shows a strong expression of MBP in the corpus callosum (CC), whereas the cuprizone-treated mouse (B) expresses low levels of MBP. CTX: cortex. Bar = 5µm.
Oligodendrocyte apoptosis begins a few days after cuprizone administration. Recently, Hesse and colleagues demonstrated that oligodendroglial cell death and myelin gene downregulation start a few days after CPZ supplementation, but demyelination is only evident a few weeks after [35]. Recent evidence has shown that short-term exposure to CPZ (3 weeks) is enough to induce demyelination [29]. Astrogliosis and depletion of mature OLs is observed at 5th week. Similar histological changes can be observed with CPZ exposure for five weeks. Hence, it seems that once the mature OLs are perturbed the demyelinating activity progresses without needing additional exposure. Interestingly, early withdrawal of CPZ did not accelerate the recovery process, which suggests that a mild white matter insult triggers a cascade of demyelinating events in the following weeks (Fig. 4) [36]. Although matter degeneration in the CC is a key neuroanatomical sign of the CPZ model [33, 37, 38], several brain regions are also affected by CPZ (Table 1) [14, 32, 33, 37, 39-52]. The histopathological changes produced by CPZ include oligodendroglial cell death, microglia activation, astrocyte reactivity and grey matter demyelination [53].
Fig. (4).
Time course of demyelination induced by 0.2% cuprizone feeding. Oligodendrocyte death begins at day three to seven and this event is followed by myelin protein degradation that approximately occurs at week one to three (early demyelination). At 4th week, the severe demyelination period begins and culminates at 5th - 6th weeks, when a complete demyelination is observed in many brain regions. The recovery process (remyelination phase) is detectable in the first week after cuprizone withdrawal, but it is more significant between the weeks two and four.
Table 1.
Cuprizone demyelination over susceptible regions.
Brain Region |
CPZ
Concentration |
Initial
Demyelination (Week) |
Complete
Demyelination (Week) |
Microgliosis
Initiation (Week) |
Astrogliosis
Initiation (Week) |
Refs. |
---|---|---|---|---|---|---|
Corpus callosum | 0.1% – 0.5% | 3 | 4.5 | 1 | 3 | [32, 33, 39] |
Anterior commissure | 0.2%, 0.25% | 5 | N/R | 5 | N/R | [40-42] |
Basal ganglia (caudoputamen, globus pallidus) | 0.2% – 0.4% | 2 | 5 | 5 | 2 | [40-44] |
Brainstem | 0.2% | N/R | 5 | N/R | N/R | [41, 106] |
Cerebellum | 0.2%, 0.5% | 2 | 5 | 2-3 | 3-4 | [20, 47, 48, 106-108] |
Cortex | 0.2% – 0.5% | 4 | 5 | 3 | 3 | [39-41, 49, 109-111] |
External Capsule | 0.2% | N/R | 6 | N/R | N/R | [110] |
Fornix | 0.2%, 0.25% | 5 | 12 | 5 | N/R | [40, 111] |
Hippocampus | 0.2% – 0.4% | 3 | 5 | N/R | 5 | [41, 51, 109-112] |
Hypotalamus | 0.2% | 6 | N/R | N/R | N/R | [110] |
Internal capsule | 0.25% | 5 | N/R | 5 | 5 | [40] |
Olfactory bulb-tract | 0.2%, 0.25% | 5 | 5 | 5 | N/R | [40, 41, 110, 111] |
Optic chiasm | 0.2% | N/R | 5 | N/R | N/R | [41] |
Optic tract | 0.25% | 5 | N/R | 5 | N/R | [40] |
Septal nucleus | 0.25% | 5 | N/R | 5 | N/R | [40] |
Substantia innominata | 0.25% | N/R | 5 | 5 | N/R | [40] |
Thalamus | 0.2%, 0.25% | 6 | 5-6 | 5 | 5 | [40, 110] |
Several brain regions have been reported to be susceptible to CPZ induced demyelination and show microgliosis and astrogliosis. N/R, Not reported.
Recent studies have demonstrated that juvenile mice are more vulnerable to CPZ. In fact, aged mice require high doses of CPZ to achieve a similar degree of demyelination as compared to young mice, but the precise mechanism underlying this effect is still unknown. CPZ-induced demyelination in the corpus callosum of juvenile mice is more severe than that of middle-aged animals. Young mice (<57 days) exposed to CPZ show working memory deficit throughout both the CPZ intoxication period and the remyelination process (CPZ removal). In contrast, old mice (>57 days) only show working memory deficit immediately after CPZ exposure [54]. This age-related vulnerability also results in profound behavioral dysfunctions in young-adult mice, including anxiety, attention deficit hyperactivity disorder and schizophrenia-like phenotypes. [55, 56]. At week four after CPZ exposure, motor deficits are also observed as observed in the rotoroad test and the open field maze [57-59]. The proclivity of young mice to demyelination may be explained by age-related changes in the expression of PDGFRα, Nkx-2.2 and Olig2 [60] that, in turn, modify the recruitment of oligodendrocyte progenitor cells and drive the cell fate of neural progenitors toward the astrocyte lineage [61-64]. Interestingly, short-term exposure to cuprizone do not produce evident demyelination, but induces astrocyte and microglia activation that have been associated with work memory impairment and social behavior disruption [65, 66]. Further evidence indicates some sex-related differences in CPZ-induced demyelination. In this regard, Ludwin reported that Swiss and SJL/J female mice did not show demyelination as compared to males. However, no significant intersex differences were observed in C57BL/6 mouse strain [67, 68]. C57BL/6 is the mouse strain most commonly used for the CPZ demyelination model [33, 69]; however, many other mouse strains and animals species have been used to study different aspects of the demyelinating effect of CPZ (Table 2).
Table 2.
CPZ susceptibility of diverse mouse/rat strains and other animal species.
Mice Strain/ Species | Demyelination Severity | Refs. |
---|---|---|
C57BL/6 mice | Male ++ / Female ++ | [32-33, 39, 43] |
ICI Mice | Male ++ | [14] |
Swiss-Webster Mice | Male ++ | [113] |
Swiss Mice | Male ++ / Female - | [61] |
Albino Mice | Male ++ / Female ++ | [114] |
SJL Mice | Male ++ / Female + | [69] |
129/SVJ Mice | Male ++ | [43] |
BALB/cJ Mice | Male + | [49] |
CD1 Mice | Male ++ | [115] |
Cynomolgus Macaque | Male - / Female - | [116] |
Wistar rat | Male ++ / Female++ | [117-120] |
Guinea Pig | Male ++ | [119] |
Abbreviations: The CPZ demyelination pattern depends on the concentration, exposure time, sex, strain, and specie. (++) Acute; (+) Mild; (-) Not found.
Recently, a modification in the CPZ model was described and consisted in the addition of 10 mg/kg i.p. rapamycin five times per week. This mTOR inhibitor produces extensive demyelination and prolongs the remyelination period, which help evaluate the effect of remyelinating treatments and downstream mechanisms involved in remyelination [70, 71]. Besides the CPZ model, other demyelinating models have been designed to reproduce the pathological course of demyelination and investigate possible treatments against MS (Table 3). Patients with MS may display three different clinical presentations: the relapsing-remitting form (RRMS) that is characterized by exacerbations of the symptoms (relapses), followed by periods of complete or partial remission; the primary progressive form (PPMS) that shows a continuous and irreversible evolution of the disease; and the secondary progressive form (SPMS) in which there is a progressive worsening of neurologic function over time, probably as a transition from RRMS [72]. To date, there are several experimental models that mimic some of the MS features and all of them have different characteristics. The autoimmune or allergic experimental encephalomyelitis (EAE) model in SJL/J mice is useful to study the relapsing forms. The MOG35-55 immunization of C57BL/6 mice is a good model to study a chronic-progressive disease [73] and it properly resembles the physiopathology of MS patter-II lesions [74]. The Theiler’s murine encephalomyelitis virus (TMEV) model, in which mice develop a chronic progressive demyelinating disease without remissions [75] and their histopathological patterns look alike the patterns III and IV of MS lesions [76]. The lysolecithin injection model that produces focal and delimitated demyelinating lesion with microglia/macrophage activation and recruitment, which provides a fast and well-defined remyelination pattern comparable to the patter III of MS lesions [38, 77, 78]. Finally, the CPZ model can be considered as a suitable model to reproduce extensive pattern-III lesions of MS [79], which are characterized by the presence of apoptotic OLs and early down regulation of myelin-associated glycoproteins (MAG) [80, 81]. The CPZ model also allows to the study of mechanism of spontaneous remyelination, because the mechanism of demyelination/remyelination occurs simultaneously and the white-matter damage reverts after CPZ withdrawal resembling the RRMS [82]. In summary, the choice of the best model depend on the aim of study and the characteristics of the treatment to be evaluated (Table 3).
Table 3.
Comparison of the most commonly used demyelination models.
