Abstract
Anisakidosis is a zoonotic parasitosis induced by members of the family Anisakidae. The anisakid genera includes Anisakis, Pseudoterranova, Hysterothylacium and Contracaecum. The final definitive hosts of these nematodes are marine mammals with a complex life cycle. These nematode parasites use different crustaceans and fish species as intermediate or paratenic hosts and humans are accidental hosts. Human anisakiasis, the infections caused by members of the genus Anisakis, occurs, when seafoods, particularly fish, contaminated with the infective stage (third stage larvae [L3]) of this parasite, are consumed. Pseudoterranovosis, on the other hand is induced by members of the genus Pseudoterranova. These two genera of anisakids have been implicated in human disease globally. There is a rise in reports of gastro-intestinal infections accompanied by allergic reactions caused by Anisakis simplex and Anisakis pegreffii. This review provides an update on current knowledge on Anisakis as a food-borne parasite with special focus on the increasingly reported diversity of fish and crustacean hosts, allergens and immunological cross-reactivity with invertebrate proteins rendering this parasite a significant public health issue.
Keywords: Anisakis, Fish hosts, Crustacean hosts, Shellfish, Anisakiasis, Anisakis allergy, Cross-reactivity, Zoonotic, Food-borne parasite
Graphical abstract

Highlights
-
•
Anisakis, is a foodborne zoonotic parasite.
-
•
Humans are accidental hosts of Anisakis L3 larva.
-
•
Consumption of Anisakis parasite-contaminated seafood causes human anisakiasis.
-
•
Zooplankton (Crustaceans: Krills, Squids, Crayfish) composition in fishing regions contribute to Anisakis parasitosis.
-
•
Anisakis is the parasite with the largest number of registered allergens with the IUIS.
1. Introduction
The World Health Organization (WHO) (World Health Organization, 2012) estimates approximately 56 million cases of parasite infections associated with the consumption of fish products. Among the parasites implicated, are the group of anisakids, known to be capable of inducing severe pathologies in humans and widely distributed geographically across all continents (Pampiglione et al., 2002).
Anisakids are parasitic nematodes belonging to the Phylum Nemathelmintes, Class Nematoda, Ascarida order, suborder Ascaridina, superfamily Ascaridoidea, Anisakidae family and subfamily Anisakinae. This family includes the genera Anisakis, Pseudoterranova, Contracaecum and Hysterothylacium (Smith and Wootten, 1978). However, three species of the genus Anisakis are reported to be the causative agent of infections in humans: A. simplex sensu stricto, Anisakis pegreffii and Anisakis physeteris (Mattiucci and Nascetti, 2008). For the purpose of this review, the focus will be on A. simplex and A. pegreffii.
Anisakiasis is the zoonotic disease triggered by the third stage larvae of nematodes, Anisakis (Nieuwenhuizen and Lopata, 2013). This parasite habitually parasitises adult marine mammals. Intermediate and/or paratenic hosts of the larvae are crustaceans, cephalopods and fish (Nieuwenhuizen and Lopata, 2013). Humans are however accidentally infected when hosts are ingested either as raw or inadequately cooked or treated fish/shellfish meals. Hence, the infection has been directly linked to eating habits (Pampiglione et al., 2002). Infected dishes of raw fish such as sushi and sashimi commonly found in Japan's national dishes as well as the culinary tradition of consumption of marinated or raw fish in European countries such as Italy are a significant source of the infection (Ivanovic et al., 2015; Yorimitsu et al., 2013). Globalization of such cuisine improved public health diagnosis (better diagnostic tool development) and greater awareness of anisakiasis infection has resulted in increase in the frequency of reported anisakiasis in most continents (Ivanovic et al., 2015).
Symptoms of acute anisakiasis include severe abdominal pain, nausea, and vomiting. Some of these symptoms closely mimic peptic ulcer, appendicitis, or peritonitis with the most concerning presentation being allergic sensitisation, which is usually serious and range from urticaria to anaphylactic shock (Villazanakretzer et al., 2016). The L3 larvae of the genus Anisakis have been found in several economically important fish species. However, the prevalence of Anisakis in the fish host has been reported to vary between different geographical fishing grounds and seasons in the same fish host species. Serraca and colleagues (2014) attributed this to the fact that some invertebrate hosts for Anisakis may not be part of the habitual diet of some fish hosts in certain fishing grounds in some seasons as they may prefer other invertebrates as foods (Serracca et al., 2014). It is therefore possible for a fish host in one region to be heavily contaminated with Anisakis depending on the types of crustaceans eaten; and in another region, such a fish host may be free of Anisakis, as it may prefer other invertebrates as food than those harbouring Anisakis (Serracca et al., 2014). Hence, the composition of the zooplankton communities in fishing regions is a significant contributing factor to Anisakis parasitosis (Serracca et al., 2014). Widening our knowledge on the fish and crustacean hosts used by this parasite to propagate its life cycle, would be significant in reducing the risk for human anisakiasis via consumption of potentially infective seafoods, which are a food safety risk.
2. Anisakis biology and life cycle
The definitive host of anisakid, where the adult stage of the parasite is found, are cetaceans, (marine mammals such as dolphins and seals). Eggs of the parasite are passed with faeces of definitive host into the marine environment where they hatch and develop into the 2nd stage larvae of the parasite (Baird et al., 2014; Buchmann and Mehrdana, 2016). The larvae that develop from the eggs are eaten by the intermediate hosts, crustaceans (copepods, decapods, isopods, amphipods, euphausiids) and molluscs (Baird et al., 2014). It is well established that one of the most important first intermediate hosts in the Anisakis life cycle are the Euphasiids (Krill) (Smith and Wootten, 1978). Infected krill eaten by fish or squid become a source of the infective 3rd stage larvae of Anisakis for the paratenic hosts (fish or squid). The Anisakis larvae encyst on the intestines and other visceral organs of these hosts. The parasite does not develop further and remains at the third stage of larvae development (L3 stage) in these hosts. The life-cycle comes to a completion when infected fish/squid are eaten by marine mammals such as whales, seals and dolphins. In these definitive hosts, the larvae grow to the L4 stage and subsequently to the adult stage (Fig. 1). The nematode feeds, grows, mates and then releases eggs via the host faeces into the sea water to continue its life cycle (Pozio, 2013). As is common with parasites with complex life cycle, the morphology of Anisakis varies with the different stages and infected hosts. In fish, the L3 stage larvae displays a coiled shape, which when uncoiled, is about 2 cm long. Humans become accidental hosts when undercooked or raw fish and cephalopods, contaminated with the parasite are consumed.
Fig. 1.
Anisakid Life Cycle. Location of the L3 larvae may be gastric, intestinal or ectopic.
3. Molecular identification and classification of anisakids
Classification of anisakid nematodes was previously based on some of their morphological features, which include presence, or absence of mucron at the tail tip, the length of the ventriculus position and extent of the cecum. This led to the classification of Anisakis into two types: Anisakis type 1 and II by Berland (1961). However, due to lack of precise details for species identification using morphological features, molecular tools such as sequencing of the internal transcribed spacer (ITS) region of ribosomal DNA, mitochondrial gene cytochrome oxidase subunit 2 (Cox2) and allozyme analysis, polymerase chain reaction coupled with restriction fragment length polymorphism; have been employed in species-specific identification (Iglesias et al., 2008; Shamsi et al., 2009; Umehara et al., 2006). The cox2 gene is shown to be highly polymorphic in Anisakis spp. and is therefore particularly useful for identifying the parental species involved in the production of hybrids. It provides valuable information in the recognition of sibling species of Anisakis larvae, as independent genetic lineages (Abollo et al., 2003; Mattiucci et al., 2009; Valentini et al., 2006). It has also been established that it provides additional genetic characters useful for molecular epidemiological approach to the study of anisakiasis in human (Audicana and Kennedy, 2008).
Several studies have also shown that the first and second internal transcribed spacers (ITS-1 and ITS-2) of nuclear ribosomal DNA (rRNA) provide appropriate genetic markers for anisakid species identification irrespective of their stage of development (Jabbar et al., 2012, 2013; Shamsi et al., 2011). PCR-coupled mutation scanning of the ITS-1 and/or ITS-2, integrated with targeted sequencing (Gasser et al., 2006) and phylogenetic analysis also furnishes a powerful approach for investigating the genetic composition of populations of anisakids (Jabbar et al., 2012, 2013).
Different genera of anisakids have been described using molecular tools and classified into one of the two families: Anisakidae or Raphidascarididae (Kalay et al., 2009). Within the genus Anisakis, ten species and four distinct clades have been described (Mattiucci et al., 2014, 2018). Anisakis species identified as Clade 1 include A. berlandi, A. pegreffii, and A. simplex (s.s.) and are usually referred to as the A. simplex (s.l.) complex. A. simplex and A. pegreffii are inferred to be sister taxa (Mattiucci et al., 2014). Anisakis spp in clade 2 are also considered as sister taxa and have been identified as A. ziphidarum and A. nascetti (Mattiucci et al., 2014). Clade 3 Anisakis have been identified as A. physeteris, A. paggiae and A. brevispiculata. Anisakis sp 2, a newly identified taxon, has been found to be closely related to A. physeteris, clustering closely with the clade 3 group of Anisakis and implying that Anisakis spp 2 might represent an undescribed sibling species belonging to this complex. Furthermore, A. typica, another species of Anisakis, is reported not to cluster with any of the previously identified clades. However, it was recently identified to belong to a new clade, clade four (Mattiucci et al., 2018). A recently identified Anisakis spp, Anisakis sp 1 was genetically identified in Malaysian Nemipterus japonicus using mitochondria DNA (mtDNA) and allozyme analysis. Though it is stated that its precise position from a phylogenetic point of view is yet to be resolved, it is however found to be genetically distinct from all previously known species of Anisakis, but closely related to A. typica from central Atlantic waters (Mattiucci et al., 2018). A. simplex and A. pegreffii have been reported as the most important zoonotic species of the genera Anisakis (Nieuwenhuizen and Lopata, 2013).
4. Epidemiology
The first case of anisakid disease was described in 1876 by Leuckhart (Leuckart, 1876); the disease was however only widely recognized in the 1960s, when epidemics of anisakidosis occurred in the Netherlands with the consumption of lightly salted herring (Van Thiel et al., 1960; Van Thiel, 1962). The larva was identified as A. simplex 3rd-stage larva. Since then, many cases of this zoonotic infection have been described in other countries such as Japan where consumption of raw fish is customary (Arizono et al., 2012; Suzuki et al., 2010). Over 20,000 cases of anisakiasis had been reported worldwide prior to 2010 (EFSA-BIOHAZ, 2010), with the highest prevalence (over 90%) from Japan (Baird et al., 2014). Infected sushi and sashimi, which are the national dishes of raw fish are the main source of human infection, with an annual report of 2000–3000 cases of anisakiasis in Japan alone (Yorimitsu et al., 2013). The worldwide adoption of different cuisine, growth of better tools for diagnosis and greater knowledge on Anisakis and its infection, has resulted in significantly increased reporting of anisakiasis. Other countries in which cases of anisakiasis have been reported include Korea (Sohn et al., 2015), China (Qin et al., 2013), Malaysia (Amir et al., 2016), Taiwan (Li et al., 2015), the United Kingdom (Audicana and Kennedy, 2008), Spain (Herrador et al., 2018)., Italy (Mattiucci et al., 2018; Guardone et al., 2018), France (Audicana and Kennedy, 2008), Germany (Audicana and Kennedy, 2008), Denmark (Andreassen and Jorring, 1970), Norway (Jacobsen and Berland, 1969), Croatia (Mladineo et al., 2016), the United States of America (Kojima et al., 2013), Southern America (Borges et al., 2012; Eiras et al., 2018), Egypt (Audicana and Kennedy, 2008), South Africa (Audicana and Kennedy, 2008), and Australia (Shamsi and Butcher, 2011), implying anisakiasis occurrence in all continents of the globe excluding Antarctica. Recent data shown by Orphanet (Orphanet, 2016) as reported by Guardone and colleagues in a recent retrospective epidemiological study of human anisakiasis (Guardone et al., 2018), estimated a global incidence of 0.32/100,000.
A strong tradition of eating raw or undercooked fish in the form of traditional recipes such as ‘ceviche’ in South America (Eiras et al., 2018), marinated anchovies in Spain (Herrador et al., 2018), raw fish prepared according to traditional Japanese dishes, such as ‘sushi’ and ‘sashimi’ and an exponential increase in the number of restaurants serving ‘sushi’ and ‘sashimi’ globally, are risk factors for the occurrence of anisakiasis (Eiras et al., 2018). According to Shamsi and Sheorey (2018), consumption of these raw or undercooked seafoods increase the risk of infection when viable parasites are present. In a recent study of anisakiasis cases reported between 2000 and 2017 in the European union, a total of 236 cases were reported with the highest incidence in Spain, followed by Italy (Serrano-Moliner et al., 2018). Spain was identified as the country with the second highest incidence worldwide (Herrador et al., 2018). Marinated anchovies in vinegar, a dish popular in the Spanish community, was implicated as the main food vehicle of infection (Herrador et al., 2018). In Australia, it has been estimated that 1259 tonnes of raw finfish are consumed annually with 115.6 million servings per annum used for sushi and sashimi fish meal preparation (Sumner et al., 2015). As reports from certain parts of the world such as Australia on anisakiasis human infections are unexpectedly low, it is suggested that among factors implicated is the possible absence of clinical symptoms or presence of non-specific symptoms, resulting in underdiagnosis of anisakiasis (Shamsi and Sheorey, 2018). This constitutes a serious public health problem. This risk of infection could be minimised by following the recommended standard of freezing fish (FDA/CFSAN, 2001); however, it is reported that freezing fish in some cultures, is believed to affect the taste of some of these fish meals, hence there is a reluctance to freeze fish (Iwata et al., 2015). Avoiding the consumption of raw or undercooked fish can minimise anisakiasis infection. Fish that has undergone inspection for anisakis larvae have been encouraged to be used for meal preparation in addition to freezing the fish prior to consumption (Serrano-Moliner et al., 2018).
5. Anisakiasis
Humans are an accidental host of the parasite, Anisakis. Infection occurs upon consumption of raw or under-processed marine fish and crustaceans contaminated with the third stage larvae (Ivanović et al., 2017). Two main mechanisms are reported to be responsible for anisakiasis: allergic reactions and direct tissue damage as a result of the penetration of the infective larvae into the target organ site (Caramello et al., 2003; Choi et al., 2009). The survival time of Anisakis in humans is very short and they usually become expelled or destroyed in few days or weeks (Audicana and Kennedy, 2008). However, within a few hours of ingesting this parasite through contaminated fish, the worm burrows into the human intestinal wall resulting in an acute and transient infection with symptoms such as abdominal pain, vomiting, nausea and/or diarrhea (Audicana and Kennedy, 2008). Invasion of the gut wall by the parasite sometimes results in development of eosinophilic granuloma or perforation, which causes direct tissue damage (Choi et al., 2009).
