Skip to main content
PLOS Neglected Tropical Diseases logoLink to PLOS Neglected Tropical Diseases
. 2021 Dec 28;15(12):e0009996. doi: 10.1371/journal.pntd.0009996

Prevalence and spatial distribution characteristics of human echinococcosis in China

Li-Ying Wang 1,2,3,4, Min Qin 1, Ze-Hang Liu 1, Wei-Ping Wu 1, Ning Xiao 1, Xiao-Nong Zhou 1,*, Sylvie Manguin 4, Laurent Gavotte 2, Roger Frutos 3
Editor: David Joseph Diemert5
PMCID: PMC8789093  PMID: 34962928

Abstract

Background

Echinococcosis is a zoonotic parasitic disease caused by larval stages of cestodes belonging to the genus Echinococcus. The infection affects people’s health and safety as well as agropastoral sector. In China, human echinococcosis is a major public health burden, especially in western China. Echinococcosis affects people health as well as agricultural and pastoral economy. Therefore, it is important to understand the prevalence status and spatial distribution of human echinococcosis in order to advance our knowledge of basic information for prevention and control measures reinforcement.

Methods

Report data on echinococcosis were collected in 370 counties in China in 2018 and were used to assess prevalence and spatial distribution. SPSS 21.0 was used to obtain the prevalence rate for CE and AE. For statistical analyses and mapping, all data were processed using SPSS 21.0 and ArcGIS 10.4, respectively. Chi-square test and Exact probability method were used to assess spatial autocorrelation and spatial clustering.

Results

A total of 47,278 cases of echinococcosis were recorded in 2018 in 370 endemic counties in China. The prevalence rate of human echinococcosis was 10.57 per 10,000. Analysis of the disease prevalence showed obvious spatial positive autocorrelation in globle spatial autocorrelation with two aggregation modes in local spatial autocorrelation, namely high-high and low-high aggregation areas. The high-high gathering areas were mainly concentrated in northern Tibet, western Qinghai, and Ganzi in the Tibetan Autonomous Region and in Sichuan. The low-high clusters were concentrated in Gamba, Kangma and Yadong counties of Tibet. In addition, spatial scanning analysis revealed two spatial clusters. One type of spatial clusters included 71 counties in Tibet Autonomous Region, 22 counties in Qinghai, 11 counties in Sichuan, three counties in Xinjiang Uygur Autonomous Region, two counties in Yunnan, and one county in Gansu. In the second category, six types of spatial clusters were observed in the counties of Xinjiang Uygur Autonomous Region, and the Qinghai, Gansu, and Sichuan Provinces.

Conclusion

This study showed a serious prevalence of human echinococcosis with obvious spatial aggregation of the disease prevalence in China. The Qinghai-Tibet Plateau is the "hot spot" area of human echinococcosis in China. Findings from this study indicate that there is an urgent need of joint strategies to strengthen efforts for the prevention and control of echinococcosis in China, especially in the Qinghai-Tibet Plateau.

Author summary

Echinococcosis is a zoonotic parasitic disease caused by larval stages of cestodes belonging to the genus Echinococcus. In China, human echinococcosis is a major public health burden, especially in western China. Therefore, it is important to understand the prevalence status and spatial distribution of human echinococcosis in order to provide basic information for prevention and control measures reinforcement. To describe the distribution and analyze the prevalence and spatial distribution characteristics of human echinococcosis in China, report data of echinococcosis were collected in 370 counties in 2018. For the year 2018, there were 47,278 cases of echinococcosis recorded in 370 endemic counties in China. Analysis of the disease prevalence showed obvious spatial positive autocorrelation in global spatial autocorrelation with two aggregation modes in local spatial autocorrelation, namely high-high and low-high aggregation areas. The high-high gathering areas were mainly concentrated in northern Tibet, western Qinghai, and Ganzi in the Tibetan Autonomous Region and in Sichuan. This study showed obvious spatial aggregation of human echinococcosis prevalence in China. The Qinghai-Tibet Plateau is the "hot spot" area of human echinococcosis in China. Such findings indicate that here is an urgent need of joint strategies to strengthen efforts for the prevention and control of echinococcosis in China, especially in the Qinghai-Tibet Plateau.

1. Introduction

Echinococcosis is a zoonotic parasitic disease caused by larval stages of cestodes belonging to the genus Echinococcus and present worldwide. The life-cycle of the echinococcosis parasites involves carnivores as definitive hosts which harbour the adult egg-producing stage in the intestine and intermediate host animals in which the infective metacestode stage develops after peroral infection with eggs. In China, two forms of human echinococcosis are found: cystic echinococcosis (CE) caused by the larvae of Echinococcus granulosus and alveolar echinococcosis (AE) caused by the larvae of Echinococcus multilocularis [1].

China reported the highest prevalence rate for human echinococcosis in the world, with a disease burden estimated at 322,400 disability-adjusted life years (DALYs) [2]. In 2017, the Chinese DALYs of echinococcosis has been estimated at 293,400 years lost to disability (YLD) and 28,800 years of life lost (YLL) [2]. In western China, about nine million people in six provinces are under risk of AE [3]. Both CE and AE are major public health issues worldwide [4]. They heavily impair the patients, especially AE, with a mortality rate of about 90% in the past ten years if the patients untreated or treated inadequately [5]. A national survey of echinococcosis infection conducted conducted from 2012 to 2016 showed that 368 out of 413 counties were endemic. An overall detection rate of 0.46% was found over 364 endemic counties from nine provinces and autonomous regions including the Autonomous Region of Tibet (usually referred to as “Tibet”) Sichuan, Qinghai, Xinjiang Uygur Autonomous Region, Gansu, Ningxia, Inner Mongolia, Yunnan, and Shaanxi. Tibet dislayed the highest scores with a detection rate of 1.71% and an estimated prevalence of 1.66% [6]. Currently, 370 counties are endemic after detection of the disease in Dongxiang County, Gansu Province and in Ulagai Management District, Inner Mongolia in 2017. Western China is known as the world highest endemic area for both CE and AE [7], making echinococcosis a public health priority in this region [4,8].

However, this burden is not well assessed yet in terms of accurate spatial distribution, patterns, and clusters which are of capital importance in public health for effective disease control strategies implementation. Spatial analyses, and in particular assessment of clusters and spatial aggregation, are therefore research priorities [912]. This work was conducted in order to prioritize and optimize control actions against human echinococcosis, with an overall objective to understand the prevalence, spatial distribution and dynamic of echinococcosis within the Chinese population by the end of 2018.

2. Methods

2.1. Ethics statement

This survey consisted of the collection of report data of echinococcosis cases in 370 counties in 2018 was approved by the Ethics Review Committee of the National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (No. 20160810). All participants were informed about the content and purpose of the investigation and examination, complications, consequences and benefits before data collection. The consenters were required to sign the "informed consent form". These activities are all within the scope of the national project for echinococcosis control.

2.2. Source of data

Demographic data relating to the population exposed to human echinococcosis in the 370 endemic counties were obtained from the population survey released by the Bureau of Statistics. The list of clinically diagnosed and confirmed cases of human echinococcosis comes from the official national annual report on echinococcosis. Data were statistically analyzed by county. Data from the Xinjiang Production and Construction Corps were considered at the division level. However, no spatial data were available. Therefore, these data were associated with the corresponding counties from the Xinjiang Autonomous Region in order to perform spatial autocorrelation and aggregation analyses.

2.3. Classification of prevalence

In order to distinguish the prevalence of newly diagnosed cases from previously existing cases of human echinococcosis in the 370 endemic counties of China, a descriptive statistical analysis was performed using the SPSS 21.0 software package (IBM, Armonk, USA). A statistical classification was also carried out by type of case. Prevalence of human echinococcosis was classified according to the classification standards for endemic counties as reported in the 2019 edition of technical guidelines for echinococcosis control [13]. Considering the differences between CE and AE in transmission cycle, preventive strategies, control measures, clinical manifestations and treatment regimens, we described and analyzed the characteristics of CE and AE independently.