Model | Specie | Chemical Agent | Demyelination | Administration Route | Spontaneous Remyelination | Complexity | Disadvantages | Refs. |
---|---|---|---|---|---|---|---|---|
Cuprizone | Rat, Mouse | Cuprizone | Initial: 3 weeks Complete: 4.5 weeks |
Oral | Yes (completed at week 4) | Low [mixed with chow | Not validated for functional readouts in some strains | [32, 39, 86] |
Lysolecithin | Rat, Mouse | Lysophosphatidylcholine | Initial: 2 days Complete: 1 week |
Intracerebral injection | Yes (completed at week 4) | High [Stereotactic surgery] | High technical complexity | [121-123] |
EAE* | Rat, Mouse, Guinea pigs | CFA+MOG/MBP/PLP peptides or rSCH | Initial: 11 days Complete: 2 weeks |
Intraperitoneally | No | Low [i.p. inyection] | More related to ADEM than MS. Not for investigating remyelination process | [124-125] |
TMEV | Mouse | Theilovirus (cardiovirus/piconaviridae). TO and GDVII subtypes | Initial: 6 weeks Complete: 35 weeks |
Oral, intranasal, footpad inoculation, intracerebral injection | No | High [Stereotactic surgery, virus culture] | The proportion of the disease caused by the virus activity or the inflammatory response is hard to determine | [8, 126-127] |
Abbreviations: EAE: experimental autoimmune encephalomyelitis; TMEV: Theiler’s murine encephalomyelitis virus; CFA: complete Freund adjuvant; rSCH: rat spinal cord homogenate; MOG: myelin oligodendrocyte glycoprotein; MBP: myelin basic protein; PLP: proteolipid protein; W: weeks; ADEM: acute disseminated encephalomyelitis. *Demyelination pattern reported in the EAE model study was carried out on optic nerve of SJL/J mice, but demyelination pattern may variate between specie, strain and brain region.
5. Mechanism of action of CPZ-induced demyelination
5.1. Mitochondrial Response to CPZ Intoxication
The oral administration of CPZ via daily diet in adult mice produces a specific insult to mature oligodendrocytes by impairing their metabolic demands to support myelin production and by triggering oligodendroglia apoptosis [83]. These events are followed by microglia recruitment and myelin phagocytosis. Morphological and gene-expression studies indicate that during the CPZ administration some oligodendrocyte progenitor cells keep proliferating and invading demyelinated areas, but the magnitude of CPZ effect always ends in severe copper deficiency and secondary demyelination [14, 84-86]. Remarkably, demyelination and oligodendrocyte damage produced by CPZ is not associated with injury of other neural cell types [85]. These findings contrast with those observed in liver, where the formation of megamitochondria (mitochondria enlargements or clusters) has been observed in hepatocytes. This alteration in liver mitochondria may be a consequence of deficient activity of cytochrome oxidase [16, 61, 85, 87, 88]. Interestingly, CPZ leads to a reduction in brain activity of cytochrome oxidase, monoamine oxidase (MAO) and inhibition of complexes I, II and III of the respiratory chain. After the CPZ intoxication, the formation of megamitochondria has been observed in liver, but not in neurons, astrocytes and other neural cells [16, 87, 89]. Remarkably, studies have confirmed that CPZ only affects mature oligodendrocytes, without modifying the absolute number of oligodendrocyte progenitor cells (OPCs) [85]. Consequently, CPZ does not affect de novo formation of oligodendrocytes.
Oxygen free radicals appear to be responsible for mitochondria enlargement. This process may be a protective reaction to reduce and suppress intracellular reactive oxygen species (ROS) levels, which restore normal cellular functions and organelle structure. However, if ROS levels dramatically increase into the oligodendrocytes and the resting membrane potential decreases with a concomitant caspase-3 activation and demyelination. During the first 3 weeks of CPZ intoxication the caspase-3 is strongly active. Next, the caspase-3 activity decreases, whereas the activity of poly ADP-ribose polymerase (PARP) increases and induces apoptosis via the apoptosis inducing factor (AFI) [29, 90, 91]. Hence, this evidence indicates that CPZ intoxication increases oxidative stress that, in turn, triggers apoptosis in mature OLs (Fig. 5) [83].
Fig. (5).
Mitochondrial response to CPZ and lipid metabolism disturbance. Cuprizone induces alterations in many Cu dependent enzymes, generate increased oxidative stress leading to apoptosis and impairing the synthesis of key compounds in the myelin formation. (∆ψm, mitochondrial membrane potential).
5.2. Lipid Metabolism Disturbance
Besides the inhibition of myelin protein synthesis, myelin lipid metabolism is also affected by cuprizone. Myelin sheet consist of 70% lipids, 40% phospholipids (mainly plasmalogens), and 30% proteins [92]. Membrane-bound plasmalogens can be hydrolyzed by plasmalogenase, leading to an increase of free plasmalogens. Phospholipase A2 (PLA2) can degrade both membrane-bound and free plasmalogens into arachidonic acid (AA), a key intermediate of pro-inflammatory signaling. The activity of both plasmalogenase and PLA2 is increased by CPZ intoxication, which contributes to myelin sheath degradation and elevated concentrations of AA [83]. In MS lesions, the AA cascade is activated by increasing activity of PLA2 and cyclooxygenase 1 or 2 (COX-1, COX-2). The produced AAs will be subsequently metabolized by COX-1 or COX-2 into prostaglandin H2 (PGH2) that strongly increase prostaglandin E2 (PGE2) related to OLs apoptosis via PGE2-E2 receptor, prostacyclin (PGI2), prostaglandin D2 (PGD2) and prostaglandin F2α (PGF2 α). Interestingly, this AA cascade is activated by cuprizone and is associated with a substantial involvement of sPLA2 isoform [93].
Other organic compounds involved in the myelin sheet formation are cerebrosides (glycosphingolipids) and cholesterol [92]. These lipidic compounds are drastically reduced by increased activity of plasmogenase during early stages of CPZ intoxication, and these findings are comparable to the increased phospholipase (PL) A1 and A2 activity found in MS and other neurodegenerative diseases [94-96]. These events produce myelin vacuolation and fluid accumulation between myelin lamellae with extensive space-occupying lesions, which cause axoplasmic displacement and axonal disruption [14, 97]. Although myelin vacuolation is reversible, demyelination becomes irreversible by cell-body degeneration of mature oligodendrocyte [67]. OLs degeneration and apoptosis precede the CPZ-induced demyelination. This sequence of events suggests that the initial deterioration of OLs is not linked to autoimmune response against myelin proteins. A few days after CPZ treatment, oxidative stress induces degeneration of oligodendrocyte and myelin sheath that progresses to OLs apoptosis. Once mature OLs are disrupted, a sequence of cellular and inflammatory processes drive caspase-3-triggered apoptosis and demyelination [36]. Caspase-3 is a crucial apoptotic protease [98] that is expressed at initial stages of cuprizone model in most of the injured oligodendrocytes. At later stages, the percentage of caspase-3-expressing oligodendrocytes decreases gradually until it is completely absent at 3th week. This evidence suggests a biological switch in the cell-death mechanism triggered by CPZ, that begins with a caspase 3-dependent mechanism and progressively changes to a caspase 3-independent cell death [29] (Fig. 5).
5.3. Immune System Influence in the CPZ Model
The classical hypothesis indicated that cuprizone intoxication produced a direct cell-autonomous toxicity in mature OLs with the concomitant demyelination. However, inflammatory mediators seem to be involved in the process of cuprizone-induced demyelination (Fig. 6). Some of this evidence includes: 1) Production of NO by upregulating inducible nitric oxide synthase (iNOS) and the neuronal isoform (nNOS), which strongly determine the demyelinating process as demonstrated in eNOS-/- mice [30, 31]. 2) Inflammatory cytokines produced by microglia and astrocytes that have a cytotoxic role and promote the overexpression of the endothelial nitric oxide synthase (eNOS) [16]. 3) Astrocyte production of interleukin-6 (IL-6) and interleukin-17 (IL-17) resulted in functional deficits associated with accelerated demyelination, reduced myelin synthesis and microglia activation [65, 99]. 4) Overexpression of CXCL10 produced by astrocytes that induces reactive microglia and, in turn, increases the levels of TNFα [13]. 5) IFN-γ that is crucial in the demyelinating process as demonstrated in transgenic mice that express low level of IFN-γ under the transcriptional control of MBP gene (MBP/IFN-γ mice) and display almost null evidence of injury in the white matter after CPZ administration [100-102]. 6) Interferon-beta (IFN-β) absence promotes remyelination by increasing the proliferation of oligodendroglial precursors cells [103]. 7) Activation of neutrophils that express the type 2 chemokine receptor (CXCR2) and trigger demyelination, as observed in CXCR2-/- mice that are resistant to CPZ-induced demyelination [104]. Taken together, this evidence suggests that the immune system is a key component in the cascade of events triggered by cuprizone administration. Therefore, this model may represent an plausible tool for studying the role of immune system in the process of demyelination [30].
Fig. (6).