The part of the digestive tract in which Anisakis larvae is lodged, after consumption of raw or lightly cooked fish infected with L3 larvae and the type of Anisakis spp ingested, determines largely the clinical manifestation of anisakiasis observed. Penetration of the gastric mucous results in inflammation which gives rise to some of the symptoms (Valls et al., 2003). Anisakis can cause gastrointestinal infection, which may be classified as acute, chronic, ectopic or allergic reactions (Bucci et al., 2013). In gastric anisakiasis, a predilection for penetration into the greater curvature of the stomach body has been suggested, with the larva embedding itself into the walls of the stomach (Kakizoe et al., 1995; Shimamura et al., 2016). Usually, a prominent gastric mucosal oedema around the area of penetration is observed endoscopically in the gastric mucosa (Kakizoe et al., 1995; Shimamura et al., 2016). Typical clinical presentation is usually reported to be acute severe epigastric pain, few hours after infected fish has been consumed, with symptoms developing within 12 h (Lee et al., 2009; Takabayashi et al., 2014). For intestinal anisakiasis, non-specific clinical characteristics such as nausea, vomiting or diarrhoea, are reported to develop within 5 days after consumption of infected fish. It is known that it takes longer time for anisakiasis symptoms to manifest in intestinal infection than in gastric anisakiasis (Takabayashi et al., 2014). Most cases of anisakiasis have previously been reported to be gastric anisakiasis and was suggested to represent about 95% of the disease burden, with intestinal anisakiasis accounting for the remaining burden of anisakiasis (Kojima et al., 2013). However, it has been recognised that in intestinal anisakiasis, patients are frequently misdiagnosed with other diseases such as inflammatory bowel disease, bowel obstruction, ulcer, acute appendicitis, diverticulitis, ileitis or cholecystitis (Miura et al., 2010) and this might have resulted in the low record of intestinal anisakiasis. In a recent report by Guardone and colleagues, it was shown that in Italy there was a similar frequency for localisation of gastric and intestinal anisakiasis with only a slight increase for gastric lesions (Guardone et al., 2018). In another retrospective study in Japan, results were similar to Guardone's study with 47% of patients presented having gastric anisakiasis and 53% presented with small intestinal anisakiasis (Takabayashi et al., 2014). Recent cases of Anisakis infection have shown that contaminated raw fish may harbour several Anisakis larvae which may attach to multiple sites on the digestive system (Mizumura et al., 2018), with the implication that a serving of raw fish containing more than one Anisakis larvae results in intestinal anisakiasis after gastric anisakiasis has occurred (Mizumura et al., 2018). We speculate that in such anisakiasis infection with multiple larvae, some of the larvae may fail to embed in the walls of the stomach and after being moved by peristaltic motion, migrate into the intestine where they are able to cause intestinal anisakiasis.
Clinical manifestation of anisakiasis are not confined only to gastrointestinal symptoms but has been reported to be associated with allergy reactions in some individuals (Guardone et al., 2018; Ivanović et al., 2017; Shimamura et al., 2016). Symptoms of allergic reactions range from urticaria and angioedema to life-threatening anaphylactic shock, usually associated with gastrointestinal symptoms (Choi et al., 2009). Allergic reactions may occur after the primary infection with Anisakis and exposure to allergenic proteins in the food.
6. Anisakis as food allergen
The first allergic reaction from consumption of Anisakis contaminated fish was reported in Japan by Kasuya et al. (1990). The allergenic potency of Anisakis antigens despite the active penetration of the larvae into the gastro-intestinal tract was first pointed out in their report (Kasuya et al., 1990). Thereafter, another case of anaphylaxis allergic reaction attributed to anisakiasis was reported in a 52-year-old woman in Spain (Audicana et al., 1995). Shortly after this incidence in Spain, 28 new cases of Anisakis implicated allergic reaction were reported (Fernandez de Corres et al., 1996). Symptoms described for these anisakiasis cases varied and included urticaria/angioedema, facial angioedema, gastrointestinal symptoms (vomiting, diarrhea and abdominal pain), respiratory symptoms, anaphylactic shock and respiratory arrest (Fernandez de Corres et al., 1996). The fish host implicated included Merluccius merluccius (hake), Engraulis encrasicholis (anchovies) and Gadus morhua (cod). Importantly, some of the allergenic proteins of Anisakis have been found to be thermostable as well as pepsin resistant (Nieuwenhuizen and Lopata, 2013a). Not surprising, it has been documented that the ingestion of dead parasites or fragmented parts of the parasite in contaminated fish might result in allergic symptoms after consumption. Furthermore, occupational allergies in aquaculture and fishery workers, cooks as well as fishmongers have been reported, on inhalation of or contact with A. simplex allergens (Nieuwenhuizen et al., 2006; Nieuwenhuizen and Lopata, 2013, 2014). It is however, generally accepted that a viable larva associated with active infections is needed to induce allergic symptoms in most cases (Ivanović et al., 2017). A. simplex has been recognised by the WHO/IUIS nomenclature committee as the parasite with the largest number of known allergens (Fitzsimmons et al., 2014) and it has been proposed that more allergens for these parasite nematodes are yet to be discovered (Baird et al., 2016). Table 1 lists the WHO/IUIS registered Anisakis allergenic proteins.
Table 1.
WHO/IUIS registered Anisakis allergenic proteins.
| Name | Protein Name | Molecular Weight (kDa) | Organism | References |
|---|---|---|---|---|
| Ani s 1 | Ani s 1 | 21 | A. simplex | Moneo et al. (2000) |
| Ani s 2 | Paramyosin | 100 | A. simplex | Perez-Perez et al. (2000) |
| Ani s 3 | Tropomyosin | 33 | A. simplex | Asturias et al. (2000) |
| Ani s 4 | Cystatin | 9 | A. simplex | (Moneo et al., 2005; Rodriguez-Mahillo et al., 2007) |
| Ani s 5 | SXP/RAL-2 | 15 | A. simplex | Kobayashi et al. (2007) |
| Ani s 6 | Serine protease inhibitor | 7 | A. simplex | Kobayashi et al. (2007) |
| Ani s 7 | Ua3 recognized allergen | 139 | A. simplex | Rodriguez et al. (2008) |
| Ani s 8 | SXP/RAL-2 | 16 | A. simplex | Kobayashi et al. (2007) |
| Ani s 9 | SXP/RAL-2 | 15 | A. simplex | Rodriguez-Perez et al. (2008) |
| Ani s 10 | Not given | 23 | A. simplex | Caballero et al. (2011) |
| Ani s 11 | Not given | 30 | A. simplex | Kobayashi et al. (2011) |
| Ani s 12 | Not given | 33 | A. simplex | Kobayashi et al. (2011) |
| Ani s 13 | Haemoglobin | 37 | A. simplex | Gonzalez-Fernandez et al. (2015) |
| Ani s 14 | New major allergen | 23.5 | A. simplex | Kobayashi et al. (2015) |
Note: Allergens accepted in the International Union of Immunological Societies (IUIS) Database.
A considerable problem in diagnosing and interpreting allergic reactions is the presence of cross-reactivity of Anisakis allergens with antigens from other nematodes as well as related invertebrates including insects, crustacean and mollusc. Some allergens of Anisakis, including tropomyosin and paramyosin (native and recombinant products) have demonstrated strong cross-reactivity to homologous proteins in other invertebrates, including crustaceans and mites (Nieuwenhuizen and Lopata, 2013a). Table 2 lists the identified and reported allergens in Anisakis, which are immunologically cross-reactive with allergenic proteins from other invertebrates. However additional allergenic proteins in Anisakis pegreffii have been identified, which have cross-reactivity with proteins of shellfish (Asnoussi et al., 2017).
Table 2.
Anisakis allergens confirmed for cross-reactivity.
| # | Anisakis (IUIS-accepted) allergen | Cross-reactivity with other Invertebrates | Invertebrates Common name | References |
|---|---|---|---|---|
| 1 | Ani s 2 (Paramyosin) |
Blomia tropicalis (Blo t 11) Dermatophagoides pteronyssinus (Der p 11) Dermatophagoides Farina (Der f 11) |
Dust mite | Guarneri et al. (2007) |
| 2 | Ani s 3 (Tropomyosin) | Periplaneta americana (Per a 7) | Cockroach | Guarneri et al. (2007) |
|
Dermatophagoides farina (Der f 10) Dermatophagoides pteronyssinus (Der p 10). Lepidoglyphus destructor (Lep d 10) |
Dust mite | |||
|
Charybdis feriatus (Cha f 1). Homarus americanus (Hom a 1). Panulirus stimpsoni (Pan s 1) Metapenaeus ensis (Met e 1) |
Crustaceans | |||
|
Mimachlamys nobilis Heliotis diversicolor Helix aspersa (Hel as 1). Perna viridis Crassostrea gigas Turbo cornutus (Tur c 1) |
Mollusc | |||
| Chironomus kiiensis (Ch k 10) | Midge | |||
| Lepisma saccharina | Insect | |||
| 3 | Ani s 9 (SXP-RAL-2 family) | Hymenoptera spp | Insects (Wasps) | Rodriguez-Perez et al. (2014) |
7. Increasing numbers of fish and crustacean hosts for anisakis spp
Almost three decades ago, the most common fish and shell fish sources of A. simplex were the spotted chub mackerel (Scomber japanicus) and Japanese flying squid (Todarodes pacificus) (Nagasawa and Moravec, 1995). However, just over a decade later, Abollo and colleagues concluded that most species of cephalopods and fish can potentially harbour these marine parasitic nematodes as 200 fish and 25 cephalopods species have been identified as hosts for Anisakis spp. (Abollo et al., 2001). Anisakis larvae are found in diverse species of fish, crustacean and cephalopods of commercial importance as detailed below (Vidaček et al., 2009).
7.1. Distribution in fish hosts
In Western Europe, herring (Clupea harengus) was identified as the main fish species mostly infected and involved in food-borne anisakiasis (Audicana et al., 2002), although cases with other fish species that were insufficiently cooked were also reported, these include hake (Merluccius merluccius), anchovy (Engraulis encrasicolus), mackerel (Scomber scombrus) and cod (Gadus morhua) in countries such as the Netherlands (Rodríguez et al., 2018). Most cases in Spain were related to the consumption of pickled anchovies and raw sardines (Sardina pilchardus) (Audicana et al., 2002; Guardone et al., 2018). Marinated anchovies are also traditional recipes in Italy and Croatia where lime may also be used to marinate the anchovies (Cipriani et al., 2018; Mladineo et al., 2016).
In Italy, most cases of human anisakidosis appear to be caused by Anisakis pegreffii with the L3 larvae stage of the parasite found mostly in marinated anchovies (Guardone et al., 2018). This species is the most relevant species for the Italian fishery representing 25–35% of the national fishery production (Guardone et al., 2018). In France, Salmon (Salmo salar) was demonstrated to be the most frequent food source associated with human anisakiasis followed by anchovies (Yera et al., 2018). In addition, European pilchards (Sardina pilchardus) are also reported to be frequently consumed fresh in western Mediterranean countries such as Portugal, Spain, Italy or France (Molina-Fernandez et al., 2015). Anamnesis of acute cases of anisakiasis in Spain were associated with consumption of marinated pilchards (Molina-Fernandez et al., 2015). Furthermore, in Spain, among the allergic patients with anaphylaxis a few were linked to the ingestion of pilchards that were either cooked or canned and A. pegreffii was found to be the predominant Anisakis species in pilchards from the Mediterranean basin (Buselic et al., 2018).
In Australia, Anisakis pegreffii L3 larvae has been identified in Tiger flathead fish (Neoplatycephalus richardsoni), Eastern school whiting (Sillago flindersi) and White trevally (Pseudocaranx dentex) (Asnoussi et al., 2017); but has not been associated with anisakiasis occurrence. This, has been attributed to be likely due to the high frequency of self-limiting characteristic of the infection, missed diagnosis and under-reporting since symptoms of anisakiasis are usually non-specific (EFSA-BIOHAZ, 2010), as well as probable low-level knowledge of seafood parasitology among medical experts (Shamsi and Sheorey, 2018) or low occurrence of Anisakis migration into the musculatures of infected fish. In China, the white-spotted conger (Conger myriaster) was recently reported to have a high prevalence of Anisakis pegreffii (Chen et al., 2018). Atlantic cod fish (Gadus morhua) have been associated with numerous penetrating A. simplex larvae (Levsen and Berland, 2012), while Atlantic salmon (Salmo salar) and sea trout (Salmo trutta) returning to rivers in Scotland, England and Wales have also been documented to be infected with a high number of A. simplex larvae (Buchmann and Mehrdana, 2016). In Korea, 81.3% of human anisakiasis were due to Anisakis type I larvae (Sohn et al., 2015); and etiologic agents of human anisakiasis in Korea were recently confirmed to be A. pegreffii larvae by molecular methods (Lim et al., 2015). The fish commonly reported to be implicated in these cases was the common Conger (Conger myriaster), followed by Croaker (Pseudosciaena spp.) and yellowtail fish (Seriola spp.) (Sohn et al., 2015). Table 3 summarizes our current knowledge on different fish hosts in different continents where Anisakis species, (A. pegreffii and A. simplex), have been identified.
Table 3.
List of Fish in which Anisakis has been found.