2.4. Spatial autocorrelation

Spatial autocorrelation analyses were condueted to measure the degree of aggregation of spatial unit attribute values and to determine whether a variable is spatially correlated and relevant [14]. Global and local spatial autocorrelations were performed. Global spatial autocorrelation is meant to assess the patterns of spatial aggregation over a whole area. The Moran’s I index was used to express the global spatial autocorrelation. The value of the Moran’s I index ranges from -1 to 1. A null value indicates a lack of correlation within the area considered. A positive value indicates a positive spatial correlation of the index whereas a negative value indicates a negative spatial correlation. The higher the absolute value, the stronger the correlation. However, global correlation analysis ignores the existence of spatial heterogeneity, and can only be used to measure the overall correlation instead of the spatial distribution within a given area. The local spatial autocorrelation was thus calculated to evaluate the correlation between each spatial unit and surrounding areas, effectively expressing the heterogeneity and homogeneity of data. An aggregation pattern can be identified in the combination of the Moran scatter plot and the local Moran’s I test. The local spatial autocorrelation can be divided into four categories: high-high, low-low, high-low, and low-high. High-high and low-low patterns denote a strong positive spatial correlation of the observations whereas high-low and low-high patterns denote a strong negative spatial correlation [15]. The Moran’s I values of global and local spatial autocorrelations were calculated using the spatial statistical analysis module of ArcGIS version 10.4 (Esri Inc., Redlands, CA, USA), with local indicators of spatial association (LISA) cluster map for visualization.

2.5. Spatial scan clustering

The spatial scan clustering is a method for analyzing data based on a moving scanning window. This analysis can directly show the distribution of diseases and model the trend of diseases expansion [10,16,17]. Areas of high incidence were scanned using a moving circular window dynamically varying in size. A retrospective spatial scan analysis was performed using SaTScan V9.5 (Management Information Services, Maryland, USA). The number of Monte Carlo randomization tests was 999 and the maximum spatial scan area was set to 25% of the total population. Log-likelihood ratio (LLR) under the dynamically varying window was calculated to determine potential clusters. Finally, the window with the highest LLR value was defined as the most likely cluster. Other clusters displaying statistically significant LLRs were defined as secondary clusters. Results were visualized using Arcgis10.4.

3. Results

3.1. Prevalence of human echinococcosis

In 2018, a total number of 47,278 cases of human echinococcosis were recorded in the 370 epidemic counties. The endangered population was estimated at 44,730,268 with a prevalence rate of 10.57 per 10,000 (Table 1). Out of these, 33,578 (71.02%) were CE cases and 10,398 (21.99%) were AE cases. Mixed CE and AE infections represented 307 cases (0.65%) while 2,995 cases (6.34%) could not be clearly classified (either CE or AE). This lack of specific identification in the records was due to i) the absence of notification, ii) the absence of clear description of the cystic or vesicular status, and iii) the absence of B-ultrasound pictures making it impossible to screen and reclassify (Table 1). Local cases of CE were found in each of the 370 endemic counties, with 12,641,352 people at risk and a prevalence rate of 7.58 per 10,000. A total of 115 counties have been previously identified as AE epidemic areas in the 2012–2016 national echinococcosis survey. We found in this study a prevalence rate of 8.47 per 10,000. Notably, the prevalence of AE was higher than that of CE (Table 1). This did not include the unclassified cases leading thus to a slightly underestimated prevalence. From these, 3,808 new cases were reported in 2018, accounting for 8.05% of the total cases. The annual prevalence of human echinococcosis in 2018 was 0.85 per 10,000 (Table 1). The annual prevalence rate of CE was 0.73 per 10,000, and that of AE was 0.26 per 10,000.

Table 1. Types and prevalence status of human echinococcosis in China, 2018.

Province/Autonomous region Number of endemic counties for monoinfection Population of endemic areas Number of endemic counties for mixed CE and AE Population of endemic areas for mixed CE and AE All cases Prevalence rate (1/10000) Prevalence rate of CE (1/10000) Prevalence rate of AE (1/10000) Cases found in 2018
Total cases CE AE Mixed CE and AE cases Unclassified cases Numberof new cases Incidence rate (1/10000) CE AE Mixed CE and AE cases Unclassified cases
Inner Mongolia 26 1800838 0 0 124 123 0 0 1 0.69 0.68 / 31 0.17 30 0 0 1
Sichuan 35 1357646 11 641292 12291 5993 5314 96 888 90.53 44.85 84.36 318 2.34 215 90 8 5
Yunnan 24 1541610 0 0 37 36 0 0 1 0.24 0.23 / 10 0.06 9 0 0 1
Tibet 74 2704690 47 1832317 14983 13854 668 53 408 55.4 51.42 3.93 1048 3.87 966 48 22 12
Shaanxi 2 430615 0 0 77 77 0 0 0 1.79 1.79 / 2 0.05 2 0 0 0
Gansu 57 11288497 10 2594440 1749 1695 54 0 0 1.55 1.50 0.21 300 0.27 299 1 0 0
Qinghai 39 4882008 14 782728 12513 6629 4116 134 1634 25.63 13.85 54.30 649 1.33 346 124 5 174
Ningxia 19 3513401 3 1055701 1903 1711 176 16 0 5.42 4.92 1.82 119 0.34 111 7 1 0
Xinjiang 81 16031078 30 5734874 3463 3332 65 8 58 2.16 2.08 0.13 1220 0.76 1147 15 4 54
The Xinjiang Production and Construction Crops 13 1179885 0 0 138 128 5 0 5 1.17 1.08 / 111 0.94 101 5 0 5
Total 370 44730268 115 12641352 47278 33578 10398 307 2995 10.57 7.58 8.47 3808 0.85 3226 290 40 252

3.2. Classification of the prevalence of human echinococcosis in China

In this study, we found that the prevalence varied significantly among provinces and even between endemic counties within the same province. In the National Echinococcosis Prevention and Control technical plan, the epidemic degree was classified according to the prevalence rate on human and the infection rate on dogs. Here, we only addressed the classification criteria of human prevalence. Class I epidemic counties correspond to prevalence rates higher than or equal to 100/10,000; Class II epidemic counties display prevalence rates comprised between 10/10,000 and 100/10,000; Class III epidemic counties are characterized by prevalence rates ranging between 0 and 10/10,000; Class IV corresponds to counties free of human echinococcosis cases. We calculated and classified the prevalence of echinococcosis for each county. Twenty nine class I epidemic counties (7.84%) (Table 2) were recorded. The highest prevalence was found in the counties of Shiqu (642.07/10,000), Gadee (461.04/10,000), and Tarlag (424.84/10,000) (Fig 1). A total of 96 type II counties (25.95%) and 210 type III counties (56.76%). A total of were recorded while 35 counties were classified as class IV with no cases of human echinococcosis reported in 2018. (Table 2). CE and AE were analyzed and classified independently. We found 21 class I counties for CE, mainly distributed in the central region of the Qinghai Tibet Plateau, including 14 counties in Tibet Autonomous Region, three counties in Sichuan (Shiqu, Seertar and Litang), and four counties in Qinghai (Tarlag, Jigzhi, Chindu and Gadee) (Fig 2). The counties with the highest incidence for CE were Gadee (301.1 / 10,000) in Qinghai, Zhongba county (255.1/ 10,000) and Baqeen (246.6/ 10,000) in Tibet, and Shiqu County (236.0 / 10,000) in Sichuan (Fig 2). Ninety eight Class II counties in seven provinces were recorded for CE (Fig 2). An additional 44 epidemic counties for CE displayed the conditions for transmission but with no local CE patients (Table 3 and Fig 2). With respect to AE, 6 class I counties were recorded, i.e. Shiqu (402.2 / 10,000) and Seertar (176.0 / 10,000) in Sichuan, Tarlag (291.3/ 10,000), Baima (227.9/ 10,000), Jigzhi (202.2/ 10,000) and Chido (161.0/10,000) in Qinghai (Fig 3). The Class II category comprised 10 counties (8.7%), including: Baiyu, Zamtang, Deegee and Garzee in Sichuan, Baqeen, Xainza and Bangoin in Tibet, Madoi, Gadee and Maqeen in Qinghai (Fig 3). Forty six counties from 6 provinces were classified as Class III (40.0%). A total of 53 counties were categorized as class IV (46.1%) (Table 4 and Fig 3).

Table 2. Classification of the prevalence rate for human echinococcosis in China, 2018.

