Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2006:251–304. doi: 10.1007/978-4-431-27914-3_10

Radiofrequency Biology: In vivo

Masamichi Kato 2
Editor: Masamichi Kato1
PMCID: PMC7120720

The content is available as a PDF (384.8 KB).

10.9 References

  1. Adair E.R., Adams B.W., Hertman S.K. Physiological interaction processes and radio-frequency energy absorption. Bioelectromagnetics. 1992;13:497–512. doi: 10.1002/bem.2250130606. [DOI] [PubMed] [Google Scholar]
  2. Adair E.R., Mylacraine K.S., Cobb B.L. Partial-body exposure of human volunteers to 2450 MHz pulsed or CW fields provokes similar thermoregulatory responses. Bioelectromagnetics. 2001;22:246–259. doi: 10.1002/bem.47. [DOI] [PubMed] [Google Scholar]
  3. Adair E.R., Mylacraine K.S., Cobb B.L. Human exposure to 2450 MHz CW energy at levels outside the IEEE C95.1 standard does not increase core temperature. Bioelectromagnetics. 2001;22:429–439. doi: 10.1002/bem.70. [DOI] [PubMed] [Google Scholar]
  4. Adair E.R., Mylacraine K.S., Allen S.J. Thermophysiological consequences of whole body resonant RF exposure (100 MHz) in human volunteers. Bioelectromagnetics. 2003;24:489–501. doi: 10.1002/bem.10128. [DOI] [PubMed] [Google Scholar]
  5. Adair E.R., Cobb B.L., Mylacraine K.S., Kelleher S.A. Human exposure at two radio frequencies (450 and 2450 MHz): similarities and differences in physiological response. Bioelectromagnetics Suppl. 1999;4:12–20. doi: 10.1002/(SICI)1521-186X(1999)20:4+<12::AID-BEM4>3.0.CO;2-N. [DOI] [PubMed] [Google Scholar]
  6. Adair E.R., Kelleher S.A., Mack G.W., Morocco T.S. Thermophysiological responses of human volunteers during controlled whole-body radio frequency exposure at 450 MHz. Bioelectromagnetics. 1998;19:232–245. doi: 10.1002/(SICI)1521-186X(1998)19:4<232::AID-BEM5>3.0.CO;2-2. [DOI] [PubMed] [Google Scholar]
  7. Adair E.R., Spiers D.E., Rawson R.O., Adams B.W., Sheldon D.K., Pivirotte P.J., Akel G.M. Thermoregulatory consequences of long-term microwave exposure at controlled ambient temperatures. Bioelectromagnetics. 1985;6:339–363. doi: 10.1002/bem.2250060403. [DOI] [PubMed] [Google Scholar]
  8. Albert E.N., Sherif M.F., Papadopoulos N.J. Effect of nonionizing radiation on the Purkinje cells of the uvula in a squirrel monkey cerebellum. Bioelectromagnetics. 1981;2:241–246. doi: 10.1002/bem.2250020305. [DOI] [PubMed] [Google Scholar]
  9. Albert E.N., Sherif M.F., Papadopoulos N.J., Slaby F.J., Monahan J. Effect of nonionizing radiation on the Purkinje cells of the rat cerebellum. Bioelectromagnetics. 1981;2:247–257. doi: 10.1002/bem.2250020306. [DOI] [PubMed] [Google Scholar]
  10. Andersson B., Berg M., Arnetz B.B., Melin L., Langlet I., Liden S. A cognitive-behavioral treatment of patients suffering from ‘electric hypersensitivity’. J Occupat Environ Med. 1996;38:752–758. doi: 10.1097/00043764-199608000-00009. [DOI] [PubMed] [Google Scholar]
  11. Arai N., Enomoto H., Okabe S., Yuasa K., Kamimura Y., Ugawa Y. Thirty minutes mobile phone use has no short-term adverse effects on central auditory pathways. Clin Neurophysiol. 2003;114:1390–1394. doi: 10.1016/S1388-2457(03)00124-X. [DOI] [PubMed] [Google Scholar]
  12. Baddeley A.D. Working Memory. Oxford: Clarendon Press; 1986. [Google Scholar]
  13. Bak M., Sliwinska-Kowalska M., Zmyslony M., Dudarewicz A. No effects of acute exposure to the electromagnetic field emitted by mobile phones on brainstem auditory potentials in young volunteers. Int J Occup Med Environ Health. 2003;16:201–208. [PubMed] [Google Scholar]
  14. Bakos J., Kubinyi G., Sinay H., Thuroczy G. GSM modulated radiofrequency radiation does not affect 6-sulfatoxy-melatonin excretion of rats. Bioelectromagnetics. 2003;24:531–534. doi: 10.1002/bem.10172. [DOI] [PubMed] [Google Scholar]
  15. Bartsch H., Bartsch C., Sebald E., Deerberg F., Dietz K., Vollrath L., Mecke D. Chronic exposure to a GSM-like signal (mobile phone) does not stimulate the development of DMBA-induced mammary tumors in rats: results of three consecutive studies. Radiat Res. 2002;157:183–190. doi: 10.1667/0033-7587(2002)157[0183:CETAGL]2.0.CO;2. [DOI] [PubMed] [Google Scholar]
  16. Borbely A.A. From slow waves to sleep homeostasis: New perspectives. Arch Ital Biol. 2001;130:53–61. [PubMed] [Google Scholar]
  17. Borbely A.A., Huber R., Graf T., Fuchs B., Gallmann E., Achermann P. Pulsed highfrequency electromagnetic field affects human sleep and sleep electroencephalogram. Neurosci Lett. 1999;275:207–210. doi: 10.1016/S0304-3940(99)00770-3. [DOI] [PubMed] [Google Scholar]
  18. Bortkiewicz A., Pilacik B., Gadzicka E., Szymczak W. The excretion of 6-hydroxymelatonin sulfate in healthy young men exposed to electromagnetic fields emitted by cellular phone an experimental study. Neuroendocrinol Lett. 2002;23:88–91. [PubMed] [Google Scholar]