Growth factors, cytokines, chemokines, and matrix metalloproteinases expressed in the medial corpus callosum during demyelination and remyelination in cuprizone treatment. The diagram depicts the expression levels of several molecules at different time points of the CPZ-induced demyelination. GDNF: Glial cell-derived neurotrophic factor; NRG1: neuroregulin -1; CCL: chemokine (C-C motif) ligand (2, 3 & 5); IL-1β: interleukin-1β; IGF: insulin like growth factor-1; LIF: Leukemia inhibitory factor; TGF-1β: transforming growth factor 1β; TNF-α: Tumor necrosis factor-α; TIMP1/2: tissue inhibitor of metalloproteinase 1 & 2; FGF-2: fibroblast growth factor 2; MMP: matrix metalloproteinase (3 &12); HGF: hepatocyte growth factor; OPN: osteopontin; CNTF: Ciliary neurotrophic factor; EGF: epidermal growth factor; BDNF: brain-derived neurotrophic factor.
Conclusion
The CPZ model is a highly reproducible and easily implemented animal model that produces very consistent demyelinating lesions. The white matter damage, oligodendrocyte apoptosis and microglial activation induced by CPZ mimics some of the aspects of demyelinating diseases. Thus, CPZ model has some characteristics that help study the interactions between the immune system with the oligodendrocyte damage and myelin disruption, which can provide crucial information to test potential therapies against demyelinating diseases. Although it is generally accepted that CPZ model induces extended demyelination and important histological changes, the complete cascade of biochemical events triggered by CPZ remains unclear. In addition, more research needs to be done to establish these mechanisms and clarify the pathways on how CPZ can reach the brain.
Acknowledgements
This work was supported by grants kindly provided by Consejo Nacional de Ciencia y Tecnologia (No. INFR-268062 and PN-2015-01-465), Redes Temáticas “Neurobiopsicologia Básica y Aplicada” and “Células Troncales y Medicina Regenerativa” to OGP, and UAEM grant (3789/2014/CIA) to RAML. JVR was supported by CONACyT’s fellowship (No.377084).
list of Abbreviations
- AA
Arachidonic acid
- CC
Corpus callosum
- COX-1,COX-2
Cyclooxygenase 1 or 2
- CNS
Central nervous system
- CPZ
Cuprizone
- CXCR2
Type 2 chemokine receptor
- EAE
Experimental encephalomyelitis
- eNOS
Endothelial nitric oxide syntase
- IFNγ
Interferon gamma
- iNOS
Inducible nitric oxide synthase
- MBP
Myelin basic protein
- MS
Multiple sclerosis
- nNOS
Neuronal isoform
- OLs
Oligodendrocytes
- OPCs
Oligodendrocyte progenitor cells
- PGI2
Prostacyclin
- PGH2, PGE2,
Prostaglandin H2, E2, D2 or F2
- PGD2
PGF2
- PLA2
Phospholipase A2
- ROS
reactive oxygen species
- TMEV
Theiler’s murine encephalomyelitis virus
- TNFα
Tumor necrosis factor alpha
Consent for Publication
Not applicable.
Conflict of Interest
The authors declare no conflict of interest, financial or otherwise.
References
- 1.Friese M.A., Schattling B., Fugger L. Mechanisms of neurodegeneration and axonal dysfunction in multiple sclerosis. Nat. Rev. Neurol. 2014;10(4):225–238. doi: 10.1038/nrneurol.2014.37. [http://dx.doi.org/10.1038/nrneurol.2014.37]. [PMID: 24638138]. [DOI] [PubMed] [Google Scholar]
- 2.Friese M.A. Widespread synaptic loss in multiple sclerosis. Brain. 2016;139(Pt 1):2–4. doi: 10.1093/brain/awv349. [http://dx.doi.org/10.1093/brain/awv349]. [PMID: 26747852]. [DOI] [PubMed] [Google Scholar]
- 3.Jürgens T., Jafari M., Kreutzfeldt M., Bahn E., Brück W., Kerschensteiner M., Merkler D. Reconstruction of single cortical projection neurons reveals primary spine loss in multiple sclerosis. Brain. 2016;139(Pt 1):39–46. doi: 10.1093/brain/awv353. [http://dx.doi.org/10.1093/brain/ awv353]. [PMID: 26667278]. [DOI] [PubMed] [Google Scholar]
- 4.Deber C.M., Reynolds S.J. Central nervous system myelin: structure, function, and pathology. Clin. Biochem. 1991;24(2):113–134. doi: 10.1016/0009-9120(91)90421-A. [http://dx.doi.org/10.1016/0009-9120(91)90421-A]. [PMID: 1710177]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Patrikios P., Stadelmann C., Kutzelnigg A., Rauschka H., Schmidbauer M., Laursen H., Sorensen P.S., Brück W., Lucchinetti C., Lassmann H. Remyelination is extensive in a subset of multiple sclerosis patients. Brain. 2006;129(Pt 12):3165–3172. doi: 10.1093/brain/awl217. [http://dx.doi.org/10.1093/brain/awl217]. [PMID: 16921173]. [DOI] [PubMed] [Google Scholar]
- 6.Goldschmidt T., Antel J., König F.B., Brück W., Kuhlmann T. Remyelination capacity of the MS brain decreases with disease chronicity. Neurology. 2009;72(22):1914–1921. doi: 10.1212/WNL.0b013e3181a8260a. [http://dx.doi.org/10.1212/WNL.0b013e3181a8260a]. [PMID: 19487649]. [DOI] [PubMed] [Google Scholar]
- 7.Gudi V., Gingele S., Skripuletz T., Stangel M. Glial response during cuprizone-induced de- and remyelination in the CNS: lessons learned. Front. Cell. Neurosci. 2014;8:73. doi: 10.3389/fncel.2014.00073. [http://dx.doi.org/10.3389/fncel.2014.00073]. [PMID: 24659953]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Denic A., Johnson A.J., Bieber A.J., Warrington A.E., Rodriguez M., Pirko I. The relevance of animal models in multiple sclerosis research. Pathophysiology. 2011;18(1):21–29. doi: 10.1016/j.pathophys.2010.04.004. [http://dx.doi.org/10.1016/j.pathophys.2010.04.004]. [PMID: 20537877]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Cammer W. The neurotoxicant, cuprizone, retards the differentiation of oligodendrocytes in vitro. J. Neurol. Sci. 1999;168(2):116–120. doi: 10.1016/s0022-510x(99)00181-1. [http://dx.doi.org/10.1016/S0022-510X(99)00181-1]. [PMID: 10526193]. [DOI] [PubMed] [Google Scholar]
- 10.Kalman B., Laitinen K., Komoly S. The involvement of mitochondria in the pathogenesis of multiple sclerosis. J. Neuroimmunol. 2007;188(1-2):1–12. doi: 10.1016/j.jneuroim.2007.03.020. [http://dx.doi.org/10.1016/j.jneuroim. 2007.03.020]. [PMID: 17493689]. [DOI] [PubMed] [Google Scholar]
- 11.Zucconi G.G., Cipriani S., Scattoni R., Balgkouranidou I., Hawkins D.P., Ragnarsdottir K.V. Copper deficiency elicits glial and neuronal response typical of neurodegenerative disorders. Neuropathol. Appl. Neurobiol. 2007;33(2):212–225. doi: 10.1111/j.1365-2990.2006.00793.x. [http://dx.doi.org/10.1111/j.1365-2990.2006.00793.x]. [PMID: 17359362]. [DOI] [PubMed] [Google Scholar]
- 12.van der Star B.J., Vogel D.Y.S., Kipp M., Puentes F., Baker D., Amor S. In vitro and in vivo models of multiple sclerosis. CNS Neurol. Disord. Drug Targets. 2012;11(5):570–588. doi: 10.2174/187152712801661284. [http://dx. doi.org/10.2174/187152712801661284]. [PMID: 22583443]. [DOI] [PubMed] [Google Scholar]
- 13.Clarner T., Janssen K., Nellessen L., Stangel M., Skripuletz T., Krauspe B., Hess F.M., Denecke B., Beutner C., Linnartz-Gerlach B., Neumann H., Vallières L., Amor S., Ohl K., Tenbrock K., Beyer C., Kipp M. CXCL10 triggers early microglial activation in the cuprizone model. J. Immunol. 2015;194(7):3400–3413. doi: 10.4049/jimmunol.1401459. [http://dx.doi.org/10.4049/jimmunol.1401459]. [PMID: 25725102]. [DOI] [PubMed] [Google Scholar]
- 14.Blakemore W.F. Observations on oligodendrocyte degeneration, the resolution of status spongiosus and remyelination in cuprizone intoxication in mice. J. Neurocytol. 1972;1(4):413–426. doi: 10.1007/BF01102943. [http://dx.doi.org/10.1007/BF01102943]. [PMID: 8530973]. [DOI] [PubMed] [Google Scholar]