Province/Autonomous region Total number of. counties P ≥ 100/10000 10/10000 ≤ P < 100/10000 0 < P < 10/10000 P = 0
Number of counties constituent ratio (%) Number of counties Constituent ratio (%) Number of counties Constituent ratio (%) Nunmber of counties Constituent ratio (%)
Inner Mongolia 26 0 0 1 3.85 12 46.15 13 50
Sichuan 35 6 17.14 14 40 15 42.86 0 0
Yunnan 24 0 0 0 0 11 45.83 13 54.17
Tibet 74 16 21.62 51 68.92 7 9.46 0 0
Shaanxi 2 0 0 0 0 1 50 1 50
Gansu 57 0 0 6 10.53 47 82.46 4 7.02
Qinghai 39 7 17.95 15 38.46 17 43.59 0 0
Ningxia 19 0 0 3 15.79 16 84.21 0 0
Xinjiang 81 0 0 6 7.41 72 88.89 3 3.7
Xinjiang Production and Construction Crops 13 0 0 0 0 12 92.31 1 7.69
Total 370 29 7.84 96 25.95 210 56.76 35 9.46
P: prevalence rate

Fig 1. The spatial distribution of human echinococcosis in China in 2018.

Fig 1

The base layer is from https://www.webmap.cn/mapDataAction.do?method=forw&resType=5&storeId=2&storeName=%E5%9B%BD%E5%AE%B6%E5%9F%BA%E7%A1%80%E5%9C%B0%E7%90%86%E4%BF%A1%E6%81%AF%E4%B8%AD%E5%BF%83&fileId=BA420C422A254198BAA5ABAB9CAAFBC1 with credit to National Catalogue Service For Geographic Information.

Fig 2. The spatial distribution of human CE in China in 2018.

Fig 2

The base layer is from https://www.webmap.cn/mapDataAction.do?method=forw&resType=5&storeId=2&storeName=%E5%9B%BD%E5%AE%B6%E5%9F%BA%E7%A1%80%E5%9C%B0%E7%90%86%E4%BF%A1%E6%81%AF%E4%B8%AD%E5%BF%83&fileId=BA420C422A254198BAA5ABAB9CAAFBC1 with credit to National Catalogue Service For Geographic Information.

Table 3. Classification of the prevalence rate for human CE in China, 2018.

Province/Autonomous region Total number of. counties P ≥ 100/10000 10/10000 ≤ P < 100/10000 0 < P < 10/10000 P = 0
Number of counties constituent ratio (%) Number of counties Constituent ratio (%) Number of counties Constituent ratio (%) Nunmber of counties Constituent ratio (%)
Inner Mongolia 26 0 0.0 1 3.8 11 42.3 14 53.8
Sichuan 35 3 8.6 14 40.0 17 48.6 1 2.9
Yunnan 24 0 0.0 0 0.0 8 33.3 16 66.7
Tibet 74 14 18.9 52 70.3 7 9.5 1 1.4
Shaanxi 2 0 0.0 0 0.0 1 50.0 1 50.0
Gansu 57 0 0.0 5 8.8 47 82.5 5 8.8
Qinghai 39 4 10.3 18 46.2 17 43.6 0 0.0
Ningxia 19 0 0.0 2 10.5 17 89.5 0 0.0
Xinjiang 81 0 0.0 6 7.4 71 87.7 4 4.9
Xinjiang Production and Construction Crops 13 0 0.0 0 0.0 11 84.6 2 15.4
Total 370 21 5.7 98 26.5 207 55.9 44 11.9

P: prevalence rate

Fig 3. The spatial distribution of human AE in China in 2018.

Fig 3

The base layer is from https://www.webmap.cn/mapDataAction.do?method=forw&resType=5&storeId=2&storeName=%E5%9B%BD%E5%AE%B6%E5%9F%BA%E7%A1%80%E5%9C%B0%E7%90%86%E4%BF%A1%E6%81%AF%E4%B8%AD%E5%BF%83&fileId=BA420C422A254198BAA5ABAB9CAAFBC1 with credit to National Catalogue Service For Geographic Information.

Table 4. Classification of the prevalence rate for human AE in China, 2018.

Province/Autonomous region Total number of. counties P ≥ 100/10000 10/10000 ≤ P < 100/10000 0 < P < 10/10000 P = 0
Number of counties constituent ratio (%) Number of counties Constituent ratio (%) Number of counties Constituent ratio (%) Nunmber of counties Constituent ratio (%)
Inner Mongolia 0 0 0 0 0 0 0 0 0
Sichuan 11 2 18.2 4 36.4 5 45.5 0 0
Yunnan 0 0 0 0 0 0 0 0 0
Tibet 47 0 0 3 6.4 17 36.2 27 57.4
Shaanxi 0 0 0 0 0 0 0 0 0
Gansu 10 0 0 0 0 2 20 8 80
Qinghai 14 4 28.6 3 21.4 6 42.9 1 7.1
Ningxia 3 0 0 0 0 1 33.3 2 66.7
Xinjiang 30 0 0 0 0 15 50 15 50
Xinjiang Production and Construction Crops 0 0 0 0 0 0 0 0 0
Total 115 6 5.2 10 8.7 46 40 53 46.1

P: prevalence rate

3.3. Spatial distribution of human echinococcosis in China

The global spatial autocorrelation analysis was performed on the prevalence for human echinococcosis using the inverse distance method. Further the prevalence for human CE and AE was analyzed. The global spatial autocorrelation showed that positive spatial autocorrelation and aggregation distribution were present rather than random distribution (Table 5). Local Indicators of Spatial Association (LISA) for human CE significance cluster map showed the presence of two kinds of clusters: high-high and low-high clusters. High-high clusters were mainly distributed in Tibet, western Qinghai, and the Ganzi Tibetan Autonomous Prefecture in Sichuan, with a positive correlation in spatial distribution (Fig 4). The local spatial autocorrelation analysis for human CE showed that the 45 “high-high” gathering areas were mainly located in the counties of Ngamring, Baqeen, Bainang, Bangoin, Biru, Chagyab, Dinggyee, Tingri, Gar, Geerzee, Gamba, Gee’gyai, Gongbo’gyamda, Konjo, Gyirong, Jiali (Lhari), Kangmar, Nang, Nagarzee, Nyima, Nyalam, Burang, Nagqu, Rutog, Saga, Xigazee, Xainza, Shuanghu, Sog, Xaitongmoin, Yadong (Chomo) and Zhongba in Tibet; Shiqu, Seertar, Deegee, Baiyu and Xinlong (Nyagrong) in Sichuan; Tarlag, Baima, Chindu, Gadee, Jigzhi, Madoi, Maqeen and Yushu in Qinghai (Fig 4). Low-high clusters were distributed in Coqeen county in Tibet, with a negative correlation in spatial distribution (Fig 4). The LISA of human AE indicated the existence of high-high clusters only. These 10 “high-high” gathering areas for AE were predominantly located in the counties of Shiqu, Seertar, Baiyu in Sichuan and Tarlag, Baima, Chindu, Gadee, Jigzhi, Madoi and Maqeen in Qinghai (Fig 5).

Table 5. Spatial autocorrelation global Moran’s I analysis for the prevalence of echinococcosis.

The Prevalence type Moran’sI Index Expected value Variance Z-value P-value
Total prevalence 0.276838 -0.002817 0.000161 22.055141 <0.01
Prevalence of CE 0.259658 -0.002817 0.000168 20.272646 <0.01
Prevalence of AE 0.322806 -0.008696 0.000784 11.843104 <0.01

Fig 4. Local spatial autocorrelation map of human CE in China in 2018.

Fig 4

The base layer is from https://www.webmap.cn/mapDataAction.do?method=forw&resType=5&storeId=2&storeName=%E5%9B%BD%E5%AE%B6%E5%9F%BA%E7%A1%80%E5%9C%B0%E7%90%86%E4%BF%A1%E6%81%AF%E4%B8%AD%E5%BF%83&fileId=BA420C422A254198BAA5ABAB9CAAFBC1 with credit to National Catalogue Service For Geographic Information.

Fig 5. Local spatial autocorrelation map of human AE in China in 2018.

Fig 5

The base layer is from https://www.webmap.cn/mapDataAction.do?method=forw&resType=5&storeId=2&storeName=%E5%9B%BD%E5%AE%B6%E5%9F%BA%E7%A1%80%E5%9C%B0%E7%90%86%E4%BF%A1%E6%81%AF%E4%B8%AD%E5%BF%83&fileId=BA420C422A254198BAA5ABAB9CAAFBC1 with credit to National Catalogue Service For Geographic Information.