  19. Braune S., Riedel A., Schulte-Monting J., Raczek J. Influence of a radiofrequency electromagnetic field on cardiovascular and hormonal parameters of the autonomic nervous system in healthy individuals. Radiat Res. 2002;158:352–356. doi: 10.1667/0033-7587(2002)158[0352:IOAREF]2.0.CO;2. [DOI] [PubMed] [Google Scholar]
  20. Burch J.B., Reif J.S., Noonan C.W., Ichinose T., Bachand A.M., Koleber T.L., Yost M.G. Melatonin metabolite excretion among cellular telephone users. Int J Radiat Biol. 2002;78:1029–1036. doi: 10.1080/09553000210166561. [DOI] [PubMed] [Google Scholar]
  21. Chalfin S., D’Andrea J.A., Comeau P.D., Belt M.E., Hatcher D.J. Millimeter wave absorption in the nonhuman primate eye at 35 GHz and 94 GHz. Health Phys. 2002;83:83–90. doi: 10.1097/00004032-200207000-00009. [DOI] [PubMed] [Google Scholar]
  22. Chizhenkova R.A. Slow potentials and spike unit activity of the cerebral cortex of rabbits exposed to microwaves. Bioelectromagnetics. 1988;9:337–345. doi: 10.1002/bem.2250090403. [DOI] [PubMed] [Google Scholar]
  23. Chou C., Galambos R. Middle-ear structures contribute little to auditory perception of microwaves. J Microw Power. 1979;14:321–326. doi: 10.1080/16070658.1979.11689167. [DOI] [PubMed] [Google Scholar]
  24. Chou C.-K., Guy A.W. Effects of electromagnetic fields on isolated nerve and muscle preparation. IEEE Trans MTT. 1978;26:141–147. doi: 10.1109/TMTT.1978.1129334. [DOI] [Google Scholar]
  25. Chou C.K., Guy A.W. Carbon-loaded Teflon electrodes for chronic EEG recordings in microwave research. J Microw Power. 1979;14:399–404. doi: 10.1080/16070658.1979.11689175. [DOI] [PubMed] [Google Scholar]
  26. Chou C., Galambos R., Guy A.W., Lovely R.H. Cochlear microphonics generated by microwave pulses. J Microw Power. 1975;10:361–367. doi: 10.1080/00222739.1975.11688973. [DOI] [PubMed] [Google Scholar]
  27. Chou C.K., Guy A.W., Borneman L.E., Kunz L.L., Kramar P. Chronic exposure of rabbits to 0.5 and 5 mW/cm2 2450 MHz CWmicrowave radiation. Bioelectromagnetics. 1983;4:63–77. doi: 10.1002/bem.2250040107. [DOI] [PubMed] [Google Scholar]
  28. Cobb B.L., Jauchem J.R., Adair E.R. Radial arm maze performance of rats following repeated low level microwave radiation exposure. Bioelectromagnetics. 2004;25:49–57. doi: 10.1002/bem.10148. [DOI] [PubMed] [Google Scholar]
  29. COMAR Technical Information Statement Electromagnetic hypersensitivity. IEEE Eng Med Biol. 2002;Sept/Oct:173–175. doi: 10.1109/memb.2002.1044194. [DOI] [PubMed] [Google Scholar]
  30. Cosquer B., Galani R., Kuster N., Cessel J.C. Whole-body exposure to 2.45 GHz electromagnetic fields does not alter anxiety responses in rats: a plus-maze study including test validation. Behav Brain Res. 2005;156:65–74. doi: 10.1016/j.bbr.2004.05.007. [DOI] [PubMed] [Google Scholar]
  31. Courtney K.R., Lin J.C., Guy A.W., Chou C.-K. Microwave effect on rabbit superior cervical ganglion. IEEE Trans Microwave Theory Tech. 1975;23:809–813. doi: 10.1109/TMTT.1975.1128687. [DOI] [Google Scholar]
  32. Daily L., Jr, Watkim K.G., Herrick J.F., Parkhill E.M., Benedict W.L. The effects of microwave diathermy on the eye. Am J Ophthalmol. 1950;33:1241–1254. doi: 10.1016/0002-9394(50)90996-2. [DOI] [PubMed] [Google Scholar]
  33. D’Andrea J.A., Cobb B.L., de Lorge J.O. Lack of behavioral effects in the rhesus monkey: high peak microwave pulses at 1.3 GHz. Bioelectromagnetics. 1989;10:65–76. doi: 10.1002/bem.2250100107. [DOI] [PubMed] [Google Scholar]
  34. de Seze R., Fabbro-Peray P., Miro L. GSM radiocellular telephones do not disturb the secretion of anterior pituitary hormones in humans. Bioelectromagnetics. 1998;19:271–278. doi: 10.1002/(SICI)1521-186X(1998)19:5<271::AID-BEM1>3.0.CO;2-Z. [DOI] [PubMed] [Google Scholar]
  35. de Seze R., Ayoub J., Peray P., Miro L., Touitou Y. Evaluation in humans of the effects of radiocellular telephones on the circadian patterns of melatonin secretion, a chronobiological rhythm marker. J Pineal Res. 1999;27:237–242. doi: 10.1111/j.1600-079x.1999.tb00621.x. [DOI] [PubMed] [Google Scholar]
  36. Dubreuil D., Jay T., Edeline J.M. Does head-only exposure to GSM-900 electromagnetic fields affect the performance of rats in spatial learning tasks? Behav Brain Res. 2002;129:203–210. doi: 10.1016/S0166-4328(01)00344-8. [DOI] [PubMed] [Google Scholar]
  37. Dubreuil D., Jay T., Edeline J.M. Head-only exposure to GSM 900-MHz electromagnetic fields does not alter rat’s memory in spatial and non-spatial tasks. Behav Brain Res. 2003;145:51–61. doi: 10.1016/S0166-4328(03)00100-1. [DOI] [PubMed] [Google Scholar]
  38. Edelstyn N., Oldershaw A. The acute effects of exposure to the electromagnetic field emitted by mobile phones on human attention. Neuroreport. 2002;13:119–121. doi: 10.1097/00001756-200201210-00028. [DOI] [PubMed] [Google Scholar]
  39. Elder J.A. Ocular effects of radiofrequency energy. Bioelectromagnetics Suppl. 2003;6:S148–S161. doi: 10.1002/bem.10117. [DOI] [PubMed] [Google Scholar]