| Continent | Fish Species | Anisakis found | Reference |
|---|---|---|---|
| AFRICA | |||
| Algeria | Merluccius merluccius (European Hake) | A. pegreffii, A. simplex | Farjallah et al. (2008a) |
|
Trachurus trachurus (Atlantic horse mackerel) Boops boops (Seabream fish) |
A. simplex | Ichalal et al. (2015) | |
| Egypt | Merluccius merluccius (European Hake) | A. simplex | Abou-Rahma et al. (2016) |
| Libya |
Merluccius merluccius (European Hake) Scorpaena porcus (Scorpion fish) |
A. pegreffii A. pegreffii |
(Farjallah et al., 2008a); Eissa et al. (2015) |
| Mauritania | Merluccius merluccius (European Hake) | A. pegreffii, A. simplex | Farjallah et al. (2008b) |
| Morocco | Scomber japonicus (Chub Mackerel) | A. pegreffii, A. simplex | Abattouy et al. (2011) |
| Trachurus trachurus (Horse mackerel) | A. pegreffii | Abattouy et al. (2014) | |
| Merluccius merluccius (European Hake) | A. pegreffii, A. simplex | Farjallah et al. (2008b) | |
| Tunisia | Merluccius merluccius (European Hake), Scomber japonicus (Chub Mackerel) | A. pegreffii | Farjallah et al. (2008a) |
| ASIA | |||
| China | Conger myriaster (Brevoort) | A. pegreffii, A. simplex | Chen et al. (2018) |
|
Scomberomorus niphonius (Japanese Spanish mackerel) Gadus macrocephalus (Pacific cod) Trichiurus lepturus (Largehead hairtail) |
A. simplex A. pegreffii A. pegreffii |
Kuhn et al. (2013) | |
| Pseudorhombus cinnamoneus (Cinnamon flounder) | A. pegreffii | Li et al. (2017) | |
| Indonesia | Auxis rochei (Bullet tuna) | A. pegreffii | Palm et al. (2017) |
| Iran |
Saurida tumbil (greater lizardfish) Nemipterus japonicus (Japanese thread fin bream) Tylosurus crocodilus crocodiles (crocodile longtom) Carangoides armatus (longfin trevally) Thannus tonggol (Long tail tuna fish) Scomberomorus commerson (Narrow-barred Spanish Mackerel) |
Anisakis spp | Dadar et al. (2016) |
| Japan | Scomber japonicus (Chub Mackerel) |
A. simplex A. pegreffii |
(Suzuki et al., 2010); Toyoda and Tanaka (2016) |
|
Trachurus trachurus (Horse mackerel) Oncorhynchus spp (Salmon) |
Anisakis spp | Fujikawa et al. (2018) | |
| Korea |
Paralichthys olivaceus (olive flounder) Sebastes schlegeli (Korean rockfish) |
A. pegreffii | Sohn et al. (2014) |
|
Oncorhynchus spp (Salmon) Gadus macrocephalus (Cod) |
A. simplex | ||
| Sepiida spp (cuttlefish) | Anisakis spp | Choi et al. (2017) | |
| Conger myriaster (Conger) | A. pegreffii | Sohn et al. (2015) | |
| Pseudoscianea spp (Croaker) | |||
| Seriola spp (Yellowtail fish) | |||
| Taiwanese coast | Trichiurus lepturus (Cutlass fish) | A. simplex | Shih (2004) |
| Scomber australasicus (Spotted Mackerel) | A. pegreffii, A. simplex | Chen and Shih (2015) | |
| AUSTRALIA AND OCEANIA | |||
| Antarctica | Electrona Antarctica (Lantern fishes) | A. Pegreffii, A. simplex c | Klimpel et al. (2010) |
| South Australia | Sillago flindersi (Eastern School Whiting) | A. pegreffii | Jabbar et al. (2012) |
| Western Australia | Pseudocaranx dentex (White trevally) | A. pegreffii | Jabbar et al. (2013) |
| Victoria (Melbourne) | Neoplatycephalus richardsoni (Flat head Tiger Fish) | A. pegreffii | Asnoussi et al. (2017) |
| EUROPE | |||
| Adriatic Sea | Engraulis encrasicolus (Anchovies) | A. pegreffii | Cipriani et al. (2016) |
| Austria | Clupea harengus (herring) | Anisakis spp | Kapral et al. (2009) |
| Belgium |
Pollachius pollachius (Pollock) Gadus morhua (Cod), Pollachius virens (Saithe), Merlangius merlangus (Whiting) |
A. simplex | Piccolo et al. (1999) |
| Micromesistius australis (Southern blue whiting) | |||
| Macruronus magellanicus (Hakes) | |||
| German coast | Clupea harengus (Atlantic herring) | A. simplex | Kuhn et al. (2013) |
| Italy | Merluccius gayi (Hake Merluza) | A. pegreffii | (Ciprianni et al., 2015; Mattiucci et al., 2013) |
| Engraulis encrasicolus (raw Anchovies) | Anisakis spp | (Bucci et al., 2013; Fumarola et al., 2009) | |
|
Merluccius merluccius (European hake) Scomber japonicus (Chub Mackerel) |
A. pegreffii A. pegreffii |
Kuhn et al. (2013) | |
| Norway |
Micrelaps muelleri (Bristle-mouth fishes) Pollachius virens -Pollock (White fish) |
A. simplex | Klimpel et al. (2004) |
| Portugal (Madeira) | Aphanopus carbo (Black scabbardfish) | A. simplex | Kuhn et al. (2013) |
| Spain | Merluccius gayi (Hake Merluza) |
A. pegreffii A. simplex |
Cipriani et al. (2015). |
| Trachurus trachurus (Horse mackerel) | A. simplex | Adroher et al. (1996). | |
| Micromesistius poutassou (Blue whiting fish) | A. simplex | Bucci et al. (2013) | |
| Engraulis encrasicolus (Anchovies) | A. simplex | (Repiso et al., 2003) | |
| United Kingdom (UK) | Oncorhynchus spp (Salmon) and pickled fish | Anisakis spp | Lucas et al. (1985) |
| NORTH AMERICA | |||
| Canada | Salvelinus alpinus (Arctic char) | Anisakis spp | Bhat and Cleland (2010) |
| Oncorhynchus spp (Salmon) | A. simplex | (Madi et al., 2013); (Vaughan et al., 2015) | |
| California (USA) |
Sebastes sp (Red snapper) Oncorhynchus spp (Salmon) Anoplopoma fimbria (Sable fish) |
Anisakis type 1 A. simplex |
Kliks (1983) (Kuhn et al., 2013) |
| Alaska |
Oncorhynchus keta (Chum salmon) Oncorhynchus nerka (red salmon) |
A. simplex | Kuhn et al. (2013) |
| Hawaii | Cololabis saira (Mackerel pike) | A. simplex | Kuhn et al. (2013) |
| SOUTH AMERICA | |||
| Ecuador | Merluccius gayi (Hake Merluza) | A. pegreffii | Castellanos et al. (2018) |
| Chile |
Merluccius gayi (Chilean hake) Macrouronus magellanicus (tail-hake) Genypterus chilensis (redconger-eel) Paralichthys microps (flat fish), Trachurus murphyi (Chilean mackerel) |
A. simplex | Mercado et al. (2001) |
| Merluccius australis (Southern Hake). | Anisakis spp | Chavez et al. (2012) | |
| Micromesistius australis (Southern blue whiting) | |||
| Macruronus magellanicus (Hakes) | |||
7.2. Distribution in invertebrate hosts
Anisakis species have a complex life cycle which involves several hosts starting with the formation of the first-stage larvae (L1) in the eggs and subsequent hatching into the second stage (L2) free-swimming larva which in turn is ingested by crustaceans such as krill (euphausiids) and squid (Cephalopods). The intensity of larval nematodes is suggested to be low in the crustacean which are the first intermediate hosts. However, larger fishes are mostly infected only via the already infected crustaceans or small fishes (Mouritsen et al., 2010). The most important intermediate crustacean hosts for A. simplex seem to be the euphausiids for most fish hosts (Hojgaard, 1999). However, there are regions where euphausiids seem to have no significance for successful transmission of A. simplex such as in the Norwegian Deep (Klimpel et al., 2004). It has been suggested that water temperature may contribute to anisakids distribution (Mattiucci and Nascetti, 2006). This may in turn affect the distribution of invertebrate host available for Anisakis in any location. A. simplex sensu stricto have been identified as a colder water species while A. typica appear to be distributed in warmer temperate and tropical waters (Mattiucci and Nascetti, 2006). Zhao and colleagues suggested that this may prevent the euphausiids, which are the most important first intermediate hosts of A. simplex, from being distributed in certain regions (Zhao et al., 2016). In Antarctica, krill has been identified as an intermediate host for both A. simplex c and A. pegreffii (Klimpel et al., 2010). A. simplex has also been found in krill in Mexico (Gomez-Gutierrez et al., 2010). Other intermediate host reported for Anisakis include squid, octopus-molluscs and one-eyed crayfish. Squid have been identified in Korea to be an intermediate host for Anisakis type 1 (Sohn et al., 2015), with most species of Anisakis type 1 in Korea identified recently as A. pegreffii by molecular methods (Lim et al., 2015). In Spain A. simplex has been found to use krill, squid and octopus as invertebrate intermediate hosts (Abollo et al., 1998; Gregori et al., 2015). Klimpel et al. (2004) have identified the one-eyed crayfish (Paraeuchaeta norvegica) as an intermediate host for A. simplex. The discovery of the presence of Anisakis in different mesozooplankton organisms indicates that transmission route for Anisakis is wide (Gregori et al., 2015; Klimpel et al., 2004).
8. Prevention of anisakiasis
Anisakids are known to survive and be resistant to different treatment conditions such as freezing, microwaving, heating, salting, as well as use of anthelmintic drugs and condiments (Brutti et al., 2010; Tejada et al., 2015). Storage, after-harvest handling and fish preparation are the focus of preventive measures. Migration of larvae into the muscle might be prevented by immediate evisceration of fish after being caught (Chen et al., 2018). However, since this immediate cleaning may most likely be performed at sea, resulting in removed contaminated viscera being thrown back into the sea and eaten by other fish, the prevalence of infection may be heightened through this practice (McClelland et al., 1990).
The recommended and common method to kill the larvae in fish before consumption is the application of high or low temperatures (Chen et al., 2014). The US Food and Drug Administration (FDA) recommended that fish be cooked to a temperature of at least 63 °C–74 °C before consumption (Beldsoe and Oria, 2001). Larvae of Anisakis species have been observed to be alive if frozen for a short period at −20 °C. The FDA has recommended that fish be kept frozen at −20 °C for at least 168 h or blast-frozen at −35 °C for at least 15 h (Beldsoe and Oria, 2001).
9. Food safety consideration
Parasitological surveys for Anisakis larvae in consumed seafoods and particularly fish host is crucial to ensure food safety. The parasite burden in the edible flesh of the fish need to be evaluated as this constitutes the main threat to public health (Cipriani et al., 2016). In addition, since the possibility of intra-vitam migration of larvae to the fish flesh has been documented (Cipriani et al., 2016), the storage temperature after fish capture becomes crucial in the post-mortem motility of Anisakis larvae into the flesh of fish. This emphasizes the importance of the regulations which specify freezing of fish products at −20 °C for 24 h, or at −18 °C for 96 h in domestic freezers before utilisation in food preparation, to prevent human anisakiasis. It is however important to consider that allergenic proteins from Anisakis may still be present in food products after removal of intact worms (Audicana et al., 1997).
10. Conclusion
In conclusion, the existence of Anisakis parasites in a variety of mesozooplankton organisms suggests, according to Gregori and colleagues (Gregori et al., 2015) that the transmission routes of A. simplex and A. pegreffii are much broader than previously known. This indicates that Anisakis species may not be specific to any intermediate host and may use any of the named intermediate hosts to move from one habitat to another depending on the seasonal and ecological availability of such intermediate hosts. This may result in Anisakis species expanding their pathways to find their definitive host. The implication of this is an increase in occurrence of anisakiasis across the globe with a potential increase in anisakiasis and allergic reactions accompanied by cross-reactivity to homologous proteins in other invertebrates. More attention needs to be given to this parasite to develop better risk management system of the cascading reactions that may follow infection and sensitisation caused by consumption of Anisakis contaminated raw or inadequately treated fish and/shellfish.
Acknowledgement
Andreas Lopata received financial support via an Australian Research Council (FT110100635) Future Fellowship for this work.
Footnotes
Supplementary data to this article can be found online at https://doi.org/10.1016/j.ijppaw.2019.04.007.
Appendix A. Supplementary data
The following is the Supplementary data to this article:
References
- Abattouy N., Valero A., Benajiba M.H., Lozano J., Martin-Sanchez J. Anisakis simplex s.l. parasitization in mackerel (Scomber japonicus) caught in the North of Morocco--prevalence and analysis of risk factors. Int. J. Food Microbiol. 2011;150:136–139. doi: 10.1016/j.ijfoodmicro.2011.07.026. [DOI] [PubMed] [Google Scholar]; Abattouy, N., Valero, A., Benajiba, M. H., Lozano, J., Martin-Sanchez, J., 2011. Anisakis simplex s.l. parasitization in mackerel (Scomber japonicus) caught in the North of Morocco--prevalence and analysis of risk factors. Int J Food Microbiol. 150, 136-139. [DOI] [PubMed]
- Abattouy N., Lopez A.V., Maldonado J.L., Benajiba M.H., Martin-Sanchez J. Epidemiology and molecular identification of Anisakis pegreffii (Nematoda: Anisakidae) in the horse mackerel Trachurus trachurus from northern Morocco. J. Helminthol. 2014;88:257–263. doi: 10.1017/S0022149X13000102. [DOI] [PubMed] [Google Scholar]; Abattouy, N., Lopez, A. V., Maldonado, J. L., Benajiba, M. H., Martin-Sanchez, J., 2014. Epidemiology and molecular identification of Anisakis pegreffii (Nematoda: Anisakidae) in the horse mackerel Trachurus trachurus from northern Morocco. J Helminthol. 88, 257-263. [DOI] [PubMed]
- Abollo E., Gestal C., Lopez A., Gonzalez F., Guerra A., Pascual S. Squid as trophic bridges for parasite flow within marine ecosystems: the case of A. simplex (Nematoda:Anisakidae), or when the wrong way can be right. S. Afr. J. Mar. Sci. 1998;20:10. [Google Scholar]; Abollo, E., Gestal, C., Lopez, A., Gonzalez, F., Guerra, A., Pascual, S., 1998. Squid as trophic bridges for parasite flow within marine ecosystems: The case of A. simplex (Nematoda:Anisakidae), or when the wrong way can be right. S. Afr. J. Mar. Sci. 20, 10.
- Abollo E., Gestal C., Pascual S. Anisakis infestation in marine fish and cephalopods from Galician waters: an updated perspective. Parasitol. Res. 2001;87:492–499. doi: 10.1007/s004360100389. [DOI] [PubMed] [Google Scholar]; Abollo, E., Gestal, C., Pascual, S., 2001. Anisakis infestation in marine fish and cephalopods from Galician waters: an updated perspective. Parasitol. Res. 87, 492-499. [DOI] [PubMed]
- Abollo E., Paggi L., Pascual S., D'Amelio S. Occurrence of recombinant genotypes of Anisakis simplex s.s. and Anisakis pegreffii (Nematoda: Anisakidae) in an area of sympatry. Infect. Genet. Evol. 2003;3:175–181. doi: 10.1016/s1567-1348(03)00073-x. [DOI] [PubMed] [Google Scholar]; Abollo, E., Paggi, L., Pascual, S., D’Amelio, S., 2003. Occurrence of recombinant genotypes of Anisakis simplex s.s. and Anisakis pegreffii (Nematoda: Anisakidae) in an area of sympatry. Infect. Genet. Evol. 3, 175-181. [DOI] [PubMed]
- Abou-Rahma Y., Abdel-Gaber R., Kamal Ahmed A. First record of Anisakis simplex third-stage larvae (Nematoda, Anisakidae) in European hake Merluccius merluccius lessepsianus in Egyptian water. J. Parasitol. Res. 2016;2016 doi: 10.1155/2016/9609752. [DOI] [PMC free article] [PubMed] [Google Scholar]; Abou-Rahma, Y., Abdel-Gaber, R., Kamal Ahmed, A., 2016. First record of Anisakis simplex third-stage larvae (Nematoda, Anisakidae) in European hake Merluccius merluccius lessepsianus in Egyptian water. J Parasitol Res. 2016, 9609752. doi: 10.1155/2016/9609752. [DOI] [PMC free article] [PubMed]
- Adroher F.J., Valero A., Ruiz-Valero J., Iglesias L. Larval anisakids (Nematoda: Ascaridoidea) in horse mackerel (Trachurus trachurus) from the fish market in Granada, Spain. Parasitol. Res. 1996;82:319–322. doi: 10.1007/s004360050120. [DOI] [PubMed] [Google Scholar]; Adroher, F. J., Valero, A., Ruiz-Valero, J., Iglesias, L., 1996. Larval anisakids (Nematoda: Ascaridoidea) in horse mackerel (Trachurus trachurus) from the fish market in Granada, Spain. Parasitol Res. 82, 319-322. [DOI] [PubMed]
- Amir A., Ngui R., Ismail W.H., Wong K.T., Ong J.S., Lim Y.A., Lau Y.L., Mahmud R. Anisakiasis causing acute dysentery in Malaysia. Am. J. Trop. Med. Hyg. 2016;95(2):410–412. doi: 10.4269/ajtmh.16-0007. [DOI] [PMC free article] [PubMed] [Google Scholar]; Amir, A., Ngui, R., Ismail, W.H., Wong, K.T., Ong, J.S., Lim, Y.A., Lau, Y.L., Mahmud, R., 2016. Anisakiasis causing acute dysentery in Malaysia. Am J Trop Med Hyg. 95(2), 410-412. [DOI] [PMC free article] [PubMed]
- Andreassen J., Jorring K. Anisakinosis in Denmark. Infection with nematode larvae from marine fishes. Nord. Med. 1970;84:1492–1495. [PubMed] [Google Scholar]; Andreassen, J., Jorring, K., 1970. Anisakinosis in Denmark. Infection with nematode larvae from marine fishes. Nord Med, 84, 1492-1495. [PubMed]
- Arizono N., Yamada M., Tegoshi T., Yoshikawa M. Anisakis simplex sensu stricto and Anisakis pegreffii: biological characteristics and pathogenetic potential in human anisakiasis. Foodb. Pathog. Dis. 2012;9:517–521. doi: 10.1089/fpd.2011.1076. [DOI] [PubMed] [Google Scholar]; Arizono, N., Yamada, M., Tegoshi, T., Yoshikawa, M., 2012. Anisakis simplex sensu stricto and Anisakis pegreffii: biological characteristics and pathogenetic potential in human anisakiasis. Foodborne Pathog Dis. 9, 517-521. [DOI] [PubMed]
- Asnoussi A., Aibinu I.E., Gasser R.B., Lopata A.L., Smooker P.M. Molecular and immunological characterisation of tropomyosin from Anisakis pegreffii. Parasitol. Res. 2017;116:3291–3301. doi: 10.1007/s00436-017-5642-4. [DOI] [PubMed] [Google Scholar]; Asnoussi, A., Aibinu, I.E., Gasser, R.B., Lopata, A.L., Smooker, P.M., 2017. Molecular and immunological characterisation of tropomyosin from Anisakis pegreffii. Parasitol Res. 116, 3291-3301. [DOI] [PubMed]
- Asturias J.A., Eraso E., Moneo I., Martinez A. Is tropomyosin an allergen in Anisakis? Allergy. 2000;55:898–899. doi: 10.1034/j.1398-9995.2000.00734.x. [DOI] [PubMed] [Google Scholar]; Asturias, J. A., Eraso, E., Moneo, I., Martinez, A., 2000. Is tropomyosin an allergen in Anisakis? Allergy. 55, 898-899. [DOI] [PubMed]
- Audicana M.T., Kennedy M.W. Anisakis simplex: from obscure infectious worm to inducer of immune hypersensitivity. Clin. Microbiol. Rev. 2008;21:360–379. doi: 10.1128/CMR.00012-07. [DOI] [PMC free article] [PubMed] [Google Scholar]; Audicana, M.T., Kennedy, M.W., 2008. Anisakis simplex: from obscure infectious worm to inducer of immune hypersensitivity. Clin. Microbiol. Rev. 21, 360-379. [DOI] [PMC free article] [PubMed]
- Audicana M.T., Fernandez de Corres L., Munoz D., Fernandez E., Navarro J.A., del Pozo M.D. Recurrent anaphylaxis caused by Anisakis simplex parasitizing fish. J. Allergy Clin. Immunol. 1995;96:558–560. doi: 10.1016/s0091-6749(95)70301-2. [DOI] [PubMed] [Google Scholar]; Audicana, M.T., Fernandez de Corres, L., Munoz, D., Fernandez, E., Navarro, J.A., del Pozo, M.D., 1995. Recurrent anaphylaxis caused by Anisakis simplex parasitizing fish. J. Allergy Clin Immunol. 96, 558-560. [DOI] [PubMed]
- Audicana L., Audicana M.T., de Corres L.F., Kennedy M.W. Cooking and freezing may not protect against allergic reactions to ingested Anisakis simplex antigens in humans. Vet. Rec. 1997;140:235. doi: 10.1136/vr.140.9.235. [DOI] [PubMed] [Google Scholar]; Audicana, L., Audicana, M.T., de Corres, L.F., Kennedy, M.W., 1997. Cooking and freezing may not protect against allergic reactions to ingested Anisakis simplex antigens in humans.Vet Rec. 140, 235. [DOI] [PubMed]
- Audicana M.T., Ansotegui I.J., de Corres L.F., Kennedy M.W. Anisakis simplex: dangerous--dead and alive? Trends Parasitol. 2002;18:20–25. doi: 10.1016/s1471-4922(01)02152-3. [DOI] [PubMed] [Google Scholar]; Audicana, M.T., Ansotegui, I.J., de Corres, L.F., Kennedy, M.W., 2002. Anisakis simplex: dangerous--dead and alive? Trends Parasitol. 18, 20-25. [DOI] [PubMed]
- Baird F.J., Gasser R.B., Jabbar A., Lopata A.L. Foodborne anisakiasis and allergy. Mol. Cell. Probes. 2014;28:167–174. doi: 10.1016/j.mcp.2014.02.003. [DOI] [PubMed] [Google Scholar]; Baird, F.J., Gasser, R.B., Jabbar, A., Lopata, A.L., 2014. Foodborne anisakiasis and allergy. Mol. Cell. Probes. 28, 167-174. [DOI] [PubMed]
- Baird F.J., Su X., Aibinu I., Nolan M.J., Sugiyama H., Otranto D., Lopata A.L., Cantacessi C. The Anisakis transcriptome provides a resource for fundamental and applied studies on allergy-causing parasites. PLoS Neglected Trop. Dis. 2016;10 doi: 10.1371/journal.pntd.0004845. [DOI] [PMC free article] [PubMed] [Google Scholar]; Baird, F.J., Su, X., Aibinu, I., Nolan, M.J., Sugiyama, H., Otranto, D., Lopata, A.L., Cantacessi, C., 2016. The Anisakis transcriptome provides a resource for fundamental and applied studies on allergy-causing parasites. PLoS Negl Trop Dis. 10, e0004845. https://doi.org/10.1371/journal.pntd.0004845. [DOI] [PMC free article] [PubMed]
- Beldsoe G.E., Oria M.P. Potential hazards in cold-smoked fish: parasites. J. Food Sci. 2001;66:S1100–S1103. [Google Scholar]; Beldsoe, G.E., Oria, M.P., 2001. Potential hazards in cold-smoked fish: parasites. J. Food Sci. 66, S1100-S1103.