3.4. Identification of clusters for human echinococcosis

Spatial scan statistics were performed independently for human CE and AE in the 370 endemic counties using SaTScan. The most likely clusters for human CE were found in the north of the Tibet Autonomous Region, with Amdo as the centre of a radius of 888.58 km, covering 120 epidemic counties in the Qinghai-Tibet Plateau. The relative risk (RR) value was 21 and involved about 5.3 million exposed people (Fig 6). A set of 10 secondary clusters were identified (Fig 6). They corresponded to 1 to 3 counties at the most and were thus more epidemic foci than to epidemic areas. Risks of transmission in those endemic counties, as indicated by the RR value, are shown in Table 6 and Fig 6. With respect to human AE, the most likely clusters were found in the Tarlag county of the Qinghai province (Fig 7). This cluster displayed a radius of 888.58 km, covering 15 epidemic counties, with a RR of up to 305.82. This is a very serious situation. Three secondary clusters were also identified corresponding to an epidemic area with a medium epidemic degree and 2 epidemic foci (Table 7 and Fig 7).

Fig 6. The spatial aggregation analysis of human CE in China in 2018.

Fig 6

The base layer is from https://www.webmap.cn/mapDataAction.do?method=forw&resType=5&storeId=2&storeName=%E5%9B%BD%E5%AE%B6%E5%9F%BA%E7%A1%80%E5%9C%B0%E7%90%86%E4%BF%A1%E6%81%AF%E4%B8%AD%E5%BF%83&fileId=BA420C422A254198BAA5ABAB9CAAFBC1 with credit to National Catalogue Service For Geographic Information.

Table 6. Spatial clustering analysis for human CE in 2018.

Cluster The center point Scope exposed population Radius(km) Expected cases Number of cases RR LLR P-value
Latitude longitude center county Number of counties
Most likely cluster 32.249600 N 92.625964 E Amdo 120 5289808 888.58 4099 25125 21.09 34908.03 <0.01
Secondary cluster1 33.663502 N 102.883471 E Zoigee 1 67510 0 52 411 7.94 490.44 <0.01
Secondary cluster2 42.806400 N 85.202339 E Hejing 1 102817 0 80 357 4.52 259.25 <0.01
Secondary cluster3 46.247299 N 86.211422 E Hoboksar 1 55056 0 43 163 3.83 98.37 <0.01
Secondary cluster4 42.020001 N 86.301763 E Yanqi 2 168625 51.75 111 273 2.46 83.40 <0.01
Secondary cluster5 36.992901 N 106.288186 E Tongxin 1 253998 0 197 344 1.76 45.21 <0.01
Secondary cluster6 35.018601 N 102.495084 E Tongren 3 277495 59.14 215 330 1.54 26.57 <0.01
Secondary cluster7 38.926201 N 99.300190 E Sunan 1 38000 0 29 67 2.28 17.55 <0.01
Secondary cluster8 36.208500 N 106.242491 E Yuanzhou 1 354321 0 219 307 1.41 15.82 <0.01
Secondary cluster9 44.255501 N 92.819469 E Barkol 1 80023 0 62 107 1.73 13.41 <0.01
Secondary cluster10 37.063000 N 100.756611 E Haiyan 1 36029 0 28 54 1.94 9.55 <0.05

RR: Relative risk

LLR: Log likelihood ratio

Fig 7. The spatial aggregation analysis of human AE in China in 2018.

Fig 7

The base layer is from https://www.webmap.cn/mapDataAction.do?method=forw&resType=5&storeId=2&storeName=%E5%9B%BD%E5%AE%B6%E5%9F%BA%E7%A1%80%E5%9C%B0%E7%90%86%E4%BF%A1%E6%81%AF%E4%B8%AD%E5%BF%83&fileId=BA420C422A254198BAA5ABAB9CAAFBC1 with credit to National Catalogue Service For Geographic Information.

Table 7. Spatial clustering analysis for human AE in 2018.

Cluster The center point Scope exposed population Radius(km) Expected cases Number of cases RR LLR P-value
Latitude longitude center county Number of counties
Most likely cluster 33.479301 N 99.406402 E Tarlag 15 774723 227.66 190 9063 305.82 31968.09 <0.01
Secondary cluster1 32.436901 N 91.274500 E Amdo 12 574578 293.80 141 660 4.92 512.00 <0.01
Secondary cluster2 35.936600 N 105.719195 E Xiji 1 408199 0.00 100 185 1.86 28.90 <0.01
Secondary cluster3 34.7252998 N 104.3562251 E Zhang 1 57300 0.00 14 41 2.92 16.94 <0.01

4. Discussion

In this study, spatial autocorrelation and spatial scan statistics were used to systematically characterize the spatial distribution and prevalence for human echinococcosis in each county. This is to our knowledge the first time that this level of discrimination and accurracy is reached. Spatial autocorrelation analyses showed statistical significance, revealing that the spatial distribution of human echinococcosis in China displays a non-random spatial clustering pattern. Further spatial autocorrelation analyses of the prevalence of echinococcosis showed that the “hot spots” were concentrated in the Qinghai-Tibet Plateau, mainly in northern Tibet, southwestern Qinghai and Ganzi, and Sichuan. Therefore, echinococcosis patients were mainly concentrated in the Qinghai-Tibet Plateau. Huang et al also indicated that the Qinghai-Tibet Plateau region was high-risk area for CE [18]. In addition, several studies have reported that Sichuan, Gansu, Qinghai, and Ninxia were characterized by high prevalence of AE [2]. This could be explained that at such a high altitude, low temperature and high humidity enable eggs to survive longer. A further explanation of the high prevalence observed in the Qinghai-Tibet Plateau is that most of its residents belong to an ethnic minority which adhere to traditional ways of production and life and religious practices. In Tibetan areas particularly, where cattle and sheep are mainly slaughtered in families, stray dogs are present in high number and are fed with Echinococcus-infected remains [19,20]. Dogs are definitive hosts for E. granulosus senso lato and E. multilocularis in China [8,21]. E. granulosus senso lato and E. multilocularis have different intermediate hosts [21]. Echinococcus parasites need two mammalian hosts to complete their life cycle [7]. Transmission of E. granulosus s.l. occurs between dogs and livestock, while E. multilocularis transmission occurs between stray dogs or foxes as definitive hosts and rodents as intermediate hosts [21]. Humans are aberrant intermediate hosts and they are infected by ingesting E. multilocularis eggs [22]. The involvement of wildlife in E. multilocularis transmission cycle is not clear and further researches are needed to investigate this issue. However, the spatial distribution of the prevalence of human echinococcosis directly reflects the range and degree of the corresponding transmission cycle of CE and AE. It can thus guide prevention and control activities, such as strengthening the control of stray dogs in the epidemic areas of AE, carrying out control measures of intermediate host animal density and monitoring the infection status. Health education and people awareness should also be considered. According to the different epidemic degrees of CE and the local control capacity, the frequency of deworming should be determined to achieve the purpose of scientific guidance.

There is a focal spatial distribution for echinococcosis infections, with defined areas at high risk for parasite transmission between definitive and intermediate hosts, where the prevalence or incidence of human echinococcosis may be higher than in surrounding areas [7]. Humans may be accidentally infected through food or water consumption. Dogs and livestocks can contaminate rivers and the environment [2325]. The Buddhist doctrine applied by local pastoral communities considers that old livestock should die naturally. There is also a practice of unrestricted disposal of animal viscera. These have been identified as risk factors for human CE and AE in Tibetan communities [26]. Furthermore, Tibetan herdsmen families keep at least one dog and pastoralists and Buddhist monks always have large numbers of ownerless stray dogs to stay [27]. Previous investigations have shown that owned dogs were the main transmission factor for both CE and AE on the Qinghai-Tibet Plateau [28,29]. Other components that maintain the high level of transmission in the Qinghai-Tibet Plateau are the lack of preventive measures, limited awareness of disease transmission, and traditional way of life, exposing people to the parasite [30,31].

The results of spatial autocorrelaction and spatial scan cluster analysis confirmed previous studies which suggested a highest rate of human AE in the Qinghai-Tibetan Plateau [27]. This work also demonstrated that Tibet, Xinjiang Uygur Autonomous Region, Ningxia Hui Autonomous Region (NHAR) as well as Sichuan and Qinghai Provinces have much higher prevalence for CE [27].