  40. Elder J.A., Chou C.K. Auditory response to pulsed radiofrequency energy. Bioelectromagnetics Suppl. 2003;6:S162–S173. doi: 10.1002/bem.10163. [DOI] [PubMed] [Google Scholar]
  41. Finnie J.W., Blumbergs P.C., Manavis J., Utteridge T.D., Gebeski V., Vernon-Roberts B., Kuchel T.R. Effects of global system for mobile communication (GSM)-like radiofrequency fields on vascular permeability in mouse brain. Pathology. 2001;33:338–340. doi: 10.1080/00313020120062956. [DOI] [PubMed] [Google Scholar]
  42. Finnie J.W., Blumbergs P.C., Manavis J., Utteridge T.D., Gebski V., Davies R.A., Vernon-Roberts B., Kuchel T.R. Effect of long-term mobile communication microwave exposure on vascular permeability in mouse brain. Pathology. 2004;36:96–97. doi: 10.1080/00313020310001645731-1. [DOI] [PubMed] [Google Scholar]
  43. Flodin U., Seneby A., Tegenfeldt C. Provocation of electric hypersensitivity under everyday conditions. Scand J Work Environ Health. 2000;26:93–98. doi: 10.5271/sjweh.517. [DOI] [PubMed] [Google Scholar]
  44. Foster K.R., Finch E.D. Microwave hearing: Evidence for thermoacoustic auditory stimulation by pulsed microwaves. Science. 1974;185:256–258. doi: 10.1126/science.185.4147.256. [DOI] [PubMed] [Google Scholar]
  45. Foster M.R., Ferri E.S., Hagan G.J. Dosimetric study of microwave cataractogenesis. Bioelectromagnetics. 1986;7:129–140. doi: 10.1002/bem.2250070204. [DOI] [PubMed] [Google Scholar]
  46. Freude G., Ullsperger P., Eggert S., Ruppe I. Effects of microwaves emitted by cellular phones on human slow brain potentials. Bioelectromagnetics. 1998;19:384–387. doi: 10.1002/(SICI)1521-186X(1998)19:6<384::AID-BEM6>3.0.CO;2-Y. [DOI] [PubMed] [Google Scholar]
  47. Freude G., Ullsperger P., Eggert S., Ruppe I. Microwaves emitted by cellular telephones affect human slow brain potentials. Eur J Appl Physiol. 2000;81:18–27. doi: 10.1007/PL00013791. [DOI] [PubMed] [Google Scholar]
  48. Fritze K., Sommer C., Schmitz B., Mies G., Hossmann K.A., Kiessling M., Wiessner C. Effect of global system for mobile communication (GSM) microwave exposure on bloodbrain permeability in rat. Acta Neuropathol. 1997;94:465–470. doi: 10.1007/s004010050734. [DOI] [PubMed] [Google Scholar]
  49. Gandhi V.C., Ross D.H. Alterations in alpha-adrenergic and muscarinic cholinergic receptor binding in rat brain following nonionizing radiation. Radiat Res. 1987;109:90–99. doi: 10.2307/3576870. [DOI] [PubMed] [Google Scholar]
  50. Haarala C., Ek M., Bjornberg L., Laine M., Revonsuo A., Koivisto M., Hamalainen H. 902 MHz mobile phone does not affect short term memory in humans. Bioelectromagnetics. 2004;25:452–456. doi: 10.1002/bem.20014. [DOI] [PubMed] [Google Scholar]
  51. Haro E, Lagroye E, Leveque P et al. (2005) Effects on brains of Fisher 344 rats of exposure to GSM-900 signals: Preliminary data of a confirmation study of the 2003 Salford experiments. Proc Bioelectromagnetics Soc, Poster A-133.
  52. Hata K., Yamaguchi H., Tsurita G., Watanabe S., Wake K., Taki M., Ueno S., Nagawa H. Short-term exposure to 1439 MHz TDMA field does not alter melatonin synthesis in rats. Bioelectromagnetics. 2005;26:49–53. doi: 10.1002/bem.20080. [DOI] [PubMed] [Google Scholar]
  53. Hietanen M., Hamalainen A.M., Husman T. Hypersensitivity symptoms associated with exposure to cellular telephones: No causal link. Bioelectromagnetics. 2002;23:264–270. doi: 10.1002/bem.10016. [DOI] [PubMed] [Google Scholar]
  54. Hietanen M., Kovala T., Hamalainen A.M. Human brain activity during exposure to radiofrequency fields emitted by cellular phones. Scand J Work Environ Health. 2000;26:85–86. doi: 10.5271/sjweh.516. [DOI] [PubMed] [Google Scholar]
  55. Hillert L., Berglind N., Arnetz B.B., Bellander T. Prevalence of self-reported hypersensitivity to electric or magnetic fields in a population-based questionnaire survey. Scand J Work Environ Health. 2002;28:33–41. doi: 10.5271/sjweh.644. [DOI] [PubMed] [Google Scholar]
  56. Hillert L., Flato S., Georgellis A., Anetz B.B., Kolmodin-Hedman B. Environmental illness: Fatigue and cholinesterase activity in patients reporting hypersensitivity to electricity. Environ Res A. 2001;85:200–206. doi: 10.1006/enrs.2000.4225. [DOI] [PubMed] [Google Scholar]
  57. Hinrichs H. H. H. Effects of GSM electromagnetic field on the MEG during an encoding-retrieval task. Neuroreport. 2004;15:1191–1194. doi: 10.1097/00001756-200405190-00022. [DOI] [PubMed] [Google Scholar]
  58. Hirsch S.E., Appleton B., Fine B.S., Brown P.V. Effects of repeated microwave irradiations to the albino rabbit eye. Invest Ophthalmol Vis Sci. 1977;16:315–319. [PubMed] [Google Scholar]
  59. Huber R., Treyer V., Borbely A.A., Schuderer J., Gttselig J.M., Landolt H.P., Werth E., Berthold T., Kuster N., Buck A., Achermann P. Electromagnetic fields, such as those from mobile phones, alter regional cerebral blood flow and sleep and waking EEG. J Sleep Res. 2002;11:289–295. doi: 10.1046/j.1365-2869.2002.00314.x. [DOI] [PubMed] [Google Scholar]