- Berland B. Nematodes from some Norwegian marine fishes. Sarsia. 1961;2:1–50. [Google Scholar]; Berland, B., 1961. Nematodes from some Norwegian marine fishes. Sarsia. 2, 1-50.
- Bhat M., Cleland P. Gastric anisakiasis. Clin. Gastroenterol. Hepatol. 2010;8:A20. doi: 10.1016/j.cgh.2009.12.020. [DOI] [PubMed] [Google Scholar]; Bhat, M., Cleland, P., 2010. Gastric anisakiasis. Clin Gastroenterol Hepatol. 8, A20. doi: 10.1016/j.cgh.2009.12.020. [DOI] [PubMed]
- Borges J.N., Cunha L.F., Santos H.L., Monteiro-Neto C., Portes Santos C. Morphological and molecular diagnosis of anisakid nematode larvae from cutlassfish (Trichiurus lepturus) off the coast of Rio de Janeiro, Brazil. PLoS One. 2012;7 doi: 10.1371/journal.pone.0040447. [DOI] [PMC free article] [PubMed] [Google Scholar]; Borges, J.N., Cunha, L.F., Santos, H.L., Monteiro-Neto, C., Portes Santos, C., 2012. Morphological and molecular diagnosis of anisakid nematode larvae from cutlassfish (Trichiurus lepturus) off the coast of Rio de Janeiro, Brazil. PloS One. 7, e40447. https://doi.org/10.1371/journal.pone.0040447. [DOI] [PMC free article] [PubMed]
- Brutti A., Rovere P., Cavallero S., D'Amelio S., Danesi P., Arcangeli G. Inactivation of Anisakis simplex larvae in raw fish using high hydrostatic pressure treatments. Food Control. 2010;21:331–333. [Google Scholar]; Brutti, A., Rovere, P., Cavallero, S., D’Amelio, S., Danesi, P., Arcangeli, G., 2010. Inactivation of Anisakis simplex larvae in raw fish using high hydrostatic pressure treatments. Food Control. 21, 331-333.
- Bucci C., Gallotta S., Morra I., Fortunato A., Ciacci C., Iovino P. Anisakis, just think about it in an emergency! Int. J. Infect. Dis. 2013;17:e1071–1072. doi: 10.1016/j.ijid.2013.05.008. [DOI] [PubMed] [Google Scholar]; Bucci, C., Gallotta, S., Morra, I., Fortunato, A., Ciacci, C., Iovino, P., 2013. Anisakis, just think about it in an emergency! Int J Infect Dis. 17, e1071-1072. doi: 10.1016/j.ijid.2013.05.008. [DOI] [PubMed]
- Buchmann K., Mehrdana F. Effects of anisakid nematodes Anisakis simplex (s.l.), Pseudoterranova decipiens (s.l.) and Contracaecum osculatum (s.l.) on fish and consumer Health. Food Waterborn Parasitol. 2016;4:13–22. doi: 10.1016/j.fawpar.2016.07.003. [DOI] [Google Scholar]; Buchmann, K., Mehrdana, F., 2016. Effects of anisakid nematodes Anisakis simplex (s.l.), Pseudoterranova decipiens (s.l.) and Contracaecum osculatum (s.l.) on fish and consumer Health. Food and Waterborn Parasitology, 4, 13-22. https://doi.org/10.1016/j.fawpar.2016.07.003.
- Buselic I., Botic A., Hrabar J., Staglicic N., Cipriani P., Mattiucci S., Mladineo I. Geographic and host size variations as indicators of Anisakis pegreffii infection in European pilchard (Sardina pilchardus) from the Mediterranean Sea: food safety implications. Int. J. Food Microbiol. 2018;266:126–132. doi: 10.1016/j.ijfoodmicro.2017.11.021. [DOI] [PubMed] [Google Scholar]; Buselic, I., Botic, A., Hrabar, J., Staglicic, N., Cipriani, P., Mattiucci, S., Mladineo, I., 2018. Geographic and host size variations as indicators of Anisakis pegreffii infection in European pilchard (Sardina pilchardus) from the Mediterranean Sea: Food safety implications. Int J Food Microbiol. 266, 126-132. doi: 10.1016/j.ijfoodmicro.2017.11.021. [DOI] [PubMed]
- Caballero M.L., Umpierrez A., Moneo I., Rodriguez-Perez R. Ani s 10, a new Anisakis simplex allergen: cloning and heterologous expression. Parasitol. Int. 2011;60:209–212. doi: 10.1016/j.parint.2011.01.003. [DOI] [PubMed] [Google Scholar]; Caballero, M. L., Umpierrez, A., Moneo, I., Rodriguez-Perez, R., 2011. Ani s 10, a new Anisakis simplex allergen: cloning and heterologous expression. Parasitol Int. 60, 209-212. [DOI] [PubMed]
- Caramello P., Vitali A., Canta F., Caldana A., Santi F., Caputo A., Lipani F., Balbiano R. Intestinal localization of anisakiasis manifested as acute abdomen. Clin. Microbiol. Infect. 2003;9:734–737. doi: 10.1046/j.1469-0691.2003.00660.x. [DOI] [PubMed] [Google Scholar]; Caramello, P., Vitali, A., Canta, F., Caldana, A., Santi, F., Caputo, A., Lipani, F., Balbiano, R., 2003. Intestinal localization of anisakiasis manifested as acute abdomen. Clin. Microbiol Infect. 9, 734-737. [DOI] [PubMed]
- Castellanos J.A., Santana-Pineros A.M., Mercado R., Pena S., Pustovrh C., Cruz-Quintana Y. Presence of anisakid larvae in commercial fishes landed in the pacific coast of Ecuador and Colombia. Infectio. 2018;22:206. [Google Scholar]; Castellanos, J.A., Santana-Pineros, A.M., Mercado, R., Pena, S., Pustovrh, C., Cruz-Quintana, Y., 2018. Presence of anisakid larvae in commercial fishes landed in the pacific coast of Ecuador and Colombia. Infectio. 22, 206.
- Chavez R.A., Gonzalez M.T., Oliva M.E., Valdivia I.M. Endoparasite fauna of five Gadiformes fish species from the coast of Chile: host ecology versus phylogeny. J. Helminthol. 2012;86:10–15. doi: 10.1017/S0022149X10000921. [DOI] [PubMed] [Google Scholar]; Chavez, R. A., Gonzalez, M. T., Oliva, M. E., Valdivia, I. M., 2012. Endoparasite fauna of five Gadiformes fish species from the coast of Chile: host ecology versus phylogeny. J Helminthol. 86, 10-15. [DOI] [PubMed]
- Chen H.Y., Shih H.H. Occurrence and prevalence of fish-borne Anisakis larvae in the spotted mackerel Scomber australasicus from Taiwanese waters. Acta Trop. 2015;145:61–67. doi: 10.1016/j.actatropica.2015.02.011. [DOI] [PubMed] [Google Scholar]; Chen, H. Y., Shih, H. H., 2015. Occurrence and prevalence of fish-borne Anisakis larvae in the spotted mackerel Scomber australasicus from Taiwanese waters. Acta Trop. 145, 61-67. [DOI] [PubMed]
- Chen H.Y., Cheng Y.S., Grabner D.S., Chang S.H., Shih H.H. Effect of different temperatures on the expression of the newly characterized heat shock protein 90 (Hsp90) in L3 of Anisakis spp. isolated from Scomber australasicus. Vet. Parasitol. 2014;205:540–550. doi: 10.1016/j.vetpar.2014.09.013. [DOI] [PubMed] [Google Scholar]; Chen, H.Y., Cheng, Y.S., Grabner, D.S., Chang, S.H., Shih, H.H., 2014. Effect of different temperatures on the expression of the newly characterized heat shock protein 90 (Hsp90) in L3 of Anisakis spp. isolated from Scomber australasicus. Vet Parasitol. 205, 540-550. [DOI] [PubMed]
- Chen H.X., Zhang L.P., Gibson D.I., Lu L., Xu Z., Li H.T., Ju H.D., Li L. Detection of ascaridoid nematode parasites in the important marine food-fish Conger myriaster (Brevoort) (Anguilliformes: Congridae) from the Zhoushan Fishery, China. Parasites Vectors. 2018;11:274. doi: 10.1186/s13071-018-2850-4. [DOI] [PMC free article] [PubMed] [Google Scholar]; Chen, H.X., Zhang, L.P., Gibson, D.I., Lu, L., Xu, Z., Li, H.T., Ju, H.D., Li, L., 2018. Detection of ascaridoid nematode parasites in the important marine food-fish Conger myriaster (Brevoort) (Anguilliformes: Congridae) from the Zhoushan Fishery, China. Parasit Vectors 11, 274. doi: 10.1186/s13071-018-2850-4. [DOI] [PMC free article] [PubMed]
- Choi S.J., Lee J.C., Kim M.J., Hur G.Y., Shin S.Y., Park H.S. The clinical characteristics of Anisakis allergy in Korea. Korean J. Intern. Med. 2009;24:160–163. doi: 10.3904/kjim.2009.24.2.160. [DOI] [PMC free article] [PubMed] [Google Scholar]; Choi, S.J., Lee, J.C., Kim, M.J., Hur, G.Y., Shin, S.Y., Park, H.S., 2009. The clinical characteristics of Anisakis allergy in Korea. Korean J Intern Med. 24, 160-163. [DOI] [PMC free article] [PubMed]
- Choi S.K., Kim C.K., Kim S.H., Jo D.I. Anisakiasis involving the oral mucosa. Arch. Craniofac. Surg. 2017;18:261–263. doi: 10.7181/acfs.2017.18.4.261. [DOI] [PMC free article] [PubMed] [Google Scholar]; Choi, S.K., Kim, C.K., Kim, S.H., Jo, D.I., 2017. Anisakiasis involving the oral mucosa. Arch Craniofac Surg. 18, 261-263. [DOI] [PMC free article] [PubMed]
- Cipriani P., Smaldone G., Acerra V., D'Angelo L., Anastasio A., Bellisario B., Palma G., Nascetti G., Mattiucci S. Genetic identification and distribution of the parasitic larvae of Anisakis pegreffii and Anisakis simplex (s. s.) in European hake Merluccius merluccius from the Tyrrhenian Sea and Spanish Atlantic coast: implications for food safety. Int. J. Food Microbiol. 2015;198:1–8. doi: 10.1016/j.ijfoodmicro.2014.11.019. [DOI] [PubMed] [Google Scholar]; Cipriani, P., Smaldone, G., Acerra, V., D'Angelo, L., Anastasio, A., Bellisario, B., Palma, G., Nascetti, G., Mattiucci, S., 2015. Genetic identification and distribution of the parasitic larvae of Anisakis pegreffii and Anisakis simplex (s. s.) in European hake Merluccius merluccius from the Tyrrhenian Sea and Spanish Atlantic coast: implications for food safety. Int J Food Microbiol. 198, 1-8. [DOI] [PubMed]
- Cipriani P., Acerra V., Bellisario B., Sbaraglia G.L., Cheleschi R., Nascetti G., Mattiucci S. Larval migration of the zoonotic parasite Anisakis pegreffii (Nematoda: Anisakidae) in European anchovy, Engraulis encrasicolus: implications to seafood safety. Food Control. 2016;59:148–157. [Google Scholar]; Cipriani, P., Acerra, V., Bellisario, B., Sbaraglia, G.L., Cheleschi, R., Nascetti, G., Mattiucci, S., 2016. Larval migration of the zoonotic parasite Anisakis pegreffii (Nematoda: Anisakidae) in European anchovy, Engraulis encrasicolus: implications to seafood safety. Food Control. 59, 148-157.
- Cipriani P., Sbaraglia G.L., Palomba M., Giulietti L., Bellisario B., Bušelić I., Mladineo I., Cheleschi R., Nascetti G., Mattiucci S. Anisakis pegreffii (Nematoda: Anisakidae) in European anchovy, Engraulis encrasicolus, from the mediterranean sea: fishing ground as a predictor of parasite distribution. Fish. Res. 2018;202:59–68. [Google Scholar]; Cipriani, P., Sbaraglia, G.L., Palomba, M., Giulietti, L., Bellisario, B., Bušelić, I., Mladineo, I., Cheleschi, R., Nascetti, G., Mattiucci, S., 2018. Anisakis pegreffii (Nematoda: Anisakidae) in European anchovy, Engraulis encrasicolus, from the Mediterranean Sea: Fishing ground as a predictor of parasite distribution. Fish Res. 202, 59-68.