Echinococcosis is a zoonotic parasitic disease and the prevalence is only one of the indicators that reflects the disease endemicity. It mainly indicates the clinical burden and demand for treatment, but cannot reflect the exact risk of transmission which is affected by the period of latency and treatment interventions. Many parameters are involved in parasite transmission, including environmental influences, climate change, anthropogenic environmental factors, and landscape [7]. The relationship between the risk of echinococcosis infection and environmental factors can influence the rate of development of the parasite [32]. In addition, definitive and intermediate hosts infection rates are also important indicators for the presence of parasites [7,33]. It is therefore important to improve the quality of surveillance, optimize its use and take into account relevant indicators (such as dog infection rate and intermediate host prevalence rate). Dogs have close relationship with humans and represent a major source of infection [3436]. Therefore, strengthening dogs monitoring is key to reduce the risk of infection [37]. Wild canids should not be neglected as they are important wild hosts of E. granulosus, in particularl in areas where they are in contacts with humans and domestic animal [38]. Indeed, 47% of domestic dogs may have direct contact with feral dogs [37]. Furthermore, the parasite can be succesfully transmitted between wild and domestic hosts [39]. Meanwhile, it is thus essential to also monitor wild canids. Surveillance should not only monitor the epidemic situation of echinococcosis but can also lead to efficient control measures [40]. However, although essential, a comprehensive surveillance strategy is complex and difficult to implement because of the involvement of many hosts in the life cycle of E.granulosus [40]. Permanent surveillance and data collection systems must be implemented to assess the epidemic trend by continuously recording changes in prevalence and other indicators. Joint efforts must be engaged to improve and strengthen the effectiveness of echinococcosis control in the Qinghai-Tibetan Plateau and other epidemic regions. A fixed-point surveillance of echinococcosis in the 370 endemic counties was thus initiated.

Western China is the main epidemic area of echinococcosis, whith negative consequences on economic development and health [6]. However, the disease burden is not evenly distributed. Most of the areas where echinococcosis is endemic displayed a relatively low prevalence except the Qinghai-Tibet Plateau which is under serious echinococcosis epidemic pressure. This region should thus be prioritarily considered for the implementation of disease management procedures and policies. Blocking the tranmission of human echinococcosis in the Qinghai-Tibet Plateau appears to be a sanitary priority since this disease not only takes a toll on human lives but also affects the well-being in an already resource-poor area faciltaing thus the extension of other diseases. Beside the Qinghai-Tibet Plateau, some counties were shown to be severely endemic in the Xinjiang Uygur Autonomous Region, Qinghai, Gansu, and Sichuan. These clusters represent a serious risk and must entail continuous attention and upscaled control measures against echinococcosis.

5. Conclusion

This work assessed the first nationwide spatial distribution of human echinococcosis. The study identified counties at high-risk of human echinococcosis and showed the presence of “hot spots” which need to be rationally addressed as a priority. Collectively, this study provides a basis for preventive actions and management policy in order to reduce the impact of human echinococcosis and improve its control in China.

Acknowledgments

Since the national echinococcosis control project was launched in 2006, it has been supported by peers in all epidemic areas. We sincerely thank all the participants who participated in the prevention and control activities in 370 echinococcosis endemic counties in 9 epidemic provinces (plus Xinjiang production and Construction Corps).

Data Availability

All relevant data are within the manuscript.

Funding Statement

This work was supported by the National Natural Science Foundation of China (http://www.nsfc.gov.cn/) [Grant No. 81703281]. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