  60. Huber R., Schuderer J., Graf T., Jutz K., Borbely A.A., Kuster N., Achermann P. Radio frequency electromagnetic field exposure in humans: Estimation of SAR distribution in the brain, effects on sleep and heart rate. Bioelectromagnetics. 2003;24:262–276. doi: 10.1002/bem.10103. [DOI] [PubMed] [Google Scholar]
  61. Huber R., Treyer V., Schuderer J., Berthold T., Buck A., Kuster N., Landolt H.P., Achermann P. Exposure to pulse-modulated radio frequency electromagnetic fields affects regional cerebral blood flow. Eur J Neurosci. 2005;21:1000–1006. doi: 10.1111/j.1460-9568.2005.03929.x. [DOI] [PubMed] [Google Scholar]
  62. Hudspeth A.J. Hearing. In: Kandel E.R., Schwartz J.H., Jessell T.M., editors. Principles of Neural Science. 4th ed. New York: McGraw-Hill; 2000. pp. 619–624. [Google Scholar]
  63. Ikeda N., Hayashida O., Kameda H., Ito H., Matsuda T. Experimental study on thermal damage to dog normal brain. Int J Hyperthermia. 1994;10:553–561. doi: 10.3109/02656739409009357. [DOI] [PubMed] [Google Scholar]
  64. Imaida K., Taki M., Yamaguchi T., Ito T., Watanabe S., Wake K., Shirai T. Lack of promoting effects of the electromagnetic near-field used for cellular phones (929.2 MHz) on rat liver carcinogenesis in a medium-term liver bioassay. Carcinogenesis 19:311–314. Imaida K, Taki M, Watanabe S, Kamimura Y, Ito T, Yamaguchi T, Ito N, Shirai T (1998b) The 1.5 GHz electromagnetic near-field used for cellular phones does not promote rat liver carcinogenesis in a medium-term liver bioassay. Jpn J Cancer Res. 1998;89:995–1002. [Google Scholar]
  65. Imaida K., Hagiwara A., Yoshino H., Tamano S., Sano M., Futakuchi M., Ogawa K., Asamoto M., Shirai T. Inhibitory effects of low doses of melatonin on induction or preneoplastic liver lesions in a medium-term liver bioassay in F344 rats: relation to the influence of electromagnetic near field exposure. Cancer Lett. 2000;155:105–114. doi: 10.1016/S0304-3835(00)00415-8. [DOI] [PubMed] [Google Scholar]
  66. Inaba R., Shishido K., Okada A., Moroji T. Effects of whole body microwave exposure on the rat brain contents of biogenic amines. Eur J Appl Physiol Occup Physiol. 1992;65:124–128. doi: 10.1007/BF00705068. [DOI] [PubMed] [Google Scholar]
  67. Ingalls C.E. Sensation of hearing in electromagnetic fields. NY State J Med. 1967;67:2992–2997. [PubMed] [Google Scholar]
  68. Jarupat S., Kawabata A., Tokura H., Borkiewicz A. Effects of the 1900 MHz electromagnetic field emitted from cellular phone on nocturnal melatonin secretion. J Physiol Anthropol. 2003;22:61–63. doi: 10.2114/jpa.22.61. [DOI] [PubMed] [Google Scholar]
  69. Jauchem J.R., Ryan K.L., Frei M.R. Cardiovascular and thermal responses in rats during 94 GHz irradiation. Bioelectromagnetics. 1999;20:264–267. doi: 10.1002/(SICI)1521-186X(1999)20:4<264::AID-BEM7>3.0.CO;2-V. [DOI] [PubMed] [Google Scholar]
  70. Jauchem J.R., Ryan K.L., Frei M.R. Cardiovascular and thermal effects of microwave irradiation at 1 and/or 10 GHz in anesthetized rats. Bioelectromagnetics. 2000;21:159–166. doi: 10.1002/(SICI)1521-186X(200004)21:3<159::AID-BEM2>3.0.CO;2-#. [DOI] [PubMed] [Google Scholar]
  71. Johnson C.C., Guy A.W. Non-ionizing electromagnetic wave effects in biological materials and systems. Proc IEEE. 1972;60:692–718. doi: 10.1109/PROC.1972.8728. [DOI] [Google Scholar]
  72. Kandel E.R., Schwartz J.H., Jessell T.M. Principles of Neural Science. 4th ed. New York: McGraw-Hill; 2000. [Google Scholar]
  73. Kizilay A., Ozturan O., Erdem T., Kelcioglu M.T., Miman M.C. Effects of chronic exposure of electromagnetic fields from mobile phones on hearing in rats. Auris Nasus Larynx. 2003;30:239–245. doi: 10.1016/S0385-8146(03)00054-3. [DOI] [PubMed] [Google Scholar]
  74. Koivisto M., Revonsuo A., Krause C., Haarala C., Sillanmaki L., Laine M., Hamalainen H. Effects of 902 MHz electromagnetic field emitted by cellular telephones on response times in humans. Neuroreport. 2000;11:413–415. doi: 10.1097/00001756-200002070-00038. [DOI] [PubMed] [Google Scholar]
  75. Koivisto M., Krause C.M., Revonsuo A., Laine M., Hamalainen H. The effects of electromagnetic field emitted by GSM phones on working memory. Neuroreport. 2000;11:1641–1643. doi: 10.1097/00001756-200006050-00009. [DOI] [PubMed] [Google Scholar]
  76. Koivisto M., Haarala C., Krause C.M., Revonsuo A., Laine M., Hamalainen H. GSM phone signal does not produce subjective symptoms. Bioelectromagnetics. 2001;22:212–215. doi: 10.1002/bem.41. [DOI] [PubMed] [Google Scholar]
  77. Kojima M., Hata I., Wake K., Watanabe S., Tamanaka Y., Kamimura Y., Taki M., Sasaki K. Influence of anesthesia on ocular effects and temperature of rabbit eyes exposed to microwaves. Bioelectromagnetics. 2004;25:228–233. doi: 10.1002/bem.10195. [DOI] [PubMed] [Google Scholar]