- Dadar M., Alborzi A., Peyghan R., Adel M. Occurrence and intensity of anisakid nematode larvae in some commercially important fish species in Persian Gulf. Iran. J. Parasitol. 2016;11:239–246. [PMC free article] [PubMed] [Google Scholar]; Dadar, M., Alborzi, A., Peyghan, R., Adel, M., 2016. Occurrence and intensity of anisakid nematode larvae in some commercially important fish species in Persian Gulf. Iran J Parasitol. 11, 239-246. [PMC free article] [PubMed]
- EFSA-BIOHAZ Scientific opinion on risk assessment of parasites in fishery products. EFSA J. 2010;8:1543. doi: 10.2903/j.efsa.2024.8719. [DOI] [PMC free article] [PubMed] [Google Scholar]; EFSA-BIOHAZ, 2010. Scientific opinion on risk assessment of parasites in fishery products. EFSA J. 8, 1543.
- Eiras J.C., Pavanelli G.C., Takemoto R.M., Nawa Y. Fish-borne nematodiases in South America: neglected emerging diseases. J. Helminthol. 2018;92:649–654. doi: 10.1017/S0022149X17001006. [DOI] [PubMed] [Google Scholar]; Eiras, J.C., Pavanelli, G.C., Takemoto, R.M., Nawa, Y., 2018. Fish-borne nematodiases in South America: neglected emerging diseases. J Helminthol. 92, 649-654. [DOI] [PubMed]
- Eissa A.E., Abdelsalam M., Abumhara A., Kammon A., Gammoudi F.T., Naser K., Borhan T., Asheg A. First Record of Vibrio vulnificus/Anisakis pegreffi concurrent infection in black scorpionfish (Scorpaena porcus) from the South Mediterranean basin. Res. J. Pharmaceut. Biol. Chem. Sci. 2015;6:1537–1548. [Google Scholar]; Eissa, A. E., Abdelsalam, M., Abumhara, A., Kammon, A., Gammoudi, F.T., Naser, K., Borhan, T., and Asheg, A., 2015. First Record of Vibrio vulnificus/ Anisakis pegreffi concurrent infection in black scorpionfish (Scorpaena porcus) from the South Mediterranean basin. Res. J. Pharm., Biol. Chem. Sci. 6, 1537-1548.
- Farjallah S., Slimane B.B., Busi M., Paggi L., Amor N., Blel H., Said K., D'Amelio S. Occurrence and molecular identification of anisakis spp. from the North African coasts of mediterranean sea. Parasitol. Res. 2008;102:371–379. doi: 10.1007/s00436-007-0771-9. [DOI] [PubMed] [Google Scholar]; Farjallah, S., Slimane, B.B., Busi, M., Paggi, L., Amor, N., Blel, H., Said, K., D’Amelio, S., 2008a. Occurrence and molecular identification of Anisakis spp. from the North African coasts of Mediterranean Sea. Parasitol Res. 102, 371-379. [DOI] [PubMed]
- Farjallah S., Busi M., Mahjoub M.O., Slimane B.B., Paggi L., Said K., D'Amelio S. Molecular characterization of larval anisakid nematodes from marine fishes off the Moroccan and Mauritanian coasts. Parasitol. Int. 2008;57:430–436. doi: 10.1016/j.parint.2008.05.002. [DOI] [PubMed] [Google Scholar]; Farjallah, S., Busi, M., Mahjoub, M. O., Slimane, B. B., Paggi, L., Said, K., D'Amelio, S., 2008b. Molecular characterization of larval anisakid nematodes from marine fishes off the Moroccan and Mauritanian coasts. Parasitol Int. 57, 430-436. [DOI] [PubMed]
- Fernandez de Corres L., Audicana M., Del Pozo M.D., Munoz D., Fernandez E., Navarro J.A., Garcia M., Diez J. Anisakis simplex induces not only anisakiasis: report on 28 cases of allergy caused by this nematode. J. Investig. Allergol. Clin. Immunol. 1996;6:315–319. [PubMed] [Google Scholar]; Fernandez de Corres, L., Audicana, M., Del Pozo, M.D., Munoz, D., Fernandez, E., Navarro, J.A., Garcia, M., Diez, J., 1996. Anisakis simplex induces not only anisakiasis: report on 28 cases of allergy caused by this nematode. J Investig Allergol Clin Immunol. 6, 315-319. [PubMed]
- Fitzsimmons C.M., Falcone F.H., Dunne D.W. Helminth allergens, parasite-specific IgE, and its protective role in human immunity. Front. Immunol. 2014;5:61. doi: 10.3389/fimmu.2014.00061. [DOI] [PMC free article] [PubMed] [Google Scholar]; Fitzsimmons, C.M., Falcone, F.H., Dunne, D.W., 2014. Helminth allergens, parasite-specific IgE, and its protective role in human immunity. Front Immunol. 5, 61. doi: 10.3389/fimmu.2014.00061. [DOI] [PMC free article] [PubMed]
- Fujikawa H., Kuwai T., Yamaguchi T., Miura R., Sumida Y., Takasago T., Miyasako Y., Nishimura T., Iio S., Imagawa H., Yamaguchi A., Kouno H., Kohno H. Gastric and enteric anisakiasis successfully treated with gastrografin therapy: a case report. World J. Gastrointest. Endosc. 2018;10:69–73. doi: 10.4253/wjge.v10.i3.69. [DOI] [PMC free article] [PubMed] [Google Scholar]; Fujikawa, H., Kuwai, T., Yamaguchi, T., Miura, R., Sumida, Y., Takasago, T., Miyasako, Y., Nishimura, T., Iio, S., Imagawa, H., Yamaguchi, A., Kouno, H., Kohno, H., 2018. Gastric and enteric anisakiasis successfully treated with gastrografin therapy: A case report. World J Gastrointest Endosc. 10, 69-73. [DOI] [PMC free article] [PubMed]
- Fumarola L., Monno R., Lerardi E., Rizzo G., Giannelli G., Lalle M. Anisakis pegreffii etiological agent of gastric infections in two Italian women. Foodb. Pathog. Dis. 2009;6:1157–1159. doi: 10.1089/fpd.2009.0325. [DOI] [PubMed] [Google Scholar]; Fumarola, L., Monno, R., Lerardi, E., Rizzo, G., Giannelli, G., Lalle, M., 2009. Anisakis pegreffii etiological agent of gastric infections in two Italian women. Foodborne Path Dis. 6, 1157-1159. [DOI] [PubMed]
- Gasser R.B., Hu M., Chilton N.B., Campbell B.E., Jex A.J., Otranto D., Cafarchia C., Beveridge I., Zhu X. Single-strand conformation polymorphism (SSCP) for the analysis of genetic variation. Nat. Protoc. 2006;1:3121–3128. doi: 10.1038/nprot.2006.485. [DOI] [PubMed] [Google Scholar]; Gasser, R.B., Hu, M., Chilton, N.B., Campbell, B.E., Jex, A.J., Otranto, D., Cafarchia, C., Beveridge, I., Zhu, X., 2006. Single-strand conformation polymorphism (SSCP) for the analysis of genetic variation. Nat Protoc. 1, 3121-3128. [DOI] [PubMed]
- Gomez-Gutierrez J., Robinson C.J., Kawaguchi S., Nicol S. Parasite diversity of Nyctiphanes simplex and Nematoscelis difficilis (Crustacea: euphausiacea) along the northwestern coast of Mexico. Dis. Aquat. Org. 2010;88:249–266. doi: 10.3354/dao02155. [DOI] [PubMed] [Google Scholar]; Gomez-Gutierrez, J., Robinson, C.J., Kawaguchi, S., Nicol, S., 2010. Parasite diversity of Nyctiphanes simplex and Nematoscelis difficilis (Crustacea: Euphausiacea) along the northwestern coast of Mexico. Dis Aquat Organ. 88, 249-266. [DOI] [PubMed]
- Gonzalez-Fernandez J., Daschner A., Nieuwenhuizen N.E., Lopata A.L., Frutos C.D., Valls A., Cuellar C. Haemoglobin, a new major allergen of Anisakis simplex. Int. J. Parasitol. 2015;45:399–407. doi: 10.1016/j.ijpara.2015.01.002. [DOI] [PubMed] [Google Scholar]; Gonzalez-Fernandez, J., Daschner, A., Nieuwenhuizen, N. E., Lopata, A. L., Frutos, C. D., Valls, A., Cuellar, C., 2015. Haemoglobin, a new major allergen of Anisakis simplex. Int J Parasitol. 45, 399-407. [DOI] [PubMed]
- Gregori M., Roura A., Abollo E., Gonzalez A.F., Pascual S. Anisakis simplex complex (Nematoda: Anisakidae) in zooplankton communities from temperate NE Atlantic waters. J. Nat. Hist. 2015;49:755–773. [Google Scholar]; Gregori, M., Roura, A., Abollo, E., Gonzalez, A.F., Pascual, S., 2015. Anisakis simplex complex (Nematoda: Anisakidae) in zooplankton communities from temperate NE Atlantic waters. J. Nat. Hist. 49, 755-773.
- Guardone L., Armani A., Nucera D., Costanzo F., Mattiucci S., Bruschi F. Human anisakiasis in Italy: a retrospective epidemiological study over two decades. Parasite. 2018;25:41. doi: 10.1051/parasite/2018034. [DOI] [PMC free article] [PubMed] [Google Scholar]; Guardone, L., Armani, A., Nucera, D., Costanzo, F., Mattiucci, S., Bruschi, F., 2018. Human anisakiasis in Italy: a retrospective epidemiological study over two decades. Parasite. 25, 41. doi: 10.1051/parasite/2018034. [DOI] [PMC free article] [PubMed]
- Guarneri F., Guarneri C., Benvenga S. Cross-reactivity of Anisakis simplex: possible role of Ani s 2 and Ani s 3. 2007;46:146–150. doi: 10.1111/j.1365-4632.2006.03091.x. [DOI] [PubMed] [Google Scholar]; Guarneri, F., Guarneri, C., Benvenga, S., 2007. Cross-reactivity of Anisakis simplex: possible role of Ani s 2 and Ani s 3. 46, 146-150. [DOI] [PubMed]
- Herrador Z., Daschner A., Perteguer M.J., Benito A. Epidemiological scenario of anisakidosis in Spain based on associated hospitalizations: the tipping point of the iceberg. Clin. Infect. Dis. 2018;ciy853 doi: 10.1093/cid/ciy853. [DOI] [PMC free article] [PubMed] [Google Scholar]; Herrador, Z., Daschner, A., Perteguer, M.J., Benito, A., 2018. Epidemiological scenario of anisakidosis in Spain based on associated hospitalizations: The tipping point of the iceberg. Clin. Inf. Dis. ciy853. https://doi.org/10.1093/cid/ciy853. [DOI] [PMC free article] [PubMed]
- Hojgaard D.P. Food and parasitic nematodes of saithe, Pollachius virens (L.), from the Faroe Islands. Sarsia. 1999;84:6. [Google Scholar]; Hojgaard, D.P., 1999. Food and parasitic nematodes of saithe, Pollachius virens (L.), from the Faroe Islands. Sarsia. 84, 6.
- Ichalal K., Ramdane Z., Ider D., Kacher M., Iguerouada M., Trilles J.P., Courcot L., Amara R. Nematodes parasitizing Trachurus trachurus (L.) and Boops boops (L.) from Algeria. Parasitol. Res. 2015;114:4059–4068. doi: 10.1007/s00436-015-4633-6. [DOI] [PubMed] [Google Scholar]; Ichalal, K., Ramdane, Z., Ider, D., Kacher, M., Iguerouada, M., Trilles, J. P., Courcot, L., Amara, R., 2015. Nematodes parasitizing Trachurus trachurus (L.) and Boops boops (L.) from Algeria. Parasitol Res. 114, 4059-4068. [DOI] [PubMed]
- Iglesias R., D'Amelio S., Ingrosso S., Farjallah S., Martinez-Cedeira J.A., Garcia-Estevez J.M. Molecular and morphological evidence for the occurrence of Anisakis sp. A (Nematoda, Anisakidae) in the Blainville's beaked whale Mesoplodon densirostris. J. Helminthol. 2008;82:305–308. doi: 10.1017/S0022149X08996978. [DOI] [PubMed] [Google Scholar]; Iglesias, R., D'Amelio, S., Ingrosso, S., Farjallah, S., Martinez-Cedeira, J.A., Garcia-Estevez, J.M., 2008. Molecular and morphological evidence for the occurrence of Anisakis sp. A (Nematoda, Anisakidae) in the Blainville's beaked whale Mesoplodon densirostris. J Helminthol. 82, 305-308. [DOI] [PubMed]
- Ivanovic J., Baltic M.Z., Boskovic M., Kilibarda N., Dokmanovic M., Markovic R., Janjic J., Baltic B. Anisakis infection and allergy in humans. Procedia Food Sci. 2015;5:101–104. [Google Scholar]; Ivanovic, J., Baltic, M.Z., Boskovic, M., Kilibarda, N., Dokmanovic, M., Markovic, R., Janjic, J., Baltic, B., 2015. Anisakis infection and allergy in humans. Procedia Food Sci. 5, 101-104.
- Ivanović J., Baltić M.Ž., Bošković M., Kilibarda N., Dokmanović M., Marković R., Janjić J., Baltić B. Anisakis allergy in human. Trends Food Sci. Technol. 2017;59:25–29. [Google Scholar]; Ivanović, J., Baltić, M.Ž., Bošković, M., Kilibarda, N., Dokmanović, M., Marković, R., Janjić, J., Baltić, B., 2017. Anisakis allergy in human. Trends Food Sci Technol. 59, 25-29.
- Iwata K., Fukuchi T., Yoshimura K. Is the quality of sushi ruined by freezing raw fish and squid? A randomized double-blind trial with sensory evaluation using discrimination testing. Clin Infect Dis. 2015;60(9):e43–e48. doi: 10.1093/cid/civ057. [DOI] [PMC free article] [PubMed] [Google Scholar]; Iwata K., Fukuchi T. and Yoshimura, K., Is the quality of sushi ruined by freezing raw fish and squid? A randomized double-blind trial with sensory evaluation using discrimination testing. Clin Infect Dis. 60(9), 2015, e43-e48. [DOI] [PMC free article] [PubMed]
- Jabbar A., Khoon A.T., Hui T.X., Schaeffner B.C., Jex A.R., Nolan M.J., Lopata A., Gasser R.B., Beveridge I. Mutation scanning-based analysis of anisakid larvae from Sillago flindersi from Bass Strait, Australia. Electrophoresis. 2012;33:499–505. doi: 10.1002/elps.201100438. [DOI] [PubMed] [Google Scholar]; Jabbar, A., Khoon, A.T., Hui, T.X., Schaeffner, B.C., Jex, A.R., Nolan, M.J., Lopata, A., Gasser, R.B., Beveridge, I., 2012. Mutation scanning-based analysis of anisakid larvae from Sillago flindersi from Bass Strait, Australia. Electrophoresis. 33, 499-505. [DOI] [PubMed]
- Jabbar A., Fong R.W., Kok K.X., Lopata A.L., Gasser R.B., Beveridge I. Molecular characterization of anisakid nematode larvae from 13 species of fish from Western Australia. Int. J. Food Microbiol. 2013;161:247–253. doi: 10.1016/j.ijfoodmicro.2012.12.012. [DOI] [PubMed] [Google Scholar]; Jabbar, A., Fong, R.W., Kok, K.X., Lopata, A.L., Gasser, R.B., Beveridge, I., 2013. Molecular characterization of anisakid nematode larvae from 13 species of fish from Western Australia. Int J Food Microbiol. 161, 247-253. [DOI] [PubMed]
- Jacobsen K.B., Berland B. Fish nematodes as a cause of acute and chronic gastroenteritis with tissue eosinophilia. Nord. Med. 1969;82:1104–1111. [PubMed] [Google Scholar]; Jacobsen, K.B., Berland, B., 1969. Fish nematodes as a cause of acute and chronic gastroenteritis with tissue eosinophilia. Nord. Med. 82, 1104-1111. [PubMed]
- Kakizoe S., Kakizoe H., Kakizoe K., Kakizoe Y., Maruta M., Kakizoe T., Kakizoe S. Endoscopic findings and clinical manifestation of gastric anisakiasis. Am. J. Gastroenterol. 1995;90:761–763. [PubMed] [Google Scholar]; Kakizoe, S., Kakizoe, H., Kakizoe, K., Kakizoe, Y., Maruta, M., Kakizoe, T., Kakizoe, S., 1995. Endoscopic findings and clinical manifestation of gastric anisakiasis. Am J Gastroenterol. 90, 761-763. [PubMed]
- Kalay M., Donmez A.E., Koyuncu C.E., Genc E., Sahin G. Seasonal variation of Hysterothylacium aduncum (Nematoda: Raphidascarididae) infestation in sparid fishes in the Northeast mediterranean sea. Turk. J. Vet. Anim. Sci. 2009;33:517–523. [Google Scholar]; Kalay, M., Donmez, A.E.,Koyuncu, C.E., Genc, E and Sahin, G., 2009. Seasonal variation of Hysterothylacium aduncum (Nematoda: Raphidascarididae) infestation in sparid fishes in the Northeast Mediterranean Sea. Turk. J. Vet. Anim. Sci. 33, 517-523.