- 15.Komoly S., Hudson L.D., Webster H.D., Bondy C.A. Insulin-like growth factor I gene expression is induced in astrocytes during experimental demyelination. Proc. Natl. Acad. Sci. USA. 1992;89(5):1894–1898. doi: 10.1073/pnas.89.5.1894. [http://dx.doi.org/10.1073/pnas.89.5.1894]. [PMID: 1371885]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Pasquini L.A., Calatayud C.A., Bertone Uña A.L., Millet V., Pasquini J.M., Soto E.F. The neurotoxic effect of cuprizone on oligodendrocytes depends on the presence of pro-inflammatory cytokines secreted by microglia. Neurochem. Res. 2007;32(2):279–292. doi: 10.1007/s11064-006-9165-0. [http://dx.doi.org/10.1007/s11064-006-9165-0]. [PMID: 17063394]. [DOI] [PubMed] [Google Scholar]
- 17.Arnett H.A., Mason J., Marino M., Suzuki K., Matsushima G.K., Ting J.P.Y. TNF alpha promotes proliferation of oligodendrocyte progenitors and remyelination. Nat. Neurosci. 2001;4(11):1116–1122. doi: 10.1038/nn738. [http://dx.doi.org/10.1038/nn738]. [PMID: 11600888]. [DOI] [PubMed] [Google Scholar]
- 18.Kipp M., Clarner T., Dang J., Copray S., Beyer C. The cuprizone animal model: new insights into an old story. Acta Neuropathol. 2009;118(6):723–736. doi: 10.1007/s00401-009-0591-3. [http://dx.doi.org/10.1007/s00401-009-0591-3]. [PMID: 19763593]. [DOI] [PubMed] [Google Scholar]
- 19.Nilsson G. A New colour reaction on copper and certain carbonyl compounds. Acta Chem. Scand. 1950;4(1):205–205. [http://dx.doi.org/10.3891/acta.chem.scand.04-0205]. [Google Scholar]
- 20.Carlton W.W. Response of mice to the chelating agents sodium diethyldithiocarbamate, alpha-benzoinoxime, and biscyclohexanone oxaldihydrazone. Toxicol. Appl. Pharmacol. 1966;8(3):512–521. doi: 10.1016/0041-008x(66)90062-7. [http://dx.doi.org/10.1016/0041-008X(66)90062-7]. [PMID: 6006739]. [DOI] [PubMed] [Google Scholar]
- 21.Benetti F., Ventura M., Salmini B., Ceola S., Carbonera D., Mammi S., Zitolo A., D’Angelo P., Urso E., Maffia M., Salvato B., Spisni E. Cuprizone neurotoxicity, copper deficiency and neurodegeneration. Neurotoxicology. 2010;31(5):509–517. doi: 10.1016/j.neuro.2010.05.008. [http://dx.doi.org/10.1016/j.neuro.2010.05.008]. [PMID: 20685220]. [DOI] [PubMed] [Google Scholar]
- 22.Carlton W.W. Studies on the induction of hydrocephalus and spongy degeneration by cuprizone feeding and attempts to antidote the toxicity. Life Sci. 1967;6(1):11–19. doi: 10.1016/0024-3205(67)90356-6. [http://dx.doi.org/10. 1016/0024-3205(67)90356-6]. [PMID: 6030552]. [DOI] [PubMed] [Google Scholar]
- 23.Ransom Stern B., Solioz M., Krewski D., Aggett P., Aw T-C., Baker S., Crump K., Dourson M., Haber L., Hertzberg R., Keen C., Meek B., Rudenko L., Schoeny R., Slob W., Starr T. Copper and human health: biochemestry, genetics, and trategies for modeling dose-response relationships. J. Toxicol. Environ. Health. 2007;B(10):157–222. doi: 10.1080/10937400600755911. [DOI] [PubMed] [Google Scholar]
- 24.In Copper in Drinking Water. Washington, DC: 2000. [Google Scholar]
- 25.Scheiber I., Dringen R., Mercer J.F.B. In: Copper: Effects of deficiency and overload. Interrelations between essential metal ions and human diseases; Sigel, A.; Sigel, H.; Sigel, K.O.R. Netherlands S., editor. Dordrecht: 2013. pp. 359–387. [http://dx. doi.org/10.1007/978-94-007-7500-8_11] [DOI] [PubMed] [Google Scholar]
- 26.Linder M.C., Hazegh-Azam M. Copper biochemistry and molecular biology. Am. J. Clin. Nutr. 1996;63(5):797S–811S. doi: 10.1093/ajcn/63.5.797. [PMID: 8615367]. [DOI] [PubMed] [Google Scholar]
- 27.Lindner M., Heine S., Haastert K., Garde N., Fokuhl J., Linsmeier F., Grothe C., Baumgärtner W., Stangel M. Sequential myelin protein expression during remyelination reveals fast and efficient repair after central nervous system demyelination. Neuropathol. Appl. Neurobiol. 2008;34(1):105–114. doi: 10.1111/j.1365-2990.2007.00879.x. [PMID: 17961136]. [DOI] [PubMed] [Google Scholar]
- 28.Torkildsen O., Brunborg L.A., Myhr K.M., Bø L. The cuprizone model for demyelination. Acta Neurol. Scand. Suppl. 2008;188:72–76. doi: 10.1111/j.1600-0404.2008.01036.x. [http://dx.doi.org/10.1111/j.1600-0404.2008.01036.x]. [PMID: 18439226]. [DOI] [PubMed] [Google Scholar]
- 29.Hesse A., Wagner M., Held J., Brück W., Salinas-Riester G., Hao Z., Waisman A., Kuhlmann T. In toxic demyelination oligodendroglial cell death occurs early and is FAS independent. Neurobiol. Dis. 2010;37(2):362–369. doi: 10.1016/j.nbd.2009.10.016. [http://dx.doi.org/10.1016/j.nbd. 2009.10.016]. [PMID: 19853662]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Liñares D., Taconis M., Maña P., Correcha M., Fordham S., Staykova M., Willenborg D.O. Neuronal nitric oxide synthase plays a key role in CNS demyelination. J. Neurosci. 2006;26(49):12672–12681. doi: 10.1523/JNEUROSCI.0294-06.2006. [http://dx.doi.org/10.1523/JNEUROSCI.0294-06. 2006]. [PMID: 17151270]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.Arnett H.A., Hellendall R.P., Matsushima G.K., Suzuki K., Laubach V.E., Sherman P., Ting J.P. The protective role of nitric oxide in a neurotoxicant-induced demyelinating model. J. Immunol. 2002;168(1):427–433. doi: 10.4049/jimmunol.168.1.427. [http://dx.doi.org/10.4049/jimmunol. 168.1.427]. [PMID: 11751989]. [DOI] [PubMed] [Google Scholar]
- 32.Matsushima G.K., Morell P. The neurotoxicant, cuprizone, as a model to study demyelination and remyelination in the central nervous system. Brain Pathol. 2001;11(1):107–116. doi: 10.1111/j.1750-3639.2001.tb00385.x. [http://dx.doi.org/10.1111/j.1750-3639.2001.tb00385.x]. [PMID: 11145196]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.Hiremath M.M., Saito Y., Knapp G.W., Ting J.P.Y., Suzuki K., Matsushima G.K. Microglial/macrophage accumulation during cuprizone-induced demyelination in C57BL/6 mice. J. Neuroimmunol. 1998;92(1-2):38–49. doi: 10.1016/s0165-5728(98)00168-4. [http://dx.doi.org/10.1016/S0165-5728(98)00168-4]. [PMID: 9916878]. [DOI] [PubMed] [Google Scholar]
- 34.Skripuletz T., Gudi V., Hackstette D., Stangel M. De- and remyelination in the CNS white and grey matter induced by cuprizone: the old, the new, and the unexpected. Histol. Histopathol. 2011;26(12):1585–1597. doi: 10.14670/HH-26.1585. [PMID: 21972097]. [DOI] [PubMed] [Google Scholar]
- 35.Goldberg J., Daniel M., van Heuvel Y., Victor M., Beyer C., Clarner T., Kipp M. Short-term cuprizone feeding induces selective amino acid deprivation with concomitant activation of an integrated stress response in oligodendrocytes. Cell. Mol. Neurobiol. 2013;33(8):1087–1098. doi: 10.1007/s10571-013-9975-y. [http://dx.doi.org/10.1007/s10571-013-9975-y]. [PMID: 23979168]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36.Doan V., Kleindienst A.M., McMahon E.J., Long B.R., Matsushima G.K., Taylor L.C. Abbreviated exposure to cuprizone is sufficient to induce demyelination and oligodendrocyte loss. J. Neurosci. Res. 2013;91(3):363–373. doi: 10.1002/jnr.23174. [http://dx.doi.org/10.1002/ jnr.23174]. [PMID: 23280518]. [DOI] [PubMed] [Google Scholar]
- 37.Jurevics H., Largent C., Hostettler J., Sammond D.W., Matsushima G.K., Kleindienst A., Toews A.D., Morell P. Alterations in metabolism and gene expression in brain regions during cuprizone-induced demyelination and remyelination. J. Neurochem. 2002;82(1):126–136. doi: 10.1046/j.1471-4159.2002.00954.x. [http://dx.doi.org/10.1046/j.1471-4159.2002. 00954.x]. [PMID: 12091473]. [DOI] [PubMed] [Google Scholar]