  78. Kolosova L.I., Akoev G.N., Ryabchikova O.V., Avelev V.D. Effect of low-intensity millimeterrange electromagnetic irradiation on the recovery of function in lesioned sciatic nerves in rats. Neurosci Behav Physiol. 1998;28:26–30. doi: 10.1007/BF02461908. [DOI] [PubMed] [Google Scholar]
  79. Krakauer J., Ghez C. Voluntary movement. In: Kandel E., Schwartz J.H., Jessell T.M., editors. ‘Principles of Neural Sciences’. 4th ed. New York: McGraw-Hill; 2000. pp. 756–781. [Google Scholar]
  80. Kramar P., Harris C., Guy A.W. Thermal cataract formation in rabbits. Bioelectromagnetics. 1987;8:397–406. doi: 10.1002/bem.2250080408. [DOI] [PubMed] [Google Scholar]
  81. Kramar P., Harris C., Emery A.F., Guy A.W. Acute microwave irradiation and cataract formation in rabbits and monkeys. J Microw Power. 1978;13:239–249. doi: 10.1080/16070658.1978.11689101. [DOI] [PubMed] [Google Scholar]
  82. Kramar P.O., Harris C., Guy A.W., Emery A.F. The ocular effects of microwaves on hypothermic rabbits: A study of microwave cataractogenic mechanisms. Ann NY Acad Sci. 1975;247:155–165. doi: 10.1111/j.1749-6632.1975.tb35992.x. [DOI] [PubMed] [Google Scholar]
  83. Kramarenko A.V., Tan U. Effects of high-frequency electromagnetic fields on human EEG: a brain mapping study. Int J Neurosci. 2003;113:1007–1019. doi: 10.1080/00207450390220330. [DOI] [PubMed] [Google Scholar]
  84. Krause C.M., Haarala C., Sillanmaki L., Koivisto M., Alanko K., Revonsuo A., Laine M., Hamalainen H. Effects of electromagnetic field emitted by cellular phones on the EEG during an auditory memory tasks: a double blind replication study. Bioelectromagnetics. 2004;25:33–40. doi: 10.1002/bem.10143. [DOI] [PubMed] [Google Scholar]
  85. Krause C.M., Sillanmaki L., Koivisto M., Haggqvist A., Saarela C., Revonsuo A., Laine M., Hamalainen H. Effects of electromagnetic field emitted by cellular phones on the EEG during a memory task. Neuroreport. 2000;20:761–764. doi: 10.1097/00001756-200003200-00021. [DOI] [PubMed] [Google Scholar]
  86. Krause C.M., Sillanmaki L., Koivisto M., Haggqvist A., Saarela C., Revonsuo A., Laine M., Hamalainen H. Effects of electromagnetic fields emitted by cellular phones on the electroencephalogram during a visual working memory task. Int J Radiat Biol. 2000;76:1659–1667. doi: 10.1080/09553000050201154. [DOI] [PubMed] [Google Scholar]
  87. Kues H.A., D’Anna S.A., Osiander R., Green W.R., Monahan J.C. Absence of ocular effects after either single or repeated exposure to 10 mW/cm2 from a 60 GHz CW source. Bioelectromagnetics. 1999;20:463–473. doi: 10.1002/(SICI)1521-186X(199912)20:8<463::AID-BEM1>3.0.CO;2-T. [DOI] [PubMed] [Google Scholar]
  88. Lai H. Interaction of microwaves and a temporally incoherent magnetic field on spatial learning in the rat. Physiol Behav. 2004;82:785–789. doi: 10.1016/j.physbeh.2004.06.020. [DOI] [PubMed] [Google Scholar]
  89. Lai H., Horita A., Guy A.W. Microwave irradiation affects radial-arm maze performance in the rat. Bioelectromagnetics. 1994;15:95–104. doi: 10.1002/bem.2250150202. [DOI] [PubMed] [Google Scholar]
  90. Lai H., Carino M.A., Horita A., Guy A.W. Single vs. repeated microwave exposure: effects on benzodiazepine receptors in the brain of the rat. Bioelectromagnetics. 1992;13:57–66. doi: 10.1002/bem.2250130107. [DOI] [PubMed] [Google Scholar]
  91. Lai H., Carino M.A., Horita A., Guy A.W. Opioid receptor subtypes that mediate a microwave-induced decrease in central cholinergic activity in the rat. Bioelectromagnetics. 1992;13:237–246. doi: 10.1002/bem.2250130308. [DOI] [PubMed] [Google Scholar]
  92. Lai H., Carino M.A., Horita A., Guy A.W. Intraseptalmicroinjection of beta-funaltrexamine blocked a microwave-induced decrease of hippocampal cholinergic activity in the rat. Pharmacol Biochem Behav. 1996;53:613–616. doi: 10.1016/0091-3057(95)02058-6. [DOI] [PubMed] [Google Scholar]
  93. Lai H., Horita A., Chou C.K., Guy A.W. Psychoactive-drug response is affected by acute low-level microwave irradiation. Bioelectromagnetics. 1983;4:205–214. doi: 10.1002/bem.2250040303. [DOI] [PubMed] [Google Scholar]
  94. Lai H., Horita A., Chou C.K., Guy A.W. Low-level microwave irradiations affect central cholinergic activity in the rat. J Neurochem. 1987;48:40–45. doi: 10.1111/j.1471-4159.1987.tb13124.x. [DOI] [PubMed] [Google Scholar]
  95. Lange D.G., Sedmak J. Japanese encephalitis virus (JEV): potentiation of lethality in mice by microwave radiation. Bioelectromagnetics. 1991;12:335–348. doi: 10.1002/bem.2250120603. [DOI] [PubMed] [Google Scholar]
  96. La Regina M., Moros E.G., Pickard W.F., Straube W.L., Baty J., Roti Roti J.L. The effect of chronic exposure to 835.62 MHz FDMA or 847.74 MHz CDMA radiofrequency radiation on the incidence of spontaneous tumors in rats. Radiat Res. 2003;160:143–151. doi: 10.1667/RR3028. [DOI] [PubMed] [Google Scholar]