- Kapral C., Haditsch M., Wewalka F., Schatzlmayr W., Lenz K., Auer H. The first case of anisakiasis acquired in Austria. Z. Gastroenterol. 2009;47:1059–1061. doi: 10.1055/s-0028-1109468. [DOI] [PubMed] [Google Scholar]; Kapral, C., Haditsch, M., Wewalka, F., Schatzlmayr, W., Lenz, K., Auer, H., 2009. The first case of anisakiasis acquired in Austria. Z Gastroenterol. 47, 1059-1061. [DOI] [PubMed]
- Kasuya S., Hamano H., Izumi S. Mackerel-induced urticaria and anisakis. Lancet. 1990;335:665. doi: 10.1016/0140-6736(90)90455-e. [DOI] [PubMed] [Google Scholar]; Kasuya, S., Hamano, H., Izumi, S., 1990. Mackerel-induced urticaria and Anisakis. Lancet. 335, 665. [DOI] [PubMed]
- Klicks M.M. Anisakiasis in the western United States: four new case reports from California. Am. J. Trop. Med. Hyg. 1983;32:526–532. doi: 10.4269/ajtmh.1983.32.526. [DOI] [PubMed] [Google Scholar]; Klicks, M.M., 1983. Anisakiasis in the western United States: four new case reports from California. Am J Trop Med Hyg. 32, 526-532. [DOI] [PubMed]
- Klimpel S., Palm H.W., Ruckert S., Piatkowski U. The life cycle of Anisakis simplex in the Norwegian Deep (northern North Sea) Parasitol. Res. 2004;94:1–9. doi: 10.1007/s00436-004-1154-0. [DOI] [PubMed] [Google Scholar]; Klimpel, S., Palm, H.W., Ruckert, S., Piatkowski, U., 2004. The life cycle of Anisakis simplex in the Norwegian Deep (northern North Sea). Parasit Res. 94, 1-9. [DOI] [PubMed]
- Klimpel S., Busch M.W., Kuhn T., Rohde A., Palm H.W. The Anisakis simplex complex off the South Shetland Islands (Antarctica): endemic populations versus introduction through migratory hosts. Mar. Ecol. Prog. Ser. 2010;403:12. [Google Scholar]; Klimpel, S., Busch, M.W., Kuhn, T., Rohde, A., Palm, H.W., 2010. The Anisakis simplex complex off the South Shetland Islands (Antarctica): endemic populations versus introduction through migratory hosts. Mar Ecol Prog Ser. 403, 12.
- Kobayashi Y., Ishizaki S., Shimakura K., Nagashima Y., Shiomi K. Molecular cloning and expression of two new allergens from Anisakis simplex. Parasitol. Res. 2007;100:1233–1241. doi: 10.1007/s00436-006-0396-4. [DOI] [PubMed] [Google Scholar]; Kobayashi, Y., Ishizaki, S., Shimakura, K., Nagashima, Y., Shiomi, K., 2007. Molecular cloning and expression of two new allergens from Anisakis simplex. Parasitol Res. 100, 1233-1241. [DOI] [PubMed]
- Kobayashi Y., Ohsaki K., Ikeda K., Kakemoto S., Ishizaki S., Shimakura K., Nagashima Y., Shiomi K. Identification of novel three allergens from Anisakis simplex by chemiluminescent immunoscreening of an expression cDNA library. Parasitol. Int. 2011;60:144–150. doi: 10.1016/j.parint.2011.01.004. [DOI] [PubMed] [Google Scholar]; Kobayashi, Y., Ohsaki, K., Ikeda, K., Kakemoto, S., Ishizaki, S., Shimakura, K., Nagashima, Y., Shiomi, K., 2011. Identification of novel three allergens from Anisakis simplex by chemiluminescent immunoscreening of an expression cDNA library. Parasitol Int. 60, 144-150. [DOI] [PubMed]
- Kobayashi Y., Kakemoto S., Shimakura K., Shiomi K. Molecular cloning and expression of a new major allergen, Ani s 14, from Anisakis simplex. Shokuhin Eiseigaku Zasshi. 2015;56:194–199. doi: 10.3358/shokueishi.56.194. [DOI] [PubMed] [Google Scholar]; Kobayashi, Y., Kakemoto, S., Shimakura, K., Shiomi, K., 2015. Molecular cloning and expression of a new major allergen, Ani s 14, from Anisakis simplex. Shokuhin Eiseigaku Zasshi. 56, 194-199. [DOI] [PubMed]
- Kojima G., Usuki S., Mizokami K., Tanabe M., Machi J. Intestinal anisakiasis as a rare cause of small bowel obstruction. Am. J. Emerg. Med. 2013;31 doi: 10.1016/j.ajem.2013.05.015. 1422.e1-2. [DOI] [PubMed] [Google Scholar]; Kojima, G., Usuki, S., Mizokami, K., Tanabe, M., Machi, J., 2013. Intestinal anisakiasis as a rare cause of small bowel obstruction. Am J Emerg Med. 31, 1422.e1-2. doi: 10.1016/j.ajem.2013.05.015. [DOI] [PubMed]
- Kuhn T., Hailer F., Palm H.W., Klimpel S. Global assessment of molecularly identified Anisakis Dujardin, 1845 (Nematoda: Anisakidae) in their teleost intermediate hosts. Folia Parasitol. 2013;60:123–134. doi: 10.14411/fp.2013.013. [DOI] [PubMed] [Google Scholar]; Kuhn, T., Hailer, F., Palm, H. W., Klimpel, S., 2013. Global assessment of molecularly identified Anisakis Dujardin, 1845 (Nematoda: Anisakidae) in their teleost intermediate hosts. Folia Parasitol. 60, 123-134. [DOI] [PubMed]
- Lee E.J., Kim Y.C., Jeong H.G., Lee O.J. The mucosal changes and influencing factors in upper gastrointestinal anisakiasis: analysis of 141 cases. Korean J. Gastroenterol. 2009;53:90–97. [PubMed] [Google Scholar]; Lee, E.J., Kim, Y.C., Jeong, H.G., Lee, O.J., 2009. The mucosal changes and influencing factors in upper gastrointestinal anisakiasis: analysis of 141 cases. Korean J Gastroenterol. 53, 90-97. [PubMed]
- Leuckart R. 1876. Die menschlichen Parasiten und die von ihren herrϋhrenden Krankheiten, 2,3 lief; pp. 513–882. Leipzig. [Google Scholar]; Leuckart R. Die menschlichen Parasiten und die von ihren herrϋhrenden Krankheiten, 2,3 lief, 1876, 513-882. Leipzig.
- Levsen A., Berland B. Anisakis species. In: Woo P.T.K., Buchmann K., editors. Fish Parasites, Pathobiology and Protection. CAB International; 2012. pp. 298–309. [Google Scholar]; Levsen, A., Berland, B., 2012. Anisakis species. In: Woo P.T.K., Buchmann K. (Eds.), Fish Parasites, Pathobiology and Protection. CAB International. pp. 298-309.
- Li S.W., Shiao S.H., Weng S.C., Liu T.H., Su K.E., Chen C.C. A case of human infection with Anisakis simplex in Taiwan. Gastrointest. Endosc. 2015;82:757–758. doi: 10.1016/j.gie.2015.03.1983. [DOI] [PubMed] [Google Scholar]; Li, S. W., Shiao, S. H., Weng, S. C., Liu, T. H., Su, K. E., Chen, C. C., 2015. A case of human infection with Anisakis simplex in Taiwan. Gastrointest Endosc. 82, 757-758. [DOI] [PubMed]
- Li L., Zhao J., Chen H., Ju H., An M., Xu Z., Zhang L. Survey for the presence of ascaridoid larvae in the cinnamon flounder Pseudorhombus cinnamoneus (Temminck & Schlegel) (Pleuronectiformes: Paralichthyidae) Int. J. Food Microbiol. 2017;241:108–116. doi: 10.1016/j.ijfoodmicro.2016.10.018. [DOI] [PubMed] [Google Scholar]; Li, L., Zhao, J., Chen, H., Ju, H., An, M., Xu, Z., Zhang, L., 2017. Survey for the presence of ascaridoid larvae in the cinnamon flounder Pseudorhombus cinnamoneus (Temminck & Schlegel) (Pleuronectiformes: Paralichthyidae). Int J Food Microbiol. 241, 108-116. [DOI] [PubMed]
- Lim H., Jung B.K., Cho J., Yooyen T., Shin E.H., Chai J.Y. Molecular diagnosis of cause of anisakiasis in humans, South Korea. Emerg. Infect. Dis. 2015;21:342–344. doi: 10.3201/eid2102.140798. [DOI] [PMC free article] [PubMed] [Google Scholar]; Lim, H., Jung, B.K., Cho, J., Yooyen, T., Shin, E.H., Chai, J.Y., 2015. Molecular diagnosis of cause of anisakiasis in humans, South Korea. Emerg Infect Dis. 21, 342-344. [DOI] [PMC free article] [PubMed]
- Lucas S.B., Cruse J.P., Lewis A.A. Anisakiasis in the United Kingdom. Lancet. 1985;2:843–844. doi: 10.1016/s0140-6736(85)90841-4. [DOI] [PubMed] [Google Scholar]; Lucas, S. B., Cruse, J. P., Lewis, A. A., 1985. Anisakiasis in the United Kingdom. Lancet. 2, 843-844. [DOI] [PubMed]
- Madi L., Ali M., Legace-Wiens P., Duerksen D.R. Gastrointestinal manifestations and management of anisakiasis. Can. J. Gastroenterol. 2013;27:126–127. doi: 10.1155/2013/427982. [DOI] [PMC free article] [PubMed] [Google Scholar]; Madi, L., Ali, M., Legace-Wiens, P., Duerksen, D. R., 2013. Gastrointestinal manifestations and management of anisakiasis. Can J Gastroenterol. 27, 126-127. [DOI] [PMC free article] [PubMed]
- Mattiucci S., Nascetti G. Molecular systematics, phylogeny and ecology of anisakid nematodes of the genus Anisakis Dujardin, 1845: an update. Parasite. 2006;13:99–113. doi: 10.1051/parasite/2006132099. [DOI] [PubMed] [Google Scholar]; Mattiucci, S., Nascetti, G., 2006. Molecular systematics, phylogeny and ecology of anisakid nematodes of the genus Anisakis Dujardin, 1845: an update. Parasit. 13, 99-113. [DOI] [PubMed]
- Mattiucci S., Nascetti G. Advances and trends in the molecular systematics of anisakid nematodes, with implications for their evolutionary ecology and host-parasite co-evolutionary processes. Adv. Parasitol. 2008;66:47–148. doi: 10.1016/S0065-308X(08)00202-9. [DOI] [PubMed] [Google Scholar]; Mattiucci, S., Nascetti, G., 2008b. Advances and trends in the molecular systematics of anisakid nematodes, with implications for their evolutionary ecology and host-parasite co-evolutionary processes. Adv Parasitol. 66, 47-148. [DOI] [PubMed]
- Mattiucci S., Paoletti M., Webb S.C. Anisakis nascettii n. sp. (Nematoda: Anisakidae) from beaked whales of the southern hemisphere: morphological description, genetic relationships between congeners and ecological data. Syst. Parasitol. 2009;74:199–217. doi: 10.1007/s11230-009-9212-8. [DOI] [PubMed] [Google Scholar]; Mattiucci, S., Paoletti, M., Webb, S.C., 2009. Anisakis nascettii n. sp. (Nematoda: Anisakidae) from beaked whales of the southern hemisphere: morphological description, genetic relationships between congeners and ecological data. Syst Parasitol. 74, 199-217. [DOI] [PubMed]
- Mattiucci S., Fazii P., De Rosa A., Paoletti M., Megna A.S., Glielmo A., De Angelis M., Costa A., Meucci C., Calvaruso V., Sorrentini I., Palma G., Bruschi F., Nascetti G. Anisakiasis and gastroallergic reactions associated with Anisakis pegreffii infection. Italy. Emerg Infect Dis. 2013;19:496–499. doi: 10.3201/eid1903.121017. [DOI] [PMC free article] [PubMed] [Google Scholar]; Mattiucci, S., Fazii, P., De Rosa, A., Paoletti, M., Megna, A. S., Glielmo, A., De Angelis, M., Costa, A., Meucci, C., Calvaruso, V., Sorrentini, I., Palma, G., Bruschi, F., Nascetti, G., 2013. Anisakiasis and gastroallergic reactions associated with Anisakis pegreffii infection, Italy. Emerg Infect Dis. 19, 496-499. [DOI] [PMC free article] [PubMed]
- Mattiucci S., Cipriani P., Webb S.C., Paoletti M., Marcer F., Bellisario B., Gibson D.I., Nascetti G. Genetic and morphological approaches distinguishing the three sibling species of the Anisakis simplex species complex, with a species designation as Anisakis berlandi n. sp. for A. simplex sp. C (Nematoda: Anisakidae) J. Parasitol. 2014;100:199–214. doi: 10.1645/12-120.1. [DOI] [PubMed] [Google Scholar]; Mattiucci, S., Cipriani, P., Webb, S.C., Paoletti, M., Marcer, F., Bellisario, B., Gibson, D.I., Nascetti, G., 2014. Genetic and morphological approaches distinguishing the three sibling species of the Anisakis simplex species complex, with a species designation as Anisakis berlandi n. sp. for A. simplex sp. C (Nematoda: Anisakidae). J Parasitol. 100, 199-214. [DOI] [PubMed]
- Mattiucci S., Cipriani P., Levsen A., Paoletti M., Nascetti G. Molecular epidemiology of anisakis and anisakiasis: an ecological and evolutionary road map. Adv. Parasitol. 2018;99:93–263. doi: 10.1016/bs.apar.2017.12.001. [DOI] [PubMed] [Google Scholar]; Mattiucci, S., Cipriani, P., Levsen, A., Paoletti, M., Nascetti, G., 2018. Molecular epidemiology of Anisakis and anisakiasis: An Ecological and Evolutionary Road Map. Adv Parasitol. 99, 93-263. [DOI] [PubMed]
- McClelland G., R.K., M.,D.J.,M. Larval anisakine nematodes in various fish species from Sable Island Bank and vicinity. Can. Bull. Fish. Aquat. Sci. 1990;222:83–118. [Google Scholar]; McClelland, G., R.K., M., D.J., M., 1990. Larval anisakine nematodes in various fish species from Sable Island Bank and vicinity. Can Bull Fish Aquat Sci. 222, 83-118.