References

  • 1.Budke CM, Deplazes P, Torgerson PR. Global socioeconomic impact of cystic echinococcosis. Emerg Infect Dis. 2006;12:296–303. doi: 10.3201/eid1202.050499 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Zhang MY, Wu WP, Guan YY, Wang LY, Hou YY, Feng Y, et al. Analysis on disease burden of hydatid disease in China. Chin J Parasitol Parasit. 2018;36:15–19. (in Chinese) [Google Scholar]
  • 3.Zheng CJ, Xue CZ, Han S, Li ZJ, Wang H,Wang LY, et al. National Alveolar Echinococcosis Distribution—China, 20122016. China CDC Weekly, 2020, 2(1):1–7. [PMC free article] [PubMed] [Google Scholar]
  • 4.McManus DP, Gray DJ, Zhang W, Yang Y. Diagnosis, treatment, and management of echinococcosis. BMJ. 2012;344:e3866. doi: 10.1136/bmj.e3866 [DOI] [PubMed] [Google Scholar]
  • 5.Ammann RW, Eckert J. Cestodes.Echinococcus. Gastroenterol Clin North Am 1996;25:655–689. doi: 10.1016/s0889-8553(05)70268-5 [DOI] [PubMed] [Google Scholar]
  • 6.Wu WP, Wang H, Wang Q, Zhou XN, Wang LY, Zheng CJ, et al. A nationwide sampling survey on echinococcosis in China during 2012–2016, Chin J Parasitol Parasit. 2018, 36:1–14. (in Chinese) [Google Scholar]
  • 7.Cadavid Restrepo AM, Yang YR, McManus DP, Gray DJ, Giraudoux P, Barnes TS, et al. The landscape epidemiology of echinococcoses. Infect Dis Poverty. 2016;5:13. doi: 10.1186/s40249-016-0109-x [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Zhang WB, Zhang ZZ, Wu WP, Shi BX, Li J, Zhou XN, et al. Epidemiology and control of echinococcosis in central Asia, with particular reference to the People’s Republic of China. Acta Trop. 2015;141:235–243. doi: 10.1016/j.actatropica.2014.03.014 [DOI] [PubMed] [Google Scholar]
  • 9.Zhang ZJ, Zhu R, Bergquist R, Chen DM, Chen Y, Zhang LJ, et al. Spatial comparison of areas at risk for schistosomiasis in the hilly and mountainous regions in the People’s Republic of China: evaluation of the long-term effect of the 10-year World Bank Loan Project. Geospat Health. 2012;6:205–214. doi: 10.4081/gh.2012.138 [DOI] [PubMed] [Google Scholar]
  • 10.Springer YP, Samuel MC, Bolan G. Socioeconomic gradients in sexually transmitted diseases: a geographic information system-based analysis of poverty, race/ethnicity, and gonorrhea rates in California, 2004–2006. Am J Public Health. 2010;100:1060–1067. doi: 10.2105/AJPH.2009.172965 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Nunes C. Tuberculosis incidence in Portugal: spatiotemporal clustering. Int J Health Geogr. 2007;6:30. doi: 10.1186/1476-072X-6-30 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Zhao F, Cheng S, He G, Huang F, Zhang H, Xu B, et al. Space-time clustering characteristics of tuberculosis in China, 2005–2011. PLoS One. 2013;8(12):e83605. doi: 10.1371/journal.pone.0083605 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.National Health Commission of the People’s Republic of China. Notice about printing of echinococcosis prevention technology solutions(2019) [2019-12-30] [Google Scholar]
  • 14.Jing J, Ge M, Yang Z, Li P. Spatial distribution characteristics of tumor marker CA724 reference values in China. Cancer Med. 2019;8:4465–4474. doi: 10.1002/cam4.2176 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.How Anselin L. (not) to lie with spatial statistics. Am J Prev Med. 2006;30:S3–S6. doi: 10.1016/j.amepre.2005.09.015 [DOI] [PubMed] [Google Scholar]
  • 16.Alvarez-Hernández G, Lara-Valencia F, Reyes-Castro PA, Rascón-Pacheco RA. An analysis of spatial and socio-economic determinants of tuberculosis in Hermosillo, Mexico, 2000–2006. Int J Tuberc Lung Dis. 2010;14:708–713. [PubMed] [Google Scholar]
  • 17.Shirayama Y, Phompida S, Shibuya K. Geographic information system (GIS) maps and malaria control monitoring: intervention coverage and health outcome in distal villages of Khammouane province, Laos. Malar J. 2009;8:217. doi: 10.1186/1475-2875-8-217 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Huang D, Li R, Qiu J, Sun X, Yuan R, Shi Y, et al. Geographical Environment Factors and Risk Mapping of Human Cystic Echinococcosis in Western China. Int J Environ Res Public Health. 2018. Aug 12;15:1729. doi: 10.3390/ijerph15081729 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Wang Q, Vuitton DA, Xiao Y, Budke CM, Campos-Ponce M, Schantz PM, et al. Pasture types and Echinococcus multilocularis, Tibetan communities. Emerg Infect Dis. 2006;12:1008–1010. doi: 10.3201/eid1206.041229 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Ma T, Jiang D, Quzhen G, Xue C, Han S, Wu W, et al. Factors influencing the spatial distribution of cystic echinococcosis in Tibet, China. Sci Total Environ. 2021;754:142229. doi: 10.1016/j.scitotenv.2020.142229 [DOI] [PubMed] [Google Scholar]
  • 21.Craig PS, Hegglin D, Lightowlers MW, Torgerson PR, Wang Q. Echinococcosis: Control and Prevention. Adv Parasitol. 2017; 96:55–158. doi: 10.1016/bs.apar.2016.09.002 [DOI] [PubMed] [Google Scholar]
  • 22.Conraths FJ, Probst C, Possenti A, Boufana B, Saulle R, La Torre G, Busani L, Casulli A. Potential risk factors associated with human alveolar echinococcosis: Systematic review and meta-analysis. PLoS Negl Trop Dis. 2017;11:e0005801. doi: 10.1371/journal.pntd.0005801 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Lass A, Szostakowska B, Kontogeorgos I, Korzeniewski K, Karamon J, Sulima M, et al. First detection of Echinococcus multilocularis in environmental water sources in endemic areas using capsule filtration and molecular detection methods. Water Res. 2019;160:466–474. doi: 10.1016/j.watres.2019.05.050 [DOI] [PubMed] [Google Scholar]
  • 24.Grosso G, Gruttadauria S, Biondi A, Marventano S, Mistretta A. Worldwide epidemiology of liver hydatidosis including the Mediterranean area. World J Gastroenterol. 2012;18:1425–1437. doi: 10.3748/wjg.v18.i13.1425 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Mehta P, Prakash M, Khandelwal N. Radiological manifestations of hydatid disease and its complications. Trop Parasitol. 2016;6:103–112. doi: 10.4103/2229-5070.190812 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Craig PS, Li TY, Qiu JM, Zhen R, Wang Q, Giraudoux P, et al.Echinococcosis and Tibetan communities.[J]. Emerging Infectious Diseases, 2008, 14(10):1674–1675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Wang Q, Qiu JM, Schantz P, He JG, Ito A, Liu FJ. Investigation of risk factors for development of human hydatidosis among households raising livestock in Tibetan areas of western Sichuan province. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi. 2001;19:93–96.(in Chinese) [PubMed] [Google Scholar]
  • 28.Craig PS, Giraudoux P, Shi D, Bartholomot B, Barnish G, Delattre P, et al. An epidemiological and ecological study of human alveolar echinococcosis transmission in south Gansu, China. Acta Trop. 2000;77:167–177. doi: 10.1016/s0001-706x(00)00134-0 [DOI] [PubMed] [Google Scholar]
  • 29.Liu L, Guo B, Li W, Zhong B, Yang W, Li SC, et al. Geographic distribution of echinococcosis in Tibetan region of Sichuan Province, China. Infect Dis Poverty. 2018;7:104. doi: 10.1186/s40249-018-0486-4 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Wang Q, Yu WJ, Zhong B, Shang JY, Huang L, Mastin A, et al. Seasonal pattern of Echinococcus re-infection in owned dogs in Tibetan communities of Sichuan, China and its implications for control. Infect Dis Poverty. 2016;5:60. doi: 10.1186/s40249-016-0155-4 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.He W, Liao S, Wang Q, Huang Y, Yu WJ, Zhang GJ, et al. Spatial and temporal distribution of newly diagnosed echinococcosis patients in Sichuan Province from 2007 to 2017. Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi. 2019;31:393–399. (in Chinese) doi: 10.16250/j.32.1374.2019008 [DOI] [PubMed] [Google Scholar]
  • 32.Danson FM, Graham AJ, Pleydell DR, Campos-Ponce M, Giraudoux P, Craig PS. Multi-scale spatial analysis of human alveolar echinococcosis risk in China. Parasitology. 2003;127 Suppl:S133–41. [PubMed] [Google Scholar]
  • 33.Wang LY, Wang Q, Cai HX, Wang H, Huang Y, Feng Y, et al. Evaluation of fecal immunoassays for canine Echinococcus infection in China. PLoS Negl Trop Dis. 2021;15:e0008690. doi: 10.1371/journal.pntd.0008690 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Wang Q, Huang Y, Huang L, Yu W, He W, Zhong B, et al. Review of risk factors for human echinococcosis prevalence on the Qinghai-Tibet Plateau, China: a prospective for control options. Infect Dis Poverty. 2014. Jan 29;3:3. doi: 10.1186/2049-9957-3-3 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Liu CN, Xu YY, Cadavid-Restrepo AM, Lou ZZ, Yan HB, Li L, et al. Estimating the prevalence of Echinococcus in domestic dogs in highly endemic for echinococcosis. Infect Dis Poverty. 2018. Aug 9;7:77. doi: 10.1186/s40249-018-0458-8 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Otero-Abad B, Torgerson PR. A systematic review of the epidemiology of echinococcosis in domestic and wild animals. PLoS Negl Trop Dis. 2013;7:e2249. doi: 10.1371/journal.pntd.0002249 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Gong QL, Ge GY, Wang Q, Tian T, Liu F, Diao NC, et al. Meta-analysis of the prevalence of Echinococcus in dogs in China from 2010 to 2019. PLoS Negl Trop Dis. 2021. Apr 2;15:e0009268. doi: 10.1371/journal.pntd.0009268 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Jenkins DJ, Macpherson CN. Transmission ecology of Echinococcus in wild-life in Australia and Africa. Parasitology. 2003;127 Suppl:S63–72. doi: 10.1017/s0031182003003871 [DOI] [PubMed] [Google Scholar]
  • 39.Grainger HJ, Jenkins DJ. Transmission of hydatid disease to sheep from wild dogs in Victoria, Australia. Int J Parasitol. 1996;26:1263–1270. doi: 10.1016/s0020-7519(96)00109-9 [DOI] [PubMed] [Google Scholar]
  • 40.Craig P, Mastin A, van Kesteren F, Boufana B. Echinococcus granulosus: Epidemiology and state-of-the-art of diagnostics in animals. Vet Parasitol. 2015;213(3–4):132–148. doi: 10.1016/j.vetpar.2015.07.028 [DOI] [PubMed] [Google Scholar]
PLoS Negl Trop Dis. doi: 10.1371/journal.pntd.0009996.r001

Decision Letter 0

David Joseph Diemert, Mar Siles-Lucas

2 Jul 2021

Dear Prof. Zhou,

Thank you very much for submitting your manuscript "Prevalence and spatial distribution characteristics of human echinococcosis in China" for consideration at PLOS Neglected Tropical Diseases. As with all papers reviewed by the journal, your manuscript was reviewed by members of the editorial board and by several independent reviewers. The reviewers appreciated the attention to an important topic. Based on the reviews, we are likely to accept this manuscript for publication, providing that you modify the manuscript according to the review recommendations.

Please prepare and submit your revised manuscript within 30 days. If you anticipate any delay, please let us know the expected resubmission date by replying to this email.

When you are ready to resubmit, please upload the following:

[1] A letter containing a detailed list of your responses to all review comments, and a description of the changes you have made in the manuscript.

Please note while forming your response, if your article is accepted, you may have the opportunity to make the peer review history publicly available. The record will include editor decision letters (with reviews) and your responses to reviewer comments. If eligible, we will contact you to opt in or out

[2] Two versions of the revised manuscript: one with either highlights or tracked changes denoting where the text has been changed; the other a clean version (uploaded as the manuscript file).

Important additional instructions are given below your reviewer comments.

Thank you again for your submission to our journal. We hope that our editorial process has been constructive so far, and we welcome your feedback at any time. Please don't hesitate to contact us if you have any questions or comments.

Sincerely,

David Joseph Diemert, M.D.

Associate Editor

PLOS Neglected Tropical Diseases

Mar Siles-Lucas

Deputy Editor

PLOS Neglected Tropical Diseases

***********************

Reviewer's Responses to Questions

Key Review Criteria Required for Acceptance?

As you describe the new analyses required for acceptance, please consider the following:

Methods

-Are the objectives of the study clearly articulated with a clear testable hypothesis stated?

-Is the study design appropriate to address the stated objectives?

-Is the population clearly described and appropriate for the hypothesis being tested?

-Is the sample size sufficient to ensure adequate power to address the hypothesis being tested?