  97. Lee T.M., Lam P.K., Yee L.T., Chan C.C. The effect of the duration of exposure to the electromagnetic field emitted by mobile phones on human attention. Neuroreport. 2003;14:1361–1364. doi: 10.1097/00001756-200307180-00016. [DOI] [PubMed] [Google Scholar]
  98. Leszczynski D., Joenvaara S., Reivinen J., Kuokka R. Non-thermal activation of the hsp27/p38MARK stress pathway by mobile phone radiation in human endothelial cells: molecular mechanism for cancer-and blood-brain barrier-related effects. Differentiation. 2002;70:120–129. doi: 10.1046/j.1432-0436.2002.700207.x. [DOI] [PubMed] [Google Scholar]
  99. Levallois P., Neutra R., Lee G., Hristova L. Study of self-reported hypersensitivity to electromagnetic fields in California. Environ Health Perspect. 2002;110:619–623. doi: 10.1289/ehp.02110s4619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  100. Linden V., Rolfsen S. Video computer terminals and occupational dermatitis. Scand J Work Environ Health. 1981;7:62–64. doi: 10.5271/sjweh.2571. [DOI] [PubMed] [Google Scholar]
  101. Lonne-Rahm S., Andersson B., Melin L., Schultzberg M., Arnetz B., Berg M. Provocation with stress and electricity of patients with ‘Sensitivity to electricity’. J Occupation Environ Med. 2000;42:512–516. doi: 10.1097/00043764-200005000-00009. [DOI] [PubMed] [Google Scholar]
  102. Lotz W.G., Michaelson S.M. Temperature and corticosterone relationships in microwaveexposed rats. J Appl Physiol. 1978;44:438–445. doi: 10.1152/jappl.1978.44.3.438. [DOI] [PubMed] [Google Scholar]
  103. Lotz W.G., Michaelson S.M. Effects of hypophysectomy and dexamethasone on rat adrenal response to microwaves. J Appl Physiol. 1979;47:1284–1288. doi: 10.1152/jappl.1979.47.6.1284. [DOI] [PubMed] [Google Scholar]
  104. Lu S.T., Lebda N.A., Pettit S., Michaelson S.M. The relationship of decreased serum thyrotropin and increased colonic temperature in rats exposed to microwaves. Radiat Res. 1985;104:365–386. doi: 10.2307/3576597. [DOI] [PubMed] [Google Scholar]
  105. Lu S.T., Mathur S.P., Stuck B., Zaick H., D’Andrea J.A., Ziriax J.M., Merrit J.H., Lutty G., McLeod D.S., Johnson M. Effects of high peak power microwaves on the retina of the rhesus monkey. Bioelectromagnetics. 2000;21:439–454. doi: 10.1002/1521-186X(200009)21:6<439::AID-BEM4>3.0.CO;2-9. [DOI] [PubMed] [Google Scholar]
  106. Lyskov E., Sandstrom M., Mild K.H. Neurophysiological study of patients with perceived ‘electrical hypersensitivity’. Int J Psychophysiol. 2001;42:233–241. doi: 10.1016/S0167-8760(01)00141-6. [DOI] [PubMed] [Google Scholar]
  107. Lyskov E., Sandstrom M., Mild K.H. Provocation study of persons with perceived electrical hypersensitivity and controls using magnetic field exposure and recording of electrophysiological characteristics. Bioelectromagnetics. 2001;22:457–462. doi: 10.1002/bem.73. [DOI] [PubMed] [Google Scholar]
  108. McAfee R.D., Ortiz-Lugo R., Bishop R., Gordon R. Absence of deleterious effects of chronic microwave radiation on the eyes of rhesus monkeys. Ophthalmology. 1983;90:1243–1245. doi: 10.1016/s0161-6420(83)34402-x. [DOI] [PubMed] [Google Scholar]
  109. McAfee R.D., Longacre A., Jr, Bishop R.R., Elder S.T., May J.G., Holland M.G., Gordon R. Absence of ocular pathology after repeated exposure of unanesthetized monkeys to 9.3 GHz microwaves. J Microw Power. 1979;14:41–44. doi: 10.1080/16070658.1979.11689126. [DOI] [PubMed] [Google Scholar]
  110. McQuade JS, Merritt JH, Rahimi O, et al. (2005) Effects of 915 MHz exposure on the integrity of the blood-brain barrier. Proc Bioelectromagnetics Soc 15-3.
  111. McRee D.I., Wachtel H. Elimination of microwave effects on the vitality of nerves after blockage of active transport. Radiat Res. 1986;108:260–268. doi: 10.2307/3576914. [DOI] [PubMed] [Google Scholar]
  112. Maier R., Greter S.E., Maier N. Effects of pulsed electromagnetic fields on cognitive processes-a pilot study on pulsed field interference with cognitive regeneration. Acta Neurol Scand. 2004;110:46–52. doi: 10.1111/j.1600-0404.2004.00260.x. [DOI] [PubMed] [Google Scholar]
  113. Mann K., Roschke J., Connemann B., Beta H. No effects of pulsed high-frequency electromagnetic fields on heart rate variability during human sleep. Neuropsychobiology. 1998;38:251–256. doi: 10.1159/000026549. [DOI] [PubMed] [Google Scholar]
  114. Mann K., Wagner P., Brun G., Hassan F., Hiemke C., Roschke J. Effects of pulsed high-frequency electromagnetic fields on the neuroendocrine system. Neuroendocrinology. 1998;67:139–144. doi: 10.1159/000054308. [DOI] [PubMed] [Google Scholar]
  115. Markowitz S.B. Poisoning of an urban family due to misapplication of household organophosphate and carbamate pesticides. Clin Toxicol. 1992;30:295–303. doi: 10.3109/15563659209038640. [DOI] [PubMed] [Google Scholar]
  116. Masuda H, Ushiyama A, Hirota S et al. (2005) Real-time measurement of brain microcirculation during RF-EMF exposure using an “8”-shaped loop antenna. Proc Bioelectromagnetics Soc 15-2.