- Mercado R., Torres P., Munoz V., Apt W. Human infection by Pseudoterranova decipiens (Nematoda, Anisakidae) in Chile: report of seven cases. Mem. Inst. Oswaldo Cruz. 2001;96:653–655. doi: 10.1590/s0074-02762001000500010. [DOI] [PubMed] [Google Scholar]; Mercado, R., Torres, P., Munoz, V., Apt, W., 2001. Human infection by Pseudoterranova decipiens (Nematoda, Anisakidae) in Chile: report of seven cases. Mem Inst Oswaldo Cruz. 96, 653-655. [DOI] [PubMed]
- Miura T., Iwaya A., Shimizu T., Tsuchiya J., Nakamura J., Yamada S., Miura T., Yanagi M., Usuda H., Emura I., Takahashi T. Intestinal anisakiasis can cause intussusception in adults: an extremely rare condition. World J. Gastroenterol. 2010;16:1804–1807. doi: 10.3748/wjg.v16.i14.1804. [DOI] [PMC free article] [PubMed] [Google Scholar]; Miura, T., Iwaya, A., Shimizu, T., Tsuchiya, J., Nakamura, J., Yamada, S., Miura, T., Yanagi, M., Usuda, H., Emura, I., Takahashi, T., 2010. Intestinal anisakiasis can cause intussusception in adults: an extremely rare condition. World J Gastroenterol. 16, 1804-1807. [DOI] [PMC free article] [PubMed]
- Mizumura N., Okumura S., Tsuchihashi H., Ogawa M., Kawasaki M. A Second Attack of Anisakis: intestinal anisakiasis following gastric anisakiasis. ACG Case Rep. J. 2018;5:e65. doi: 10.14309/crj.2018.65. [DOI] [PMC free article] [PubMed] [Google Scholar]; Mizumura, N., Okumura, S., Tsuchihashi, H., Ogawa, M., Kawasaki, M., 2018. A Second Attack of Anisakis: Intestinal anisakiasis following gastric anisakiasis. ACG Case Rep J. 5, e65. doi: 10.14309/crj.2018.65. [DOI] [PMC free article] [PubMed]
- Mladineo I., Popovic M., Drmic-Hofman I., Poljak V. A case report of Anisakis pegreffii (Nematoda, Anisakidae) identified from archival paraffin sections of a Croatian patient. BMC Infect. Dis. 2016;16:42. doi: 10.1186/s12879-016-1401-x. [DOI] [PMC free article] [PubMed] [Google Scholar]; Mladineo, I., Popovic, M., Drmic-Hofman, I., Poljak, V., 2016. A case report of Anisakis pegreffii (Nematoda, Anisakidae) identified from archival paraffin sections of a Croatian patient. BMC Infect Dis. 16, 42. doi: 10.1186/s12879-016-1401-x. [DOI] [PMC free article] [PubMed]
- Molina-Fernandez D., Malagon D., Gomez-Mateos M., Benitez R., Martin-Sanchez J., Adroher F.J. Fishing area and fish size as risk factors of Anisakis infection in sardines (Sardina pilchardus) from Iberian waters, southwestern Europe. Int. J. Food Microbiol. 2015;203:27–34. doi: 10.1016/j.ijfoodmicro.2015.02.024. [DOI] [PubMed] [Google Scholar]; Molina-Fernandez, D., Malagon, D., Gomez-Mateos, M., Benitez, R., Martin-Sanchez, J., Adroher, F.J., 2015. Fishing area and fish size as risk factors of Anisakis infection in sardines (Sardina pilchardus) from Iberian waters, southwestern Europe. Int J Food Microbiol. 203, 27-34. [DOI] [PubMed]
- Moneo I., Caballero M.L., Gómez F., Ortega E., Alonso M.J. Isolation and characterization of a major allergen from the fish parasite Anisakis simplex. J. Allergy Clin. Immunol. 2000;106:177–182. doi: 10.1067/mai.2000.106732. [DOI] [PubMed] [Google Scholar]; Moneo, I., Caballero, M. L., Gomez, F., Ortega, E., Alonso, M. J., 2000. Isolation and characterization of a major allergen from the fish parasite Anisakis simplex. J Allergy Clin Immunol. 106, 177-182. [DOI] [PubMed]
- Moneo I., Caballero M.L., Gonzalez-Munoz M., Rodriguez-Mahillo A.I., Rodriguez-Perez R., Silva A. Isolation of a heat-resistant allergen from the fish parasite Anisakis simplex. Parasitol. Res. 2005;96:285–289. doi: 10.1007/s00436-005-1362-2. [DOI] [PubMed] [Google Scholar]; Moneo, I., Caballero, M. L., Gonzalez-Munoz, M., Rodriguez-Mahillo, A. I., Rodriguez-Perez, R., Silva, A., 2005. Isolation of a heat-resistant allergen from the fish parasite Anisakis simplex. Parasitol Res. 96, 285-289. [DOI] [PubMed]
- Mouritsen K.N., Hedeholm R., Schack H.B., Møller L.N., Storr-Paulsen M., Dzido J., Rokicki J. Occurrence of anisakid nematodes in Atlantic cod (Gadus morhua) and Greenland cod (Gadus ogac), West Greenland. Acta Parasitol. 2010;55:81–89. [Google Scholar]; Mouritsen, K.N., Hedeholm, R., Schack, H.B., Moller, L.N., Storr-Paulsen, M., Dzido, J., Rokicki, J., 2010. Occurrence of anisakid nematodes in Atlantic cod (Gadus morhua) and Greenland cod (Gadus ogac), West Greenland. Acta Parasitol. 55, 81-89.
- Nagasawa K., Moravec F. Larval anisakid nematodes of Japanese common squid (Todarodes pacificus) from the Sea of Japan. J. Parasitol. 1995;81:69–75. [PubMed] [Google Scholar]; Nagasawa, K., Moravec, F., 1995. Larval anisakid nematodes of Japanese common squid (Todarodes pacificus) from the Sea of Japan. J Parasitol. 81, 69-75. [PubMed]
- Nieuwenhuizen N.E., Lopata A.L. Anisakis – a food-borne parasite that triggers allergic host defences. Int. J. Parasitol. 2013;43:1047–1057. doi: 10.1016/j.ijpara.2013.08.001. [DOI] [PubMed] [Google Scholar]; Nieuwenhuizen, N.E., Lopata, A.L., 2013. Anisakis - A food-borne parasite that triggers allergic host defences. Int J Parasitol. 43, 1047-1057. [DOI] [PubMed]
- Nieuwenhuizen N.E., Lopata A.L. Allergic reactions to Anisakis found in fish. Curr. Allergy Asthma Rep. 2014;14:455. doi: 10.1007/s11882-014-0455-3. [DOI] [PubMed] [Google Scholar]; Nieuwenhuizen, N.E., Lopata, A.L., 2014. Allergic reactions to Anisakis found in fish. Curr Allergy Asthma Rep. 14, 455. doi: 10.1007/s11882-014-0455-3. [DOI] [PubMed]
- Nieuwenhuizen N., Lopata A.L., Jeebhay M.F., Herbert D.R., Robins T.G., Brombacher F. Exposure to the fish parasite Anisakis causes allergic airway hyperreactivity and dermatitis. J. Allergy Clin. Immunol. 2006;117:1098–1105. doi: 10.1016/j.jaci.2005.12.1357. [DOI] [PubMed] [Google Scholar]; Nieuwenhuizen, N., Lopata, A.L., Jeebhay, M.F., Herbert, D.R., Robins, T.G., Brombacher, F., 2006. Exposure to the fish parasite Anisakis causes allergic airway hyperreactivity and dermatitis. J Allergy Clin Immunol. 117, 1098-1105. [DOI] [PubMed]
- Orphanet Prevalence and incidence of rare diseases: bibliographic data. Orphanet Rep. Ser. 2016;1 http://www.orpha.net/orphacom/cahiers/docs/GB/Prevalence_of_rare_diseases_by_alphabetical_list.pdf Available at: [Google Scholar]; Orphanet. Prevalence and incidence of rare diseases: bibliographic data. Orphanet Rep. Ser., 1, 2016, Available at: http://www.orpha.net/orphacom/cahiers/docs/GB/Prevalence_of_rare_diseases_by_alphabetical_list.pdf
- Palm H.W., Theisen S., Damriyasa I.M., Kusmintarsih E.S., Oka I.B., Setyowati E.A., Suratma N.A., Wibowo S., Kleinertz S. Anisakis (Nematoda: Ascaridoidea) from Indonesia. Dis. Aquat. Org. 2017;123:141–157. doi: 10.3354/dao03091. [DOI] [PubMed] [Google Scholar]; Palm, H. W., Theisen, S., Damriyasa, I. M., Kusmintarsih, E. S., Oka, I. B., Setyowati, E. A., Suratma, N. A., Wibowo, S., Kleinertz, S., 2017. Anisakis (Nematoda: Ascaridoidea) from Indonesia. Dis Aquat Organ. 123, 141-157. [DOI] [PubMed]
- Pampiglione S., Rivasi F., Criscuolo M., De Benedittis A., Gentile A., Russo S., Testini M., Villan M. Human anisakiasis in Italy: a report of eleven new cases. Pathol. Res. Pract. 2002;198:429–434. doi: 10.1078/0344-0338-00277. [DOI] [PubMed] [Google Scholar]; Pampiglione, S., Rivasi, F., Criscuolo, M., De Benedittis, A., Gentile, A., Russo, S., Testini, M., Villan, M., 2002. Human anisakiasis in Italy: a report of eleven new cases. Pathol Res Pract. 198, 429-434. [DOI] [PubMed]
- Perez-Perez J., Fernandez-Caldas E., Maranon F., Sastre J., Bernal M.L., Rodriguez J., Bedate C.A. Molecular cloning of paramyosin, a new allergen of Anisakis simplex. Int. Arch. Allergy Immunol. 2000;123:120–129. doi: 10.1159/000024442. [DOI] [PubMed] [Google Scholar]; Perez-Perez, J., Fernandez-Caldas, E., Maranon, F., Sastre, J., Bernal, M. L., Rodriguez, J., Bedate, C. A., 2000. Molecular cloning of paramyosin, a new allergen of Anisakis simplex. Int Arch Allergy Immunol. 123, 120-129. [DOI] [PubMed]
- Piccolo G., Manfredi M., Hoste L., Vercruysse J. Anisakidae larval infection in fish fillets sold in Belgium. Vet. Q. 1999;21:66–67. doi: 10.1080/01652176.1999.9694995. [DOI] [PubMed] [Google Scholar]; Piccolo, G., Manfredi, M., Hoste, L., Vercruysse, J., 1999. Anisakidae larval infection in fish fillets sold in Belgium. Vet Q. 21, 66-67. [DOI] [PubMed]
- Pozio E. Integrating animal health surveillance and food safety: the example of Anisakis. Rev. Sci. Tech. 2013;32:487–496. doi: 10.20506/rst.32.2.2246. [DOI] [PubMed] [Google Scholar]; Pozio, E., 2013. Integrating animal health surveillance and food safety: the example of Anisakis. Rev Sci Tech. 32, 487-496. [DOI] [PubMed]
- Qin Y., Zhao Y., Ren Y., Zheng L., Dai X., Li Y., Mao W., Cui Y. Anisakiasis in China: the first clinical case report. Foodb. Pathog. Dis. 2013;10:472–474. doi: 10.1089/fpd.2012.1325. [DOI] [PubMed] [Google Scholar]; Qin, Y., Zhao, Y., Ren, Y., Zheng, L., Dai, X., Li, Y., Mao, W., Cui, Y. 2013. Anisakiasis in China: the first clinical case report. Foodborne Pathog Dis. 10, 472-474. [DOI] [PubMed]
- Repiso O.A., Alcántara T.M., González F.C., Artaza V.T., Rodríguez M.R., Valle M.J., Martínez P.J.L. Gastrointestinal anisakiasis. Study of a series of 25 patients. Gastroenterol. Hepatol. 2003;26:341–346. doi: 10.1016/s0210-5705(03)70370-7. [DOI] [PubMed] [Google Scholar]; Repiso, O. A., Alcantara, T. M., Gonzalez, F. C., Artaza, V. T., Rodriguez, M. R., Valle, M. J., Martinez, P. J. L., 2003. Gastrointestinal anisakiasis. Study of a series of 25 patients. Gastroenterol Hepatol. 26, 341-346. [DOI] [PubMed]
- Rodriguez E., Anadon A.M., Garcia-Bodas E., Romaris F., Iglesias R., Garate T., Ubeira F.M. Novel sequences and epitopes of diagnostic value derived from the Anisakis simplex Ani s 7 major allergen. Allergy. 2008;63:219–225. doi: 10.1111/j.1398-9995.2007.01564.x. [DOI] [PubMed] [Google Scholar]; Rodriguez, E., Anadon, A. M., Garcia-Bodas, E., Romaris, F., Iglesias, R., Garate, T., Ubeira, F. M., 2008. Novel sequences and epitopes of diagnostic value derived from the Anisakis simplex Ani s 7 major allergen. Allergy. 63, 219-225. [DOI] [PubMed]
- Rodríguez H., González Á.F., Abollo E., Pascual S. Re-evaluation of anchovies (Engraulis encrasicolus) as an important risk factor for sensitization to zoonotic nematodes in Spain. Fish. Res. 2018;202:49–58. [Google Scholar]; Rodriguez, H., Gonzalez, A.F., Abollo, E., Pascual, S., 2018. Re-evaluation of anchovies (Engraulis encrasicolus) as an important risk factor for sensitization to zoonotic nematodes in Spain. Fish Res. 202, 49-58.