- 38.Gudi V., Gingele S., Skripuletz T., Stangel M. Glial response during cuprizone-induced de- and remyelination in the CNS: lessons learned. Front. Cell. Neurosci. 2014;8(73):73. doi: 10.3389/fncel.2014.00073. [PMID: 24659953]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.Gudi V., Moharregh-Khiabani D., Skripuletz T., Koutsoudaki P.N., Kotsiari A., Skuljec J., Trebst C., Stangel M. Regional differences between grey and white matter in cuprizone induced demyelination. Brain Res. 2009;1283:127–138. doi: 10.1016/j.brainres.2009.06.005. [http://dx.doi.org/10.1016/j.brainres.2009.06.005]. [PMID: 19524552]. [DOI] [PubMed] [Google Scholar]
- 40.Goldberg J., Clarner T., Beyer C., Kipp M. Anatomical Distribution of Cuprizone-Induced Lesions in C57BL6 Mice. J. Mol. Neurosci. 2015;57(2):166–175. doi: 10.1007/s12031-015-0595-5. [http://dx.doi.org/10.1007/s12031-015-0595-5]. [PMID: 26067430]. [DOI] [PubMed] [Google Scholar]
- 41.Silvestroff L., Bartucci S., Soto E., Gallo V., Pasquini J., Franco P. Cuprizone-induced demyelination in CNP:GFP transgenic mice. J. Comp. Neurol. 2010;518(12):2261–2283. doi: 10.1002/cne.22330. [http://dx.doi.org/10.1002/cne.22330]. [PMID: 20437527]. [DOI] [PubMed] [Google Scholar]
- 42.Hübner N.S., Mechling A.E., Lee H-L., Reisert M., Bienert T., Hennig J., von Elverfeldt D., Harsan L-A. The connectomics of brain demyelination: Functional and structural patterns in the cuprizone mouse model. Neuroimage. 2017;146:1–18. doi: 10.1016/j.neuroimage.2016.11.008. [http://dx.doi.org/10.1016/j.neuroimage.2016.11.008]. [PMID: 27845252]. [DOI] [PubMed] [Google Scholar]
- 43.Pott F., Gingele S., Clarner T., Dang J., Baumgartner W., Beyer C., Kipp M. Cuprizone effect on myelination, astrogliosis and microglia attraction in the mouse basal ganglia. Brain Res. 2009;1305:137–149. doi: 10.1016/j.brainres.2009.09.084. [http://dx.doi.org/10.1016/j.brainres.2009.09. 084]. [PMID: 19799876]. [DOI] [PubMed] [Google Scholar]
- 44.Yang H-J., Wang H., Zhang Y., Xiao L., Clough R.W., Browning R., Li X-M., Xu H. Region-specific susceptibilities to cuprizone-induced lesions in the mouse forebrain: Implications for the pathophysiology of schizophrenia. Brain Res. 2009;1270:121–130. doi: 10.1016/j.brainres.2009.03.011. [http://dx.doi.org/10.1016/j.brainres.2009.03.011]. [PMID: 19306847]. [DOI] [PubMed] [Google Scholar]
- 45.Blakemore W.F. Demyelination of the superior cerebellar peduncle in the mouse induced by cuprizone. J. Neurol. Sci. 1973;20(1):63–72. doi: 10.1016/0022-510x(73)90118-4. [http://dx.doi.org/10.1016/0022-510X(73)90118-4]. [PMID: 4744511]. [DOI] [PubMed] [Google Scholar]
- 46.Carlton W.W. Response of mice to the chelating agents sodium diethyldithiocarbamate, α-benzoinoxime, and biscyclohexanone oxaldihydrazone. Toxicol. Appl. Pharmacol. 1966;8(3):512–521. doi: 10.1016/0041-008x(66)90062-7. [http://dx.doi.org/10.1016/0041-008X(66)90062-7]. [PMID: 6006739]. [DOI] [PubMed] [Google Scholar]
- 47.Groebe A., Clarner T., Baumgartner W., Dang J., Beyer C., Kipp M. Cuprizone treatment induces distinct demyelination, astrocytosis, and microglia cell invasion or proliferation in the mouse cerebellum. Cerebellum. 2009;8(3):163–174. doi: 10.1007/s12311-009-0099-3. [http://dx.doi.org/10. 1007/s12311-009-0099-3]. [PMID: 19259754]. [DOI] [PubMed] [Google Scholar]
- 48.Acs P., Komoly S. Selective ultrastructural vulnerability in the cuprizone-induced experimental demyelination. Ideggyogy. Sz. 2012;65(7-8):266–270. [PMID: 23074847]. [PubMed] [Google Scholar]
- 49.Skripuletz T., Lindner M., Kotsiari A., Garde N., Fokuhl J., Linsmeier F., Trebst C., Stangel M. Cortical demyelination is prominent in the murine cuprizone model and is strain-dependent. Am. J. Pathol. 2008;172(4):1053–1061. doi: 10.2353/ajpath.2008.070850. [http://dx.doi.org/10. 2353/ajpath.2008.070850]. [PMID: 18349131]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 50.Bai C.B., Sun S., Roholt A., Benson E., Edberg D., Medicetty S., Dutta R., Kidd G., Macklin W.B., Trapp B. A mouse model for testing remyelinating therapies. 2016. [DOI] [PMC free article] [PubMed]
- 51.Norkute A., Hieble A., Braun A., Johann S., Clarner T., Baumgartner W., Beyer C., Kipp M. Cuprizone treatment induces demyelination and astrocytosis in the mouse hippocampus. J. Neurosci. Res. 2009;87(6):1343–1355. doi: 10.1002/jnr.21946. [http://dx.doi.org/10.1002/jnr.21946]. [PMID: 19021291]. [DOI] [PubMed] [Google Scholar]
- 52.Hoffmann K., Lindner M., Gröticke I., Stangel M., Löscher W. Epileptic seizures and hippocampal damage after cuprizone-induced demyelination in C57BL/6 mice. Exp. Neurol. 2008;210(2):308–321. doi: 10.1016/j.expneurol.2007.11.005. [http://dx.doi.org/10.1016/j.expneurol.2007.11.005]. [PMID: 18096162]. [DOI] [PubMed] [Google Scholar]
- 53.Kipp M., Nyamoya S., Hochstrasser T., Amor S. Multiple sclerosis animal models: a clinical and histopathological perspective. Brain Pathol. 2017;27(2):123–137. doi: 10.1111/bpa.12454. [http://dx.doi.org/10.1111/ bpa.12454]. [PMID: 27792289]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 54.Makinodan M., Yamauchi T., Tatsumi K., Okuda H., Takeda T., Kiuchi K., Sadamatsu M., Wanaka A., Kishimoto T. Demyelination in the juvenile period, but not in adulthood, leads to long-lasting cognitive impairment and deficient social interaction in mice. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2009;33(6):978–985. doi: 10.1016/j.pnpbp.2009.05.006. [http://dx.doi.org/10.1016/j.pnpbp.2009.05.006]. [PMID: 19446597]. [DOI] [PubMed] [Google Scholar]
- 55.Wang H., Li C., Wang H., Mei F., Liu Z., Shen H.Y., Xiao L. Cuprizone-induced demyelination in mice: age-related vulnerability and exploratory behavior deficit. Neurosci. Bull. 2013;29(2):251–259. doi: 10.1007/s12264-013-1323-1. [http://dx.doi.org/10.1007/s12264-013-1323-1]. [PMID: 23558591]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 56.Xuan Y., Yan G., Peng H., Wu R., Xu H. Concurrent changes in 1H MRS metabolites and antioxidant enzymes in the brain of C57BL/6 mouse short-termly exposed to cuprizone: possible implications for schizophrenia. Neurochem. Int. 2014;69(69):20–27. doi: 10.1016/j.neuint.2014.02.004. [http://dx.doi.org/10.1016/j.neuint.2014.02.004]. [PMID: 24613425]. [DOI] [PubMed] [Google Scholar]
- 57.Armstrong R.C., Le T.Q., Flint N.C., Vana A.C., Zhou Y.X. Endogenous cell repair of chronic demyelination. J. Neuropathol. Exp. Neurol. 2006;65(3):245–256. doi: 10.1097/01.jnen.0000205142.08716.7e. [http://dx.doi.org/10.1097/ 01.jnen.0000205142.08716.7e]. [PMID: 16651886]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 58.Lindner M., Fokuhl J., Linsmeier F., Trebst C., Stangel M. Chronic toxic demyelination in the central nervous system leads to axonal damage despite remyelination. Neurosci. Lett. 2009;453(2):120–125. doi: 10.1016/j.neulet.2009.02.004. [http://dx.doi.org/10.1016/j.neulet.2009.02.004]. [PMID: 19356606]. [DOI] [PubMed] [Google Scholar]
- 59.Franco-Pons N., Torrente M., Colomina M.T., Vilella E. Behavioral deficits in the cuprizone-induced murine model of demyelination/remyelination. Toxicol. Lett. 2007;169(3):205–213. doi: 10.1016/j.toxlet.2007.01.010. [http://dx.doi.org/10.1016/j.toxlet.2007.01.010]. [PMID: 17317045]. [DOI] [PubMed] [Google Scholar]