  117. Mausset A.L., de Seze R., Montpeyroux F., Privat A. Effects of radiofrequency exposure on the GABAergic system in the rat cerebellum: clues from semi-quantitative immunochemistry. Brain Res. 2001;912:33–46. doi: 10.1016/S0006-8993(01)02599-9. [DOI] [PubMed] [Google Scholar]
  118. Neilly J.P., Lin J.C. Interaction of ethanol and microwaves on blood-brain barrier of rats. Bioelectromagnetics. 1986;7:405–414. doi: 10.1002/bem.2250070408. [DOI] [PubMed] [Google Scholar]
  119. Ohmoto Y., Fujisawa H., Ishikawa T., Koizumi H., Matsuda T., Ito H. Sequential changes in cerebral blood flow, early neuropathological consequences and blood-brain barrier disruption following radiofrequency-induced localized hyperthermia in the rat. Int J Hyperthermia. 1996;12:321–334. doi: 10.3109/02656739609022521. [DOI] [PubMed] [Google Scholar]
  120. Ozturan O., Erdmem T., Mimam M.C., Kalcioglu M.T., Oncel S. Effects of the electromagnetic field of mobile telephones on hearing. Acta Otolaryngol. 2002;122:289–293. doi: 10.1080/000164802753648178. [DOI] [PubMed] [Google Scholar]
  121. Pakhomov A.G., Prol H.K., Mathur S.P., Akyel Y., Campbell C.B. Search for frequencyspecific effects of millimeter-wave radiation on isolated nerve function. Bioelectromagnetics. 1997;18:324–334. doi: 10.1002/(SICI)1521-186X(1997)18:4<324::AID-BEM5>3.0.CO;2-4. [DOI] [PubMed] [Google Scholar]
  122. Pakhomov A.G., Doyle J., Stuck B.E., Murphy M.R. Effects of high power microwave pulses on synaptic transmission and long term potentiation in hippocampus. Bioelectromagnetics. 2003;24:174–181. doi: 10.1002/bem.10079. [DOI] [PubMed] [Google Scholar]
  123. Radon K., Parera D., Rose D.M., Jung D., Vollrath L. No effects of pulsed radio frequency electromagnetic fields on melatonin, cortisol, and selected markers of the immune system in man. Bioelectromagnetics. 2001;22:280–287. doi: 10.1002/bem.51. [DOI] [PubMed] [Google Scholar]
  124. Rogers W.R., Merritt J.H., Comeaux J.A., Kuhnel C.T., Moreland D.F., Teltschik D.G., Lucas J.H., Murphy M.R. Strength-duration curve for an electrically excitable tissue extended down to near 1 nanosecond. IEEE Trans Plas Sci. 2004;32:1587–1599. doi: 10.1109/TPS.2004.831758. [DOI] [Google Scholar]
  125. Saito K., Saiga T., Suzuki K. Reversible irritative effect of acute 2.45 GHz microwave exposure on rabbit eyes — a preliminary evaluation. J Toxicol Sci. 1998;23:197–203. doi: 10.2131/jts.23.3_197. [DOI] [PubMed] [Google Scholar]
  126. Salford L.G., Brun A.E., Sturesson K., Eberhardt J.L., Persson B.R. Permeability of the blood-brain barrier induced by 915 MHz electromagnetic radiation, continuous wave and modulated at 8, 16, 50 and 200Hz. Microscopic Res Technol. 1994;27:535–542. doi: 10.1002/jemt.1070270608. [DOI] [PubMed] [Google Scholar]
  127. Salford L.G., Brun A.E., Eberhardt J.L., Malmgren L., Persson B.R. Nerve cell damage in mammalian brain after exposure to microwaves from GSM mobile phones. Environ Health Perspect. 2003;111:881–883. doi: 10.1289/ehp.6039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  128. Sandstrom M., Lyskov E., Berglund A., Medevedev S., Mild K.H. Neurophysiological effects of flickering light in patients with perceived electrical hypersensitivity. J Ocupat Environ Med. 1997;39:15–22. doi: 10.1097/00043764-199701000-00006. [DOI] [PubMed] [Google Scholar]
  129. Santini R., Messagier R., Claustrat B., Fillion-Robin M., Youbicier-Simo B.J. Video screen exposure and 6-sulfatoxymelatonin urinary excretion in women. Pathol Biol. 2003;51:143–146. doi: 10.1016/S0369-8114(03)00042-7. [DOI] [PubMed] [Google Scholar]
  130. Saunders RD, Kowalczuk CI, Sienkiewicz ZJ (1991) Biological Effects of Exposure to Nonionizing Electromagnetic Fields and Radiation: III. Radiofrequency and Microwave Radiation. Chilton, NRPB-R240, London HMSO.