-Were correct statistical analysis used to support conclusions?

-Are there concerns about ethical or regulatory requirements being met?

Reviewer #1: In current study, the objectives were clearly articulated with testable background. Study design is appropriate to address the objectives with clearly described study population. In this study, correct statistical analysis is applied to address the prevalence and spatial distribution of human echinococcosis in China. This study met with the related ethical or regulatory requirements.

Reviewer #2: (No Response)

--------------------

Results

-Does the analysis presented match the analysis plan?

-Are the results clearly and completely presented?

-Are the figures (Tables, Images) of sufficient quality for clarity?

Reviewer #1: The results are clearly and completely presented, however, the figures are lack of high resolution.

Reviewer #2: (No Response)

--------------------

Conclusions

-Are the conclusions supported by the data presented?

-Are the limitations of analysis clearly described?

-Do the authors discuss how these data can be helpful to advance our understanding of the topic under study?

-Is public health relevance addressed?

Reviewer #1: The conclusions are supported by the presented data with its own limitations. The authors discussed the potential relevance of current study to public health.

Reviewer #2: (No Response)

--------------------

Editorial and Data Presentation Modifications?

Use this section for editorial suggestions as well as relatively minor modifications of existing data that would enhance clarity. If the only modifications needed are minor and/or editorial, you may wish to recommend “Minor Revision” or “Accept”.

Reviewer #1: (No Response)

Reviewer #2: (No Response)

--------------------

Summary and General Comments

Use this section to provide overall comments, discuss strengths/weaknesses of the study, novelty, significance, general execution and scholarship. You may also include additional comments for the author, including concerns about dual publication, research ethics, or publication ethics. If requesting major revision, please articulate the new experiments that are needed.

Reviewer #1: Xiao-Nong Zhou and colleagues reported their original finding on prevalence and spatial distribution characteristics of human echinococcosis in China. This paper is informative, well written and may provide a thorough information regarding the prevalence and spatial distribution characteristics of human CE and AE in China. These date would be quite helpful for implementing prevention and control strategy for human echinococcosis and also is important for fighting against echinococcosis.

However, there are still some concerns regarding this paper:

1. Page4, Line 73, “For the year 2018, 47,233”. This presentation is quite misunderstanding, please correct;

2. Page 11, Line 190, “The number of CA cases……”. This should be CE please correct.

3. Page 11 Line 198. In this section, author stated there are still some unclassified cases. Would you please explain why in some counties have unclassified cases?

4. Page 13, Line 209 “In the national echinococcosis prevention and control” should be written as “National Echinococcosis Prevention and Control”.

5. Page 18, Line 250, “Further analyzed the prevalence of human CE and the prevalence of human AE ” . This sentence should be corrected and whole paper should be revised for English for better reading.

Reviewer #2: In the MS, the authors collected 47,233 echinococcosis cases in 370 counties of China in China and analyzed the prevalence and spatial distribution characteristics. They found that the endemic counties showed spatial positive autocorrelation in globe spatial autocorrelation with two aggregation modes in local spatial autocorrelation, namely high-high and low-high aggregation areas. Two spatial clusters were revealed by spatial scanning analysis. They confirmed that The Qinghai-Tibet Plateau is the "hot spot" area of human echinococcosis in China. The results are of great importance for prevention and control of echinococcosis in china and are attractive for researches in the field. There are some suggestions for improvement of the MS:

1. The ms is suggested to be reviewed by people whose native language is English.

2. In Abstract, the part of methods is too brief. For example, the distribution of 370 counties should be described. SPSS 21.0 and ArcGIS 10.1 were used to obtain the prevalence rate of AE and CE. Chi-square test and Exact probability method were used to get the message of ?......The overall situation or prevalance rate of echinococcosis in China should be presented in the part of results as well as in Conclusion.

3. P5 line 103, Xinjiang should be replaced by Xinjiang Uygur Autonomous Region

4. P15 Table 2, please check the meaning of P, p value or prevalence rate?

5. P16 Table3, the meaning of P should showed below the table as well as Table 4

6. P18 line 249-250, “the prevalence of human CE and the prevalence of human AE” can be replaced by “the prevalence of human CE and AE” as well as P24 line 309, “ways of production, way of life” to “ways of production, and life and religious…”

7. P25 line 324, “ownd dogs” should be “owned dogs”.

8. P26 line 339-340 not only the gradient was west-east oriented but no north-south variation was observed. What the meaning? Plz check

9. In Discussion, the difference of prevalence rate and spatial distribution between AE and CE should be discussed and analyzed.

--------------------

PLOS authors have the option to publish the peer review history of their article (what does this mean?). If published, this will include your full peer review and any attached files.

If you choose “no”, your identity will remain anonymous but your review may still be made public.

Do you want your identity to be public for this peer review? For information about this choice, including consent withdrawal, please see our Privacy Policy.

Reviewer #1: Yes: Tuerhongjiang Tuxun

Reviewer #2: No

Figure Files:

While revising your submission, please upload your figure files to the Preflight Analysis and Conversion Engine (PACE) digital diagnostic tool, https://pacev2.apexcovantage.com. PACE helps ensure that figures meet PLOS requirements. To use PACE, you must first register as a user. Then, login and navigate to the UPLOAD tab, where you will find detailed instructions on how to use the tool. If you encounter any issues or have any questions when using PACE, please email us at figures@plos.org.

Data Requirements:

Please note that, as a condition of publication, PLOS' data policy requires that you make available all data used to draw the conclusions outlined in your manuscript. Data must be deposited in an appropriate repository, included within the body of the manuscript, or uploaded as supporting information. This includes all numerical values that were used to generate graphs, histograms etc.. For an example see here: http://www.plosbiology.org/article/info%3Adoi%2F10.1371%2Fjournal.pbio.1001908#s5.

Reproducibility:

To enhance the reproducibility of your results, we recommend that you deposit your laboratory protocols in protocols.io, where a protocol can be assigned its own identifier (DOI) such that it can be cited independently in the future. Additionally, PLOS ONE offers an option to publish peer-reviewed clinical study protocols. Read more information on sharing protocols at https://plos.org/protocols?utm_medium=editorial-email&utm_source=authorletters&utm_campaign=protocols

References

Please review your reference list to ensure that it is complete and correct. If you have cited papers that have been retracted, please include the rationale for doing so in the manuscript text, or remove these references and replace them with relevant current references. Any changes to the reference list should be mentioned in the rebuttal letter that accompanies your revised manuscript. If you need to cite a retracted article, indicate the article's retracted status in the References list and also include a citation and full reference for the retraction notice.

Attachment

Submitted filename: Comments.docx

PLoS Negl Trop Dis. doi: 10.1371/journal.pntd.0009996.r003

Decision Letter 1

David Joseph Diemert, Mar Siles-Lucas

2 Oct 2021

Dear Prof. Zhou,

Thank you very much for submitting your manuscript "Prevalence and spatial distribution characteristics of human echinococcosis in China" for consideration at PLOS Neglected Tropical Diseases. As with all papers reviewed by the journal, your manuscript was reviewed by members of the editorial board and by several independent reviewers. The reviewers appreciated the attention to an important topic. Based on the reviews, we are likely to accept this manuscript for publication, providing that you modify the manuscript according to the review recommendations.

Please note that in contrast to Reviewer 1's comment, the correct spelling is, "reinforcement".

Please prepare and submit your revised manuscript within 30 days. If you anticipate any delay, please let us know the expected resubmission date by replying to this email.

When you are ready to resubmit, please upload the following:

[1] A letter containing a detailed list of your responses to all review comments, and a description of the changes you have made in the manuscript.

Please note while forming your response, if your article is accepted, you may have the opportunity to make the peer review history publicly available. The record will include editor decision letters (with reviews) and your responses to reviewer comments. If eligible, we will contact you to opt in or out

[2] Two versions of the revised manuscript: one with either highlights or tracked changes denoting where the text has been changed; the other a clean version (uploaded as the manuscript file).

Important additional instructions are given below your reviewer comments.

Thank you again for your submission to our journal. We hope that our editorial process has been constructive so far, and we welcome your feedback at any time. Please don't hesitate to contact us if you have any questions or comments.

Sincerely,

David Joseph Diemert, M.D.

Associate Editor

PLOS Neglected Tropical Diseases

Mar Siles-Lucas

Deputy Editor

PLOS Neglected Tropical Diseases

***********************

Please note that in contrast to Reviewer 1's comment, the correct spelling is, "reinforcement".