- Rodriguez-Mahillo A.I., Gonzalez-Munoz M., Gomez-Aguado F., Rodriguez-Perez R., Corcuera M.T., Caballero M.L., Moneo I. Cloning and characterisation of the Anisakis simplex allergen Ani s 4 as a cysteine-protease inhibitor. Int. J. Parasitol. 2007;37:907–917. doi: 10.1016/j.ijpara.2007.01.007. [DOI] [PubMed] [Google Scholar]; Rodriguez-Mahillo, A. I., Gonzalez-Munoz, M., Gomez-Aguado, F., Rodriguez-Perez, R., Corcuera, M. T., Caballero, M. L., Moneo, I., 2007. Cloning and characterisation of the Anisakis simplex allergen Ani s 4 as a cysteine-protease inhibitor. Int J Parasitol. 37, 907-917. [DOI] [PubMed]
- Rodriguez-Perez R., Moneo I., Rodriguez-Mahillo A., Caballero M.L. Cloning and expression of Ani s 9, a new Anisakis simplex allergen. Mol. Biochem. Parasitol. 2008;159:92–97. doi: 10.1016/j.molbiopara.2008.02.008. [DOI] [PubMed] [Google Scholar]; Rodriguez-Perez, R., Moneo, I., Rodriguez-Mahillo, A., Caballero, M. L., 2008. Cloning and expression of Ani s 9, a new Anisakis simplex allergen. Mol Biochem Parasitol. 159, 92-97. [DOI] [PubMed]
- Rodriguez-Perez R., Monsalve R.I., Galan A., Perez-Pinar T., Umpierrez A., Lluch-Bernal M., Polo F., Caballero M.L. Cross-reactivity between Anisakis spp. and wasp venom allergens. Int. Arch. Allergy Immunol. 2014;163:179–184. doi: 10.1159/000358060. [DOI] [PubMed] [Google Scholar]; Rodriguez-Perez, R., Monsalve, R. I., Galan, A., Perez-Pinar, T., Umpierrez, A., Lluch-Bernal, M., Polo, F., Caballero, M. L., 2014. Cross-reactivity between Anisakis spp. and wasp venom allergens. Int Arch Allergy Immunol. 163, 179-184. [DOI] [PubMed]
- Serracca L., Battistini R., Rossini I., Carducci A., Verani M., Prearo M., Tomei L., De Montis G., Ercolini C. Food safety considerations in relation to Anisakis pegreffii in anchovies (Engraulis encrasicolus) and sardines (Sardina pilchardus) fished off the Ligurian coast (Cinque Terre national Park, NW mediterranean) Int. J. Food Microbiol. 2014;190:79–83. doi: 10.1016/j.ijfoodmicro.2014.08.025. [DOI] [PubMed] [Google Scholar]; Serracca, L., Battistini, R., Rossini, I., Carducci, A., Verani, M., Prearo, M., Tomei, L., De Montis, G., Ercolini, C., 2014. Food safety considerations in relation to Anisakis pegreffii in anchovies (Engraulis encrasicolus) and sardines (Sardina pilchardus) fished off the Ligurian Coast (Cinque Terre National Park, NW Mediterranean). Int J Food Microbiol. 190, 79-83. [DOI] [PubMed]
- Serrano-Moliner M., Morales-Suarez-Varela M., Valero M.A. Epidemiology and management of foodborne nematodiasis in the European Union, systematic review 2000–2016. Pathog. Glob. Health. 2018;112:249–258. doi: 10.1080/20477724.2018.1487663. [DOI] [PMC free article] [PubMed] [Google Scholar]; Serrano-Moliner, M., Morales-Suarez-Varela, M., Valero, M.A., 2018. Epidemiology and management of foodborne nematodiasis in the European Union, systematic review 2000-2016. Pathog Glob Health. 112, 249-258. [DOI] [PMC free article] [PubMed]
- Shamsi S., Butcher A.R. First report of human anisakidosis in Australia. Med. J. Aust. 2011;194:199–200. doi: 10.5694/j.1326-5377.2011.tb03772.x. [DOI] [PubMed] [Google Scholar]; Shamsi, S., Butcher, A.R., 2011. First report of human anisakidosis in Australia. Med J Aust. 194, 199-200. [DOI] [PubMed]
- Shamsi S., Sheorey H. Seafood‐borne parasitic diseases in Australia: are they rare or underdiagnosed? Intern. Med. J. 2018;48:591–596. doi: 10.1111/imj.13786. [DOI] [PubMed] [Google Scholar]; Shamsi, S., Sheorey, H., 2018. Seafood-borne parasitic diseases in Australia: are they rare or underdiagnosed? Intern Med J. 48, 591-596. [DOI] [PubMed]
- Shamsi S., Norman R., Gasser R., Beveridge I. Genetic and morphological evidences for the existence of sibling species within Contracaecum rudolphii (Hartwich, 1964) (Nematoda: Anisakidae) in Australia. Parasitol. Res. 2009;105:529–538. doi: 10.1007/s00436-009-1424-y. [DOI] [PubMed] [Google Scholar]; Shamsi, S., Norman, R., Gasser, R., Beveridge, I., 2009. Genetic and morphological evidences for the existence of sibling species within Contracaecum rudolphii (Hartwich, 1964) (Nematoda: Anisakidae) in Australia. Parasitol Res. 105, 529-538. [DOI] [PubMed]
- Shamsi S., Eisenbarth A., Saptarshi S., Beveridge I., Gasser R.B., Lopata A.L. Occurrence and abundance of anisakid nematode larvae in five species of fish from southern Australian waters. Parasitol. Res. 2011;108:927–934. doi: 10.1007/s00436-010-2134-1. [DOI] [PubMed] [Google Scholar]; Shamsi, S., Eisenbarth, A., Saptarshi, S., Beveridge, I., Gasser, R.B., Lopata, A.L., 2011. Occurrence and abundance of anisakid nematode larvae in five species of fish from southern Australian waters. Parasitol Res. 108, 927-934. [DOI] [PubMed]
- Shih H.H. Parasitic helminth fauna of the cutlass fish, Trichiurus lepturus L., and the differentiation of four anisakid nematode third-stage larvae by nuclear ribosomal DNA sequences. Parasitol. Res. 2004;93:188–195. doi: 10.1007/s00436-004-1095-7. [DOI] [PubMed] [Google Scholar]; Shih, H.H., 2004. Parasitic helminth fauna of the cutlass fish, Trichiurus lepturus L., and the differentiation of four anisakid nematode third-stage larvae by nuclear ribosomal DNA sequences. Parasitol Res. 93, 188-195. [DOI] [PubMed]
- Shimamura Y., Muwanwella N., Chandran S., Kandel G., Marcon N. Common symptoms from an uncommon infection: gastrointestinal anisakiasis. Chin. J. Gastroenterol. Hepatol. 2016;6 doi: 10.1155/2016/5176502. [DOI] [PMC free article] [PubMed] [Google Scholar]; Shimamura, Y., Muwanwella, N., Chandran, S., Kandel, G., Marcon, N., 2016. Common symptoms from an uncommon infection: gastrointestinal anisakiasis. Can J Gastroenterol Hepatol. 6, 5176502. [DOI] [PMC free article] [PubMed]
- Smith J.W., Wootten R. Anisakis and anisakiasis. Adv. Parasitol. 1978;16:93–163. doi: 10.1016/s0065-308x(08)60573-4. [DOI] [PubMed] [Google Scholar]; Smith, J.W., Wootten, R., 1978. Anisakis and anisakiasis. Adv Parasitol. 16, 93-163. [DOI] [PubMed]
- Sohn W.M., Kang J.M., Na B.K. Molecular analysis of Anisakis type I larvae in marine fish from three different sea areas in Korea. Korean J. Parasitol. 2014;52:383–389. doi: 10.3347/kjp.2014.52.4.383. [DOI] [PMC free article] [PubMed] [Google Scholar]; Sohn, W. M., Kang, J. M., Na, B. K., 2014. Molecular analysis of Anisakis type I larvae in marine fish from three different sea areas in Korea. Korean J Parasitol. 52, 383-389. [DOI] [PMC free article] [PubMed]
- Sohn W.M., Na B.K., Kim T.H., Park T.J. Anisakiasis: report of 15 gastric cases caused by Anisakis type I larvae and a brief review of Korean anisakiasis cases. Korean J. Parasitol. 2015;53:465–470. doi: 10.3347/kjp.2015.53.4.465. [DOI] [PMC free article] [PubMed] [Google Scholar]; Sohn, W. M., Na, B. K., Kim, T. H., Park, T. J., 2015. Anisakiasis: report of 15 gastric cases caused by Anisakis type I larvae and a brief review of Korean anisakiasis cases. Korean J Parasitol. 53, 465-470. [DOI] [PMC free article] [PubMed]
- Sumner J., Anantanawat S., Kiermeier A., McLeod C., Shamsi S. Raw fish consumption in Australia: how safe is it? Food Aust. 2015;67:24–26. [Google Scholar]; Sumner, J., Anantanawat, S., Kiermeier, A., McLeod, C., Shamsi, S., 2015. Raw fish consumption in Australia: how safe is it? Food Aust. 67, 24-26.
- Suzuki J., Murata R., Hosaka M., Araki J. Risk factors for human Anisakis infection and association between the geographic origins of Scomber japonicus and anisakid nematodes. Int. J. Food Microbiol. 2010;137:88–93. doi: 10.1016/j.ijfoodmicro.2009.10.001. [DOI] [PubMed] [Google Scholar]; Suzuki, J., Murata, R., Hosaka, M., Araki, J., 2010. Risk factors for human Anisakis infection and association between the geographic origins of Scomber japonicus and anisakid nematodes. Int J Food Microbiol. 137, 88-93. [DOI] [PubMed]
- Takabayashi T., Mochizuki T., Otani N., Nishiyama K., Ishimatsu S. Anisakiasis presenting to the ED: clinical manifestations, time course, hematologic tests, computed tomographic findings, and treatment. Am. J. Emerg. Med. 2014;32:1485–1489. doi: 10.1016/j.ajem.2014.09.010. [DOI] [PubMed] [Google Scholar]; Takabayashi, T., Mochizuki, T., Otani, N., Nishiyama, K., Ishimatsu, S., 2014. Anisakiasis presenting to the ED: clinical manifestations, time course, hematologic tests, computed tomographic findings, and treatment. Am J Emerg Med. 32, 1485-1489. [DOI] [PubMed]
- Tejada M., Olivares F., de las Heras C., Careche M., Solas M.T., Garcia M.L., Fernandez A., Mendizabal A., Navas A., Rodriguez-Mahillo A.I., Gonzalez-Munoz M. Antigenicity of Anisakis simplex s.s. L3 in parasitized fish after heating conditions used in the canning processing. J. Sci. Food Agric. 2015;95:922–927. doi: 10.1002/jsfa.6763. [DOI] [PubMed] [Google Scholar]; Tejada, M., Olivares, F., de las Heras, C., Careche, M., Solas, M.T., Garcia, M.L., Fernandez, A., Mendizabal, A., Navas, A., Rodriguez-Mahillo, A.I., Gonzalez-Munoz, M., 2015.
- Toyoda H., Tanaka K. Intestinal anisakiasis treated successfully with prednisolone and olopatadine hydrochloride. Case Rep. Gastroenterol. 2016;10:30–35. doi: 10.1159/000442971. [DOI] [PMC free article] [PubMed] [Google Scholar]; Toyoda, H., Tanaka, K., 2016. Intestinal anisakiasis treated successfully with prednisolone and olopatadine hydrochloride. Case Rep Gastroenterol. 10, 30-35. [DOI] [PMC free article] [PubMed]
- Umehara A., Kawakami Y., Matsui T., Araki J., Uchida A. Molecular identification of Anisakis simplex sensu stricto and Anisakis pegreffii (Nematoda: Anisakidae) from fish and cetacean in Japanese waters. Parasitol. Int. 2006;55:267–271. doi: 10.1016/j.parint.2006.07.001. [DOI] [PubMed] [Google Scholar]; Umehara, A., Kawakami, Y., Matsui, T., Araki, J., Uchida, A., 2006. Molecular identification of Anisakis simplex sensu stricto and Anisakis pegreffii (Nematoda: Anisakidae) from fish and cetacean in Japanese waters. Parasitol Int. 55, 267-271. [DOI] [PubMed]
- Valentini A., Mattiucci S., Bondanelli P., Webb S.C., Mignucci-Giannone A., Colom-Llavina M.M., Nascetti G. Genetic relationships among Anisakis species (Nematoda: Anisakidae) inferred from mitochondrial cox-2 sequences, and comparison with allozyme data. J. Parasitol. 2006;92:156–166. doi: 10.1645/GE-3504.1. [DOI] [PubMed] [Google Scholar]; Valentini, A., Mattiucci, S., Bondanelli, P., Webb, S.C., Mignucci-Giannone, A., Colom-Llavina, M.M., Nascetti, G., 2006. Genetic relationships among Anisakis species (Nematoda: Anisakidae) inferred from mitochondrial cox-2 sequences, and comparison with allozyme data. J Parasitol. 92, 156-166. 10.1645/GE-3504.1. [DOI] [PubMed]
- Valls A., Pascual C.Y., Martin E.M., Cavanna J. Anisakis and anisakiosis. Allergol. Immunopathol. 2003;31:348–355. doi: 10.1016/s0301-0546(03)79211-8. [DOI] [PubMed] [Google Scholar]; Valls, A., Pascual, C.Y., Martin, E.M., Cavanna, J., 2003. Anisakis and anisakiosis. Allergol Immunopathol. 31, 348-355. [DOI] [PubMed]
- Van Thiel P.H., Kuipers F.C., Roskam R.T. A nematode parasitic to herring, causing acute abdominal syndromes in man. Trop Geogr. Med. 1960;2:97–113. [PubMed] [Google Scholar]; Van Thiel P.H., Kuipers F.C. and Roskam R.T., A nematode parasitic to herring, causing acute abdominal syndromes in man. Trop Geogr. Med. 2, 1960, 97-113. [PubMed]
- Van Thiel P.H. Anisakiasis. Parasitol. vol. 52. 1962. pp. 16–17. [Google Scholar]; Van Thiel, P.H., 1962. Anisakiasis. Parasitol. 52, 16-17.
- Vaughan S., Sadler M., Jayakumar S., Missaghi B., Chan W., Church D.L. An unusual case of abdominal pain. Can. J. Infect Dis. Med. Microbiol. 2015;26:297–298. doi: 10.1155/2015/578715. [DOI] [PMC free article] [PubMed] [Google Scholar]; Vaughan, S., Sadler, M., Jayakumar, S., Missaghi, B., Chan, W., Church, D. L., 2015. An unusual case of abdominal pain. Can. J. Infect. Dis. Med. Microbiol. 26, 297-298. [DOI] [PMC free article] [PubMed]
- Vidaček S., de las Heras C., Solas M.T., Mendizábal A., Rodriguez-Mahillo A.I., González-Muñoz M., Tejada M. Anisakis simplex allergens remain active after conventional or microwave heating and pepsin treatments of chilled and frozen L3 larvae. J. Sci. Food Agric. 2009;89:1997–2002. [Google Scholar]; Vidaček, S., de las Heras, C., Solas, M.T., Mendizabal, A., Rodriguez-Mahillo, A.I., Gonzalez-Muñoz, M., Tejada, M., 2009. Anisakis simplex allergens remain active after conventional or microwave heating and pepsin treatments of chilled and frozen L3 larvae. J. Sci. Food Agric. 89, 1997-2002.
- Villazanakretzer D.L., Napolitano P.G., Cummings K.F., Magann E.F. Fish parasites: a growing concern during pregnancy. Obstet. Gynecol. Surv. 2016;71:253–259. doi: 10.1097/OGX.0000000000000303. [DOI] [PubMed] [Google Scholar]; Villazanakretzer, D.L., Napolitano, P.G., Cummings, K.F., Magann, E.F., 2016. Fish parasites: a growing concern during pregnancy. Obstet Gynecol Surv. 71, 253-259. [DOI] [PubMed]
- World Health Organization . 2012. Soil-transmitted Helminths. World Health Organization.http://www.who.int/intestinal_worms/en/ Accessed on 31-03-2019 from. [Google Scholar]; World Health Organization, 2012. Soil-transmitted helminths. World Health Organization. Accessed on 31-03-2019 from http://www.who.int/intestinal_worms/en/.
- Yera H., Frealle E., Dutoit E., Dupouy-Camet J. A national retrospective survey of anisakidosis in France (2010-2014): decreasing incidence, female predominance and emerging allergic potential. Parasite. 2018;25:23. doi: 10.1051/parasite/2018016. [DOI] [PMC free article] [PubMed] [Google Scholar]; Yera, H., Frealle, E., Dutoit, E., Dupouy-Camet, J., 2018. A national retrospective survey of anisakidosis in France (2010-2014): decreasing incidence, female predominance and emerging allergic potential. Parasite. 25, 23. doi: 10.1051/parasite/2018016. [DOI] [PMC free article] [PubMed]
- Yorimitsu N., Hiraoka A., Utsunomiya H., Imai Y., Tatsukawa H., Tazuya N., Yamago H., Shimizu Y., Hidaka S., Tanihira T., Hasebe A., Miyamoto Y., Ninomiya T., Abe M., Hiasa Y., Matsuura B., Onji M., Michitaka K. Colonic intussusception caused by anisakiasis: a case report and review of the literature. Intern. Med. 2013;52:223–226. doi: 10.2169/internalmedicine.52.8629. [DOI] [PubMed] [Google Scholar]; Yorimitsu, N., Hiraoka, A., Utsunomiya, H., Imai, Y., Tatsukawa, H., Tazuya, N., Yamago, H., Shimizu, Y., Hidaka, S., Tanihira, T., Hasebe, A., Miyamoto, Y., Ninomiya, T., Abe, M., Hiasa, Y., Matsuura, B., Onji, M., Michitaka, K., 2013. Colonic intussusception caused by anisakiasis: a case report and review of the literature. Intern Med. 52, 223-226. [DOI] [PubMed]
- Zhao W.T., Lu L., Chen H.X., Yang Y., Zhang L.P., Li L. Ascaridoid parasites infecting in the frequently consumed marine fishes in the coastal area of China: a preliminary investigation. Parasitol. Int. 2016;65:87–98. doi: 10.1016/j.parint.2015.11.002. [DOI] [PubMed] [Google Scholar]; Zhao, W.T., Lu, L., Chen, H.X., Yang, Y., Zhang, L.P., Li, L., 2016. Ascaridoid parasites infecting in the frequently consumed marine fishes in the coastal area of China: A preliminary investigation. Parasitol Int. 65, 87-98. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.