- 60.Doucette J.R., Jiao R., Nazarali A.J. Age-related and cuprizone-induced changes in myelin and transcription factor gene expression and in oligodendrocyte cell densities in the rostral corpus callosum of mice. Cell. Mol. Neurobiol. 2010;30(4):607–629. doi: 10.1007/s10571-009-9486-z. [http://dx. doi.org/10.1007/s10571-009-9486-z]. [PMID: 20063055]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 61.Ludwin S.K. Central nervous system demyelination and remyelination in the mouse: an ultrastructural study of cuprizone toxicity. Lab. Invest. 1978;39(6):597–612. [PMID: 739762]. [PubMed] [Google Scholar]
- 62.Takahashi N., Sakurai T., Davis K.L., Buxbaum J.D.L. Linking oligodendrocyte and myelin dysfunction to neurocircuitry abnormalities in schizophrenia. Prog. Neurobiol. 2011;93(1):13–24. doi: 10.1016/j.pneurobio.2010.09.004. [http://dx.doi.org/10.1016/j.pneurobio.2010.09.004]. [PMID: 20950668]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 63.Xu H., Li X.M. White matter abnormalities and animal models examining a putative role of altered white matter in schizophrenia. Schizophr. Res. Treatment. 2011;2011:826976. doi: 10.1155/2011/826976. [http://dx.doi.org/10.1155/2011/826976]. [PMID: 22937274]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 64.Zhang H., Zhang Y., Xu H., Wang L., Zhao J., Wang J., Zhang Z., Tan Q., Kong J., Huang Q., Li X.M. Locomotor activity and anxiety status, but not spatial working memory, are affected in mice after brief exposure to cuprizone. Neurosci. Bull. 2013;29(5):633–641. doi: 10.1007/s12264-013-1369-0. [http://dx.doi.org/10.1007/s12264-013-1369-0]. [PMID: 23990221]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 65.Tezuka T., Tamura M., Kondo M.A., Sakaue M., Okada K., Takemoto K., Fukunari A., Miwa K., Ohzeki H., Kano S., Yasumatsu H., Sawa A., Kajii Y. Cuprizone short-term exposure: astrocytic IL-6 activation and behavioral changes relevant to psychosis. Neurobiol. Dis. 2013;59:63–68. doi: 10.1016/j.nbd.2013.07.003. [http://dx.doi.org/10. 1016/j.nbd.2013.07.003]. [PMID: 23867234]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 66.Xu H., Yang H.J., Zhang Y., Clough R., Browning R., Li X.M. Behavioral and neurobiological changes in C57BL/6 mice exposed to cuprizone. Behav. Neurosci. 2009;123(2):418–429. doi: 10.1037/a0014477. [http://dx. doi.org/10.1037/a0014477]. [PMID: 19331464]. [DOI] [PubMed] [Google Scholar]
- 67.Ludwin S.K. Central nervous system demyelination and remyelination in the mouse: an ultrastructural study of cuprizone toxicity. Lab. Invest. 1978;39(6):597–612. [PMID: 739762]. [PubMed] [Google Scholar]
- 68.Taylor L.C., Gilmore W., Ting J.P., Matsushima G.K. Cuprizone induces similar demyelination in male and female C57BL/6 mice and results in disruption of the estrous cycle. J. Neurosci. Res. 2010;88(2):391–402. doi: 10.1002/jnr.22215. [http://dx.doi.org/10.1002/jnr.22215]. [PMID: 19746424]. [DOI] [PubMed] [Google Scholar]
- 69.Taylor L.C., Gilmore W., Matsushima G.K. SJL mice exposed to cuprizone intoxication reveal strain and gender pattern differences in demyelination. Brain Pathol. 2009;19(3):467–479. doi: 10.1111/j.1750-3639.2008.00230.x. [http://dx.doi.org/10.1111/j.1750-3639.2008.00230.x]. [PMID: 19016742]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 70.Narayanan S. P., Flores A. I., Wang F., Macklin W. B. signals through the mammalian target of rapamycin pathway to regulate CNS myelination. . 2009;29(21):6860–70. doi: 10.1523/JNEUROSCI.0232-09.2009. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 71.Sachs H.H., Bercury K.K., Popescu D.C., Narayanan S.P., Macklin W.B. A new model of cuprizone-mediated demyelination/remyelination. ASN Neuro. 2014;6(5):1759091414551955. doi: 10.1177/1759091414551955. [http://dx.doi.org/10.1177/1759091414551955]. [PMID: 25290063]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 72.Polman C.H., Reingold S.C., Banwell B., Clanet M., Cohen J.A., Filippi M., Fujihara K., Havrdova E., Hutchinson M., Kappos L., Lublin F.D., Montalban X., O’Connor P., Sandberg-Wollheim M., Thompson A.J., Waubant E., Weinshenker B., Wolinsky J.S. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann. Neurol. 2011;69(2):292–302. doi: 10.1002/ana.22366. [http://dx.doi.org/10.1002/ana.22366]. [PMID: 21387374]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 73.Robinson A.P., Harp C.T., Noronha A., Miller S.D. The experimental autoimmune encephalomyelitis (EAE) model of MS: utility for understanding disease pathophysiology and treatment. Handb. Clin. Neurol. 2014;122:173–189. doi: 10.1016/B978-0-444-52001-2.00008-X. [http://dx.doi.org/10.1016/B978-0-444-52001-2.00008-X]. [PMID: 24507518]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 74.Merkler D., Schmelting B., Czéh B., Fuchs E., Stadelmann C., Brück W. Myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis in the common marmoset reflects the immunopathology of pattern II multiple sclerosis lesions. Mult. Scler. 2006;12(4):369–374. doi: 10.1191/1352458506ms1290oa. [http://dx.doi.org/10. 1191/1352458506ms1290oa]. [PMID: 16900750]. [DOI] [PubMed] [Google Scholar]
- 75.Martinez N.E., Sato F., Omura S., Minagar A., Alexander J.S., Tsunoda I. Immunopathological Patterns from EAE and Theiler’s Virus Infection: Is Multiple Sclerosis a Homogenous 1-stage or Heterogenous 2-stage Disease? Pathophysiology. 2013;20(1):71–84. doi: 10.1016/j.pathophys.2012.03.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 76.Oleszak E.L., Chang J.R., Friedman H., Katsetos C.D., Platsoucas C.D. Theiler’s virus infection: a model for multiple sclerosis. Clin. Microbiol. Rev. 2004;17(1):174–207. doi: 10.1128/CMR.17.1.174-207.2004. [http://dx.doi.org/10. 1128/CMR.17.1.174-207.2004]. [PMID: 14726460]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 77.de Paula Faria D., de Vries E.F., Sijbesma J.W., Buchpiguel C.A., Dierckx R.A., Copray S.C. PET imaging of glucose metabolism, neuroinflammation and demyelination in the lysolecithin rat model for multiple sclerosis. Mult. Scler. 2014;20(11):1443–1452. doi: 10.1177/1352458514526941. [http://dx.doi.org/10.1177/1352458514526941]. [PMID: 24622349]. [DOI] [PubMed] [Google Scholar]
- 78.Rawji K.S., Yong V.W. The benefits and detriments of macrophages/microglia in models of multiple sclerosis. Clin. Dev. Immunol. 2013;2013:948976. doi: 10.1155/2013/948976. [http://dx.doi.org/10.1155/2013/948976]. [PMID: 23840244]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 79.Veto S., Acs P., Bauer J., Lassmann H., Berente Z., Setalo G., Jr, Borgulya G., Sumegi B., Komoly S., Gallyas F., Jr, Illes Z. Inhibiting poly(ADP-ribose) polymerase: a potential therapy against oligodendrocyte death. Brain. 2010;133(Pt 3):822–834. doi: 10.1093/brain/awp337. [http://dx.doi.org/10.1093/brain/awp337]. [PMID: 20157013]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 80.Metz I., Weigand S.D., Popescu B.F.G., Frischer J.M., Parisi J.E., Guo Y., Lassmann H., Brück W., Lucchinetti C.F. Pathologic heterogeneity persists in early active multiple sclerosis lesions. Ann. Neurol. 2014;75(5):728–738. doi: 10.1002/ana.24163. [http://dx.doi.org/10. 1002/ana.24163]. [PMID: 24771535]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 81.Morell P., Barrett C.V., Mason J.L., Toews A.D., Hostettler J.D., Knapp G.W., Matsushima G.K. Gene expression in brain during cuprizone-induced demyelination and remyelination. Mol. Cell. Neurosci. 1998;12(4-5):220–227. doi: 10.1006/mcne.1998.0715. [http://dx.doi.org/10.1006/ mcne.1998.0715]. [PMID: 9828087]. [DOI] [PubMed] [Google Scholar]