Reviewer's Responses to Questions

Key Review Criteria Required for Acceptance?

As you describe the new analyses required for acceptance, please consider the following:

Methods

-Are the objectives of the study clearly articulated with a clear testable hypothesis stated?

-Is the study design appropriate to address the stated objectives?

-Is the population clearly described and appropriate for the hypothesis being tested?

-Is the sample size sufficient to ensure adequate power to address the hypothesis being tested?

-Were correct statistical analysis used to support conclusions?

-Are there concerns about ethical or regulatory requirements being met?

Reviewer #1: The objectives of the study is clearly articulated with a clear testable hypothesis;

The study design is appropriate to address the stated objectives;

The population is clearly described and appropriate for the hypothesis being tested;

The sample size is sufficient to ensure adequate power to address the hypothesis being tested;

The correct statistical analysis were used to support conclusions;

No concerns exist about ethical or regulatory requirements being met.

--------------------

Results

-Does the analysis presented match the analysis plan?

-Are the results clearly and completely presented?

-Are the figures (Tables, Images) of sufficient quality for clarity?

Reviewer #1: The analysis presented matchs the analysis plan;

The results are clearly and completely presented;

The figures are presented with sufficient quality for clarity.

--------------------

Conclusions

-Are the conclusions supported by the data presented?

-Are the limitations of analysis clearly described?

-Do the authors discuss how these data can be helpful to advance our understanding of the topic under study?

-Is public health relevance addressed?

Reviewer #1: The conclusions are supported by the data presented;

The limitations of analysis are clearly described;

The authors discuss how these data can be helpful to advance our understanding of the topic under study;

Public health relevance is addressed.

--------------------

Editorial and Data Presentation Modifications?

Use this section for editorial suggestions as well as relatively minor modifications of existing data that would enhance clarity. If the only modifications needed are minor and/or editorial, you may wish to recommend “Minor Revision” or “Accept”.

Reviewer #1: 1. Page 4 Line 73, "renforcement" should be written as "reinfoecement";

2. Page 5 Line 102 "They heavily impair the patients, especially AE, with a mortality rate of about 90% in the past ten years" . Please confime ,the mortaliry is about 90% in AE without any intervention.

3. Page 23 Line 303 "explaned" shoud be written as "explained".

--------------------

Summary and General Comments

Use this section to provide overall comments, discuss strengths/weaknesses of the study, novelty, significance, general execution and scholarship. You may also include additional comments for the author, including concerns about dual publication, research ethics, or publication ethics. If requesting major revision, please articulate the new experiments that are needed.

Reviewer #1: 1. Page 4 Line 73, "renforcement" should be written as "reinfoecement";

2. Page 5 Line 102 "They heavily impair the patients, especially AE, with a mortality rate of about 90% in the past ten years" . Please confime ,the mortaliry is about 90% in AE without any intervention.

3. Page 23 Line 303 "explaned" shoud be written as "explained".

--------------------

PLOS authors have the option to publish the peer review history of their article (what does this mean?). If published, this will include your full peer review and any attached files.

If you choose “no”, your identity will remain anonymous but your review may still be made public.

Do you want your identity to be public for this peer review? For information about this choice, including consent withdrawal, please see our Privacy Policy.

Reviewer #1: Yes: Tuerhongjiang Tuxun

Figure Files:

While revising your submission, please upload your figure files to the Preflight Analysis and Conversion Engine (PACE) digital diagnostic tool, https://pacev2.apexcovantage.com. PACE helps ensure that figures meet PLOS requirements. To use PACE, you must first register as a user. Then, login and navigate to the UPLOAD tab, where you will find detailed instructions on how to use the tool. If you encounter any issues or have any questions when using PACE, please email us at figures@plos.org.

Data Requirements:

Please note that, as a condition of publication, PLOS' data policy requires that you make available all data used to draw the conclusions outlined in your manuscript. Data must be deposited in an appropriate repository, included within the body of the manuscript, or uploaded as supporting information. This includes all numerical values that were used to generate graphs, histograms etc.. For an example see here: http://www.plosbiology.org/article/info%3Adoi%2F10.1371%2Fjournal.pbio.1001908#s5.

Reproducibility:

To enhance the reproducibility of your results, we recommend that you deposit your laboratory protocols in protocols.io, where a protocol can be assigned its own identifier (DOI) such that it can be cited independently in the future. Additionally, PLOS ONE offers an option to publish peer-reviewed clinical study protocols. Read more information on sharing protocols at https://plos.org/protocols?utm_medium=editorial-email&utm_source=authorletters&utm_campaign=protocols

References

Please review your reference list to ensure that it is complete and correct. If you have cited papers that have been retracted, please include the rationale for doing so in the manuscript text, or remove these references and replace them with relevant current references. Any changes to the reference list should be mentioned in the rebuttal letter that accompanies your revised manuscript. If you need to cite a retracted article, indicate the article's retracted status in the References list and also include a citation and full reference for the retraction notice.

PLoS Negl Trop Dis. doi: 10.1371/journal.pntd.0009996.r005

Decision Letter 2

David Joseph Diemert, Mar Siles-Lucas

15 Nov 2021

Dear Prof. Zhou,

We are pleased to inform you that your manuscript 'Prevalence and spatial distribution characteristics of human echinococcosis in China' has been provisionally accepted for publication in PLOS Neglected Tropical Diseases.

Before your manuscript can be formally accepted you will need to complete some formatting changes, which you will receive in a follow up email. A member of our team will be in touch with a set of requests.

Please note that your manuscript will not be scheduled for publication until you have made the required changes, so a swift response is appreciated.

IMPORTANT: The editorial review process is now complete. PLOS will only permit corrections to spelling, formatting or significant scientific errors from this point onwards. Requests for major changes, or any which affect the scientific understanding of your work, will cause delays to the publication date of your manuscript.

Should you, your institution's press office or the journal office choose to press release your paper, you will automatically be opted out of early publication. We ask that you notify us now if you or your institution is planning to press release the article. All press must be co-ordinated with PLOS.

Thank you again for supporting Open Access publishing; we are looking forward to publishing your work in PLOS Neglected Tropical Diseases.

Best regards,

David Joseph Diemert, M.D.

Associate Editor

PLOS Neglected Tropical Diseases

Mar Siles-Lucas

Deputy Editor

PLOS Neglected Tropical Diseases

***********************************************************

PLoS Negl Trop Dis. doi: 10.1371/journal.pntd.0009996.r006

Acceptance letter

David Joseph Diemert, Mar Siles-Lucas

20 Dec 2021

Dear Prof. Zhou,

We are delighted to inform you that your manuscript, "Prevalence and spatial distribution characteristics of human echinococcosis in China," has been formally accepted for publication in PLOS Neglected Tropical Diseases.

We have now passed your article onto the PLOS Production Department who will complete the rest of the publication process. All authors will receive a confirmation email upon publication.

The corresponding author will soon be receiving a typeset proof for review, to ensure errors have not been introduced during production. Please review the PDF proof of your manuscript carefully, as this is the last chance to correct any scientific or type-setting errors. Please note that major changes, or those which affect the scientific understanding of the work, will likely cause delays to the publication date of your manuscript. Note: Proofs for Front Matter articles (Editorial, Viewpoint, Symposium, Review, etc...) are generated on a different schedule and may not be made available as quickly.

Soon after your final files are uploaded, the early version of your manuscript will be published online unless you opted out of this process. The date of the early version will be your article's publication date. The final article will be published to the same URL, and all versions of the paper will be accessible to readers.

Thank you again for supporting open-access publishing; we are looking forward to publishing your work in PLOS Neglected Tropical Diseases.

Best regards,

Shaden Kamhawi

co-Editor-in-Chief

PLOS Neglected Tropical Diseases

Paul Brindley

co-Editor-in-Chief

PLOS Neglected Tropical Diseases

Associated Data

    This section collects any data citations, data availability statements, or supplementary materials included in this article.

    Supplementary Materials

    Attachment

    Submitted filename: Comments.docx

    Attachment

    Submitted filename: Answer to reviewers.docx

    Attachment

    Submitted filename: Answer to reviewers 2021-10-07.docx

    Data Availability Statement

    All relevant data are within the manuscript.


    Articles from PLoS Neglected Tropical Diseases are provided here courtesy of PLOS

    RESOURCES