  131. Seaman R.L., Levovitz R.M. Thresholds of cat cochlear nucleus neurons to microwave pulses. Bioelectromagnetics. 1989;10:147–160. doi: 10.1002/bem.2250100204. [DOI] [PubMed] [Google Scholar]
  132. Shellock F.G., Crues J.V. Corneal temperature changes induced by high-field-strength MR imaging with a head coil. Radiology. 1988;167:809–811. doi: 10.1148/radiology.167.3.3363146. [DOI] [PubMed] [Google Scholar]
  133. Shellock F.G., Crues J.V. Temperature changes caused by MR imaging of the brain with a head coil. AJNR Am J Neuroradiol. 1988;9:287–291. [PMC free article] [PubMed] [Google Scholar]
  134. Shellock F.G., Schatz C.J. Increased corneal temperature caused by MR imaging of the eye with a dedicated local coil. Radiology. 1992;185:697–699. doi: 10.1148/radiology.185.3.1438747. [DOI] [PubMed] [Google Scholar]
  135. Shellock F.G., Schaefer D.J., Kanal E. Physiologic responses to anMRimaging procedure performed at a specific absorption rate of 6.0 W/kg. Radiology. 1994;192:865–868. doi: 10.1148/radiology.192.3.8058962. [DOI] [PubMed] [Google Scholar]
  136. Shirai T, Kuribayashi M, Wang, J, Fujiwara O et al. (2005) Lack of effects of 1439 MHz electromagnetic near field exposure on the blood-brain barrier in immature and young rats. Proc Bioelectromagnetics Soc 15-4. [DOI] [PubMed]
  137. Sienkiewicz Z.J., Blackwell R.P., Haylock R.G., Saunders R.D., Cobb B.L. Low-level exposure to pulsed 900 MHz microwave radiation does not cause deficits in the performance of a spatial learning task in mice. Bioelectromagnetics. 2000;21:151–158. doi: 10.1002/(SICI)1521-186X(200004)21:3<151::AID-BEM1>3.0.CO;2-Q. [DOI] [PubMed] [Google Scholar]
  138. Spiers D.E., Adair E.R., Baummer S.C. Acute thermoregulatory responses of the immature rat to warming by low-level 2,450 MHz microwave radiation. Biol Neonate. 1989;56:48–56. doi: 10.1159/000242986. [DOI] [PubMed] [Google Scholar]
  139. Stark K.D., Krebs T., Altpeter E., Manz B., Griot C., Abelin T. Absence of chronic effect of exposure to short-wave radio broadcast signals on salivary melatonin concentrations in dairy cattle. J Pineal Res. 1997;22:171–176. doi: 10.1111/j.1600-079x.1997.tb00320.x. [DOI] [PubMed] [Google Scholar]
  140. Szmigielski S., Bortkiewicz A., Gadzicka E., Zmyslony M., Kubacki R. Alteration of diurnal rhythms of blood pressure and heart rate to workers exposed to radiofrequency electromagnetic fields. Blood Press Monit. 1998;3:323–330. [PubMed] [Google Scholar]
  141. Tahvanainen K., Nino J., Halonen P., Kuusela T., Laitinen T., Lansimie E., Hartikainen J., Hietanen M., Lindholm H. Cellular phone use does not actually affect blood pressure or heart rate of humans. Bioelectromagnetics. 2004;25:73–83. doi: 10.1002/bem.10165. [DOI] [PubMed] [Google Scholar]
  142. Takashima S., Onaral B., Schwan H.P. Effects of modulated RF energy on the EEG of mammalian brains. Radiat Environ Biophys. 1979;16:15–27. doi: 10.1007/BF01326893. [DOI] [PubMed] [Google Scholar]
  143. Tattersall J.E., Scott I.R., Wood S.J., Nettell J.J., Bevir M.K., Wang Z., Somasiri N.P., Chen X. Effects of low intensity radiofrequency electromagnetic fields on electrical activity in rat hippocampal slices. Brain Res. 2001;904:43–53. doi: 10.1016/S0006-8993(01)02434-9. [DOI] [PubMed] [Google Scholar]
  144. Testylier G., Tonduli L., Malabiau R., Debouzy J.C. Effects of exposure to low level radiofrequency fields on acetylcholine release in hippocampus of freely moving rats. Bioelectromagnetics. 2002;23:249–255. doi: 10.1002/bem.10008. [DOI] [PubMed] [Google Scholar]
  145. Thuroczy G., Kubinyi G., Bodo M., Bakos J., Szabo L.D. Simultaneous response of brain electrical activity (EEG) and cerebral circulation (REG) to microwave exposure in rats. Rev Environ Health. 1994;10:135–148. doi: 10.1515/reveh.1994.10.2.135. [DOI] [PubMed] [Google Scholar]
  146. Tsurita G., Nagawa H., Ueno S., Watanabe S., Taki M. Biological and morphological effects on the brain after exposure of rats to a 1439 MHz TDMA. Bioelectromagnetics. 2000;21:364–371. doi: 10.1002/1521-186X(200007)21:5<364::AID-BEM5>3.0.CO;2-Q. [DOI] [PubMed] [Google Scholar]
  147. Vollrath L., Spessert R., Kratzsch T., Keiner M., Hollmann H. No short-term effects of high-frequency electromagnetic fields on the mammalian pineal gland. Bioelectromagnetics. 1997;18:376–387. doi: 10.1002/(SICI)1521-186X(1997)18:5<376::AID-BEM5>3.0.CO;2-#. [DOI] [PubMed] [Google Scholar]
  148. Vorobyov V.V., Galchenko A.A., Kukushkin N.I., Akoev I.G. Effects of weak microwave fields amplitude modulated at ELF on EEG of symmetric brain areas in rats. Bioelectromagnetics. 1997;18:293–298. doi: 10.1002/(SICI)1521-186X(1997)18:4<293::AID-BEM1>3.0.CO;2-Y. [DOI] [PubMed] [Google Scholar]
  149. Wagner P., Roschke J., Mann K., Fell J., Hiller W., Frank C., Grozinger M. Human sleep EEG under the influence of pulsed radio frequency electromagnetic fields. Results from polysomnographies using submaximal high power flux density. Neuropsychobiology. 2000;42:207–212. doi: 10.1159/000026695. [DOI] [PubMed] [Google Scholar]
  150. Walters T.J., Ryan K.L., Nelson D.A., Blick D.W., Mason P.A. Effects of blood flow on skin heating induced by millimeter wave irradiation in humans. Health Phys. 2004;86:115–120. doi: 10.1097/00004032-200402000-00001. [DOI] [PubMed] [Google Scholar]
  151. Wang B., Lai H. Acute exposure to pulsed 2450-MHz microwaves affects water-maze performance of rats. Bioelectromagnetics. 2000;21:52–56. doi: 10.1002/(SICI)1521-186X(200001)21:1<52::AID-BEM8>3.0.CO;2-6. [DOI] [PubMed] [Google Scholar]
  152. Yamaguchi H., Tsurita G., Ueno S., Watanabe S., Wake K., Taki M., Nagawa H. 1439 MHz pulsed TDMA fields affect performance of rats in a T-maze task only when body temperature is elevated. Bioelectromagnetics. 2003;24:223–230. doi: 10.1002/bem.10099. [DOI] [PubMed] [Google Scholar]
  153. Yamaura I., Matsumoto G. Dynamic characteristics of crayfish stretch receptor for microwave radiation. Med Electron Bioengin. 1972;10:231–238. [PubMed] [Google Scholar]
  154. Yamaura I., Matsumoto G. Formulation and simulation of the neuron response to temperature stimulation. Med Electron Bioengin. 1973;11:395–403. [PubMed] [Google Scholar]

Articles from Electromagnetics in Biology are provided here courtesy of Nature Publishing Group

RESOURCES