- 82.Ransohoff R.M. Animal models of multiple sclerosis: the good, the bad and the bottom line. Nat. Neurosci. 2012;15(8):1074–1077. doi: 10.1038/nn.3168. [http://dx.doi.org/10.1038/nn.3168]. [PMID: 22837037]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 83.Praet J., Guglielmetti C., Berneman Z., Van der Linden A., Ponsaerts P. Cellular and molecular neuropathology of the cuprizone mouse model: clinical relevance for multiple sclerosis. Neurosci. Biobehav. Rev. 2014;47:485–505. doi: 10.1016/j.neubiorev.2014.10.004. [http://dx.doi.org/10.1016/j. neubiorev.2014.10.004]. [PMID: 25445182]. [DOI] [PubMed] [Google Scholar]
- 84.Carlton W.W. Studies on the induction of hydrocephalus and spongy degeneration by cuprizone feeding and attempts to antidote the toxicity. Life Sci. 1967;6(1):11–19. doi: 10.1016/0024-3205(67)90356-6. [http://dx.doi.org/10. 1016/0024-3205(67)90356-6]. [PMID: 6030552]. [DOI] [PubMed] [Google Scholar]
- 85.Bénardais K., Kotsiari A., Skuljec J., Koutsoudaki P.N., Gudi V., Singh V., Vulinović F., Skripuletz T., Stangel M. Cuprizone [bis(cyclohexylidenehydrazide)] is selectively toxic for mature oligodendrocytes. Neurotox. Res. 2013;24(2):244–250. doi: 10.1007/s12640-013-9380-9. [http://dx. doi.org/10.1007/s12640-013-9380-9]. [PMID: 23392957]. [DOI] [PubMed] [Google Scholar]
- 86.Hiremath M.M., Saito Y., Knapp G.W., Ting J.P., Suzuki K., Matsushima G.K. Microglial/macrophage accumulation during cuprizone-induced demyelination in C57BL/6 mice. J. Neuroimmunol. 1998;92(1-2):38–49. doi: 10.1016/s0165-5728(98)00168-4. [http://dx.doi.org/10.1016/S0165-5728(98)00168-4]. [PMID: 9916878]. [DOI] [PubMed] [Google Scholar]
- 87.Kesterson J.W., Carlton W.W. Monoamine oxidase inhibition and the activity of other oxidative enzymes in the brains of mice fed cuprizone. Toxicol. Appl. Pharmacol. 1971;20(3):386–395. doi: 10.1016/0041-008x(71)90281-x. [http://dx.doi.org/10.1016/0041-008X(71)90281-X]. [PMID: 4399886]. [DOI] [PubMed] [Google Scholar]
- 88.Venturini G. Enzymic activities and sodium, potassium and copper concentrations in mouse brain and liver after cuprizone treatment in vivo. J. Neurochem. 1973;21(5):1147–1151. doi: 10.1111/j.1471-4159.1973.tb07569.x. [http://dx.doi.org/10.1111/j.1471-4159.1973.tb07569.x]. [PMID: 4357499]. [DOI] [PubMed] [Google Scholar]
- 89.Suzuki K. Giant hepatic mitochondria: production in mice fed with cuprizone. Science. 1969;163(3862):81–82. doi: 10.1126/science.163.3862.81. [http://dx.doi.org/10.1126/science.163.3862.81]. [PMID: 5763494]. [DOI] [PubMed] [Google Scholar]
- 90.Wakabayashi T. Megamitochondria formation - physiology and pathology. J. Cell. Mol. Med. 2002;6(4):497–538. doi: 10.1111/j.1582-4934.2002.tb00452.x. [http://dx.doi.org/10.1111/j.1582-4934.2002.tb00452.x]. [PMID: 12611638]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 91.Veto S., Acs P., Bauer J., Lassmann H., Berente Z., Setalo G., Jr, Borgulya G., Sumegi B., Komoly S., Gallyas F., Jr, Illes Z. Inhibiting poly(ADP-ribose) polymerase: a potential therapy against oligodendrocyte death. Brain. 2010;133(Pt 3):822–834. doi: 10.1093/brain/awp337. [http://dx.doi.org/10.1093/brain/awp337]. [PMID: 20157013]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 92.Baumann N., Pham-Dinh D. Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol. Rev. 2001;81(2):871–927. doi: 10.1152/physrev.2001.81.2.871. [http://dx.doi.org/10.1152/physrev.2001.81. 2.871]. [PMID: 11274346]. [DOI] [PubMed] [Google Scholar]
- 93.Palumbo S., Toscano C.D., Parente L., Weigert R., Bosetti F. Time-dependent changes in the brain arachidonic acid cascade during cuprizone-induced demyelination and remyelination. Prostaglandins Leukot. Essent. Fatty Acids. 2011;85(1):29–35. doi: 10.1016/j.plefa.2011.04.001. [http://dx.doi.org/10.1016/j.plefa.2011.04.001]. [PMID: 21530210]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 94.Carey E.M., Freeman N.M. Biochemical changes in Cuprizone-induced spongiform encephalopathy. I. Changes in the activities of 2′,3′-cyclic nucleotide 3′-phosphohydrolase, oligodendroglial ceramide galactosyl transferase, and the hydrolysis of the alkenyl group of alkenyl, acyl-glycerophospholipids by plasmalogenase in different regions of the brain. Neurochem. Res. 1983;8(8):1029–1044. doi: 10.1007/BF00965198. [http://dx.doi.org/10.1007/BF00965198]. [PMID: 6312351]. [DOI] [PubMed] [Google Scholar]
- 95.Neu I., Woelk H. Investigations of the lipid metabolism of the white matter in multiple sclerosis: changes in glycero-phosphatides and lipid-splitting enzymes. Neurochem. Res. 1982;7(6):727–735. doi: 10.1007/BF00965525. [http://dx.doi.org/10.1007/BF00965525]. [PMID: 7121719]. [DOI] [PubMed] [Google Scholar]
- 96.Balboa M.A., Varela-Nieto I., Killermann Lucas K., Dennis E.A. Expression and function of phospholipase A(2) in brain. FEBS Lett. 2002;531(1):12–17. doi: 10.1016/s0014-5793(02)03481-6. [http://dx.doi.org/10.1016/S0014-5793 (02)03481-6]. [PMID: 12401195]. [DOI] [PubMed] [Google Scholar]
- 97.Hemm R.D., Carlton W.W., Welser J.R. Ultrastructural changes of cuprizone encephalopathy in mice. Toxicol. Appl. Pharmacol. 1971;18(4):869–882. doi: 10.1016/0041-008x(71)90235-3. [http://dx.doi.org/10.1016/0041-008X(71) 90235-3]. [PMID: 5570239]. [DOI] [PubMed] [Google Scholar]
- 98.Porter A.G., Jänicke R.U. Emerging roles of caspase-3 in apoptosis. Cell Death Differ. 1999;6(2):99–104. doi: 10.1038/sj.cdd.4400476. [http://dx.doi.org/10. 1038/sj.cdd.4400476]. [PMID: 10200555]. [DOI] [PubMed] [Google Scholar]
- 99.Tezuka T., Tamura M., Kondo M.A., Sakaue M., Okada K., Takemoto K., Fukunari A., Miwa K., Ohzeki H., Kano S., Yasumatsu H., Sawa A., Kajii Y. Cuprizone short-term exposure: astrocytic IL-6 activation and behavioral changes relevant to psychosis. Neurobiol. Dis. 2013;59:63–68. doi: 10.1016/j.nbd.2013.07.003. [http://dx.doi.org/10. 1016/j.nbd.2013.07.003]. [PMID: 23867234]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 100.Gao X., Gillig T.A., Ye P., D’Ercole A.J., Matsushima G.K., Popko B. Interferon-gamma protects against cuprizone-induced demyelination. Mol. Cell. Neurosci. 2000;16(4):338–349. doi: 10.1006/mcne.2000.0883. [http://dx.doi.org/10.1006/mcne.2000.0883]. [PMID: 11085872]. [DOI] [PubMed] [Google Scholar]
- 101.Krakowski M., Owens T. Interferon-gamma confers resistance to experimental allergic encephalomyelitis. Eur. J. Immunol. 1996;26(7):1641–1646. doi: 10.1002/eji.1830260735. [http://dx.doi.org/10.1002/eji.1830260735]. [PMID: 8766573]. [DOI] [PubMed] [Google Scholar]
- 102.Willenborg D.O., Fordham S., Bernard C.C., Cowden W.B., Ramshaw I.A. IFN-gamma plays a critical down-regulatory role in the induction and effector phase of myelin oligodendrocyte glycoprotein-induced autoimmune encephalomyelitis. J. Immunol. 1996;157(8):3223–3227. [PMID: 8871615]. [PubMed] [Google Scholar]
- 103.Trebst C., Heine S., Lienenklaus S., Lindner M., Baumgärtner W., Weiss S., Stangel M. Lack of interferon-beta leads to accelerated remyelination in a toxic model of central nervous system demyelination. Acta Neuropathol. 2007;114(6):587–596. doi: 10.1007/s00401-007-0300-z. [http://dx. doi.org/10.1007/s00401-007-0300-z]. [PMID: 17940777]. [DOI] [PubMed] [Google Scholar]
- 104.Zendedel A., Beyer C., Kipp M. Cuprizone-induced demyelination as a tool to study remyelination and axonal protection. J. Mol. Neurosci. 2013;51(2):567–572. doi: 10.1007/s12031-013-0026-4. [http://dx.doi.org/10.1007/ s12031-013-0026-4]. [PMID: 23666824]. [DOI] [PubMed] [Google Scholar]
- 105.Linder M.C., Hazegh-Azam M. Copper biochemistry and molecular biology. Am. J. Clin. Nutr. 1996;63(5):797S–811S. doi: 10.1093/ajcn/63.5.797. [PMID: 8615367]. [DOI] [PubMed] [Google Scholar]
- 106.Jurevics H., Largent C., Hostettler J., Sammond D.W.K., Matsushima G.K., Kleindienst A., Toews A.D., Morell P. Alterations in metabolism and gene expression in brain regions during cuprizone-induced demyelination and remyelination. J. Neurochem. 2002;82(1):126–136. doi: 10.1046/j.1471-4159.2002.00954.x. [http://dx.doi.org/10.1046/j.1471-4159.2002. 00954.x]. [PMID: 12091473]. [DOI] [PubMed] [Google Scholar]
- 107.Blakemore W.F. Observations on oligodendrocyte degeneration, the resolution of status spongiosus and remyelination in cuprizone intoxication in mice. J. Neurocytol. 1972;1(4):413–426. doi: 10.1007/BF01102943. [http://dx.doi.org/10.1007/BF01102943]. [PMID: 8530973]. [DOI] [PubMed] [Google Scholar]
- 108.Blakemore W.F. Demyelination of the superior cerebellar peduncle in the mouse induced by cuprizone. J. Neurol. Sci. 1973;20(1):63–72. doi: 10.1016/0022-510x(73)90118-4. [http://dx.doi.org/10.1016/0022-510X(73)90118-4]. [PMID: 4744511]. [DOI] [PubMed] [Google Scholar]
- 109.Bai C. B., Sun S., Roholt A., Benson E., Edberg D., Medicetty S., Dutta R., Kidd G., Macklin W. B., Trapp B. A mouse model for testing remyelinating therapies. Exp Neurol. 2016;283(Pt A):330–40. doi: 10.1016/j.expneurol.2016.06.033. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 110.Yang H.J., Wang H., Zhang Y., Xiao L., Clough R.W., Browning R., Li X.M., Xu H. Region-specific susceptibilities to cuprizone-induced lesions in the mouse forebrain: Implications for the pathophysiology of schizophrenia. Brain Res. 2009;1270:121–130. doi: 10.1016/j.brainres.2009.03.011. [http://dx.doi.org/10.1016/j.brainres.2009.03.011]. [PMID: 19306847]. [DOI] [PubMed] [Google Scholar]
- 111.Hübner N.S., Mechling A.E., Lee H.L., Reisert M., Bienert T., Hennig J., von Elverfeldt D., Harsan L.A. The connectomics of brain demyelination: Functional and structural patterns in the cuprizone mouse model. Neuroimage. 2017;146:1–18. doi: 10.1016/j.neuroimage.2016.11.008. [http://dx.doi.org/10.1016/j.neuroimage.2016.11.008]. [PMID: 27845252]. [DOI] [PubMed] [Google Scholar]
- 112.Hoffmann K., Lindner M., Gröticke I., Stangel M., Löscher W. Epileptic seizures and hippocampal damage after cuprizone-induced demyelination in C57BL/6 mice. Exp. Neurol. 2008;210(2):308–321. doi: 10.1016/j.expneurol.2007.11.005. [http://dx.doi.org/10.1016/j.expneurol.2007.11. 005]. [PMID: 18096162]. [DOI] [PubMed] [Google Scholar]
- 113.Suzuki K., Kikkawa Y. Status spongiosus of CNS and hepatic changes induced by cuprizone (biscyclohexanone oxalyldihydrazone). Am. J. Pathol. 1969;54(2):307–325. [PMID: 5765567]. [PMC free article] [PubMed] [Google Scholar]
- 114.Elsworth S., Howell J.M. Variation in the response of mice to cuprizone. Res. Vet. Sci. 1973;14(3):385–387. [PMID: 4805158]. [PubMed] [Google Scholar]
- 115.Bakker D.A., Ludwin S.K. Blood-brain barrier permeability during Cuprizone-induced demyelination. Implications for the pathogenesis of immune-mediated demyelinating diseases. J. Neurol. Sci. 1987;78(2):125–137. doi: 10.1016/0022-510x(87)90055-4. [http://dx.doi.org/10.1016/0022-510X (87)90055-4]. [PMID: 3553434]. [DOI] [PubMed] [Google Scholar]
- 116.Chen Z., Chen J.T., Johnson M., Gossman Z.C., Hendrickson M., Sakaie K., Martinez-Rubio C., Gale J.T., Trapp B.D. Cuprizone does not induce CNS demyelination in nonhuman primates. Ann. Clin. Transl. Neurol. 2015;2(2):208–213. doi: 10.1002/acn3.159. [http://dx.doi.org/10.1002/acn3.159]. [PMID: 25750925]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 117.Silvestroff L., Bartucci S., Pasquini J., Franco P. Cuprizone-induced demyelination in the rat cerebral cortex and thyroid hormone effects on cortical remyelination. Exp. Neurol. 2012;235(1):357–367. doi: 10.1016/j.expneurol.2012.02.018. [http://dx.doi.org/10.1016/j.expneurol.2012.02.018]. [PMID: 22421533]. [DOI] [PubMed] [Google Scholar]
- 118.Love S. Cuprizone neurotoxicity in the rat: morphologic observations. J. Neurol. Sci. 1988;84(2-3):223–237. doi: 10.1016/0022-510x(88)90127-x. [http://dx.doi.org/10. 1016/0022-510X(88)90127-X]. [PMID: 2837540]. [DOI] [PubMed] [Google Scholar]
- 119.Carlton W.W. Spongiform encephalopathy induced in rats and guinea pigs by cuprizone. Exp. Mol. Pathol. 1969;10(3):274–287. doi: 10.1016/0014-4800(69)90057-4. [http://dx.doi.org/10.1016/0014-4800(69)90057-4]. [PMID: 5788627]. [DOI] [PubMed] [Google Scholar]
- 120.Valeiras B., Rosato Siri M.V., Codagnone M., Reinés A., Pasquini J.M. Gender influence on schizophrenia-relevant abnormalities in a cuprizone demyelination model. Glia. 2014;62(10):1629–1644. doi: 10.1002/glia.22704. [http://dx.doi.org/10.1002/glia.22704]. [PMID: 24890315]. [DOI] [PubMed] [Google Scholar]
- 121.Hall S.M. The effect of injections of lysophosphatidyl choline into white matter of the adult mouse spinal cord. J. Cell Sci. 1972;10(2):535–546. doi: 10.1242/jcs.10.2.535. [PMID: 5018033]. [DOI] [PubMed] [Google Scholar]
- 122.Jeffery N.D., Blakemore W.F. Remyelination of mouse spinal cord axons demyelinated by local injection of lysolecithin. J. Neurocytol. 1995;24(10):775–781. doi: 10.1007/BF01191213. [http://dx.doi.org/10.1007/ BF01191213]. [PMID: 8586997]. [DOI] [PubMed] [Google Scholar]
- 123.Cerina M., Narayanan V., Göbel K., Bittner S., Ruck T., Meuth P., Herrmann A.M., Stangel M., Gudi V., Skripuletz T., Daldrup T., Wiendl H., Seidenbecher T., Ehling P., Kleinschnitz C., Pape H-C., Budde T., Meuth S.G. The quality of cortical network function recovery depends on localization and degree of axonal demyelination. Brain Behav. Immun. 2017;59:103–117. doi: 10.1016/j.bbi.2016.08.014. [http://dx.doi.org/10.1016/j.bbi.2016.08.014]. [PMID: 27569659]. [DOI] [PubMed] [Google Scholar]
- 124.van der Star J. In vitro and in vivo models of multiple sclerosis. CNS Neurol. Disord. Drug Targets. 2012;11(5):570–588. doi: 10.2174/187152712801661284. [DOI] [PubMed] [Google Scholar]
- 125.Shindler K.S., Ventura E., Dutt M., Rostami A. Inflammatory demyelination induces axonal injury and retinal ganglion cell apoptosis in experimental optic neuritis. Exp. Eye Res. 2008;87(3):208–213. doi: 10.1016/j.exer.2008.05.017. [http://dx.doi.org/10.1016/j.exer.2008.05.017]. [PMID: 18653182]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 126.Ulrich R., Baumgärtner W., Gerhauser I., Seeliger F., Haist V., Deschl U., Alldinger S. MMP-12, MMP-3, and TIMP-1 are markedly upregulated in chronic demyelinating theiler murine encephalomyelitis. J. Neuropathol. Exp. Neurol. 2006;65(8):783–793. doi: 10.1097/01.jnen.0000229990.32795.0d. [http://dx.doi.org/10.1097/01.jnen.0000229990.32795.0d]. [PMID: 16896312]. [DOI] [PubMed] [Google Scholar]
- 127.Gudi V., Gai L., Herder V., Tejedor L.S., Kipp M., Amor S., Sühs K.W., Hansmann F., Beineke A., Baumgärtner W., Stangel M., Skripuletz T. Synaptophysin is a reliable marker for axonal damage. J. Neuropathol. Exp. Neurol. 2017 doi: 10.1093/jnen/nlw114. [Epub ahead of print]. [http://dx.doi.org/10.1093/jnen/nlw114]. [PMID: 28177496]. [DOI] [PubMed] [Google Scholar]