Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2023 Feb 9;15(9):4095–4107. doi: 10.1007/s12633-023-02332-7

Effect of green synthesis bimetallic Ag@SiO2 core–shell nanoparticles on absorption behavior and electrical properties of PVA-PEO nanocomposites for optoelectronic applications

Ehssan Al-Bermany 1,, Ali Tao’mah Mekhalif 2, Hikmat A Banimuslem 2, Karar Abdali 3, Mohammed M Sabri 4
PMCID: PMC9909660

Abstract

A green and easy technique was used to synthesize silver and silica (Ag@SiO2) core–shell nanoparticles (NPs) in the matrix blend polymers matrix. Core–shell nanoparticles were loaded into polyvinyl alcohol (PVA) and ultrahigh molecular weight polyethylene oxide (UHMW-PEO) blended polymer to fabricate new nanocomposite films (NCFs) using the developed solution-sonication-casting technique. The spectroscopic properties of the resultant films were investigated using x-ray diffraction (XRD), Fourier transforms infrared (FTIR), visible light microscope (OLM), field emission scanning electron microscope (FESEM), FESEM-energy dispersive spectroscope (FESM-EDX), UV/visible spectrometer, and LCR meter to investigate the structural, morphological, optical, and electrical characteristics. XRD revealed the presence of the semi-crystalline nature of PVA-UHMWPEO/ Ag@SiO2 NCFs. The degree of crystallinity increased after embedding. The NPs were well distributed within the NCFs according to OLM and SEM, and FESM-EDX confirmed the presence of C, O, Si, and Ag elements. FTIR spectrum observed strong bonding after the loading of NPs, and other peaks were hidden. The UV/visible spectrums suggested an absorption at ~ 210 nm. Based on the Tauc plot model, the optical bandgap (Eg) values decreased from 5.52 eV to 4.57 eV. The electrical conductivity values were significantly increased with the increasing frequency and (Ag@SiO2) core–shell nanoparticles (NPs) loading ratio. The PVA-UHMWPEO/Ag@SiO2 NCFs explained enhanced lattice strain. The obtained NCFs are suitable for use in various optoelectronic and nanodevice applications.

Keywords: PVA/UHMWPEO, Ag@SiO2, Core–shell nanoparticles, Nanocomposites

Acknowledgements

The authors would like to thank the department of physics, university of Babylon, Iraq, for their support.

Authors' Contributions

Ehssan Al-Bermany designed, wrote, and analyzed the FTIR, XRD, SEM, and OML and improved and reviewed the paper. Ali Tao'mah Mekhalif performed all the experiments, and Hikmat A Banimuslem performed and wrote the experiments and contributed to the introduction section. Karar Abdali contributed to the optical properties and data examination, and Mohammed M. Sabri analyzed the electrical properties of the research and data examination. All authors read and approved the final manuscript.

Funding

No funding applied.

Data Availability

The data are available in the manuscript.

Declarations

Competing interests

The authors declare no competing interests.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare that they have no conflict of interest.

Footnotes

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  • 1.Smith RC, Liang C, Landry M, et al. The mechanisms leading to the useful electrical properties of polymer nanodielectrics. IEEE Trans Dielectr Electr Insul. 2008;15:187–196. doi: 10.1109/T-DEI.2008.4446750. [DOI] [Google Scholar]
  • 2.Tanaka T, Vaughan AS (2022) Tailoring of nanocomposite dielectrics : from fundamentals to devices and applications. 441. 10.1201/9781315201535
  • 3.Abdali K Structural, Morphological, and Gamma Ray Shielding (GRS) Characterization of HVCMC/PVP/PEG Polymer Blend Encapsulated with Silicon Dioxide Nanoparticles. Silicon 1–6 (2022). 10.1007/s12633-022-01678-8
  • 4.Abdelamir AI, Al-Bermany E, Hashim FS Important factors affecting the microstructure and mechanical properties of PEG/GO-based nanographene composites fabricated applying assembly-acoustic method. In: AIP Conference Proceedings. p 020110 (2020)
  • 5.Aldulaimi NR, Al-Bermany E. Tuning the bandgap and absorption behaviour of the newly-fabricated Ultrahigh Molecular weight Polyethylene Oxide- Polyvinyl Alcohol/ Graphene Oxide hybrid nanocomposites. Polym Polym Compos. 2022;30:096739112211121. doi: 10.1177/09673911221112196. [DOI] [Google Scholar]
  • 6.Chaudhary P, Fatima F, Kumar A. Relevance of Nanomaterials in Food Packaging and its Advanced Future Prospects. J Inorg Organomet Polym Mater. 2020;30:5180–5192. doi: 10.1007/s10904-020-01674-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Menazea AA, Ismail AM, Awwad NS, Ibrahium HA. Physical characterization and antibacterial activity of PVA/Chitosan matrix doped by selenium nanoparticles prepared via one-pot laser ablation route. J Market Res. 2020;9:9598–9606. doi: 10.1016/j.jmrt.2020.06.077. [DOI] [Google Scholar]
  • 8.Abd El-Kader MFH, Elabbasy MT, Ahmed MK, Menazea AA. Structural, morphological features, and antibacterial behavior of PVA/PVP polymeric blends doped with silver nanoparticles via pulsed laser ablation. J Market Res. 2021;13:291–300. doi: 10.1016/j.jmrt.2021.04.055. [DOI] [Google Scholar]
  • 9.El-Kader MFHA, Elabbasy MT, Adeboye AA, Menazea AA Nanocomposite of PVA/PVP blend incorporated by copper oxide nanoparticles via nanosecond laser ablation for antibacterial activity enhancement. Polymer Bulletin 1–18 (2021). 10.1007/s00289-021-03975-5
  • 10.Kadhim MA, Al-Bermany E. New fabricated PMMA-PVA/graphene oxide nanocomposites: Structure, optical properties and application. J Compos Mater. 2021;55:2793–2806. doi: 10.1177/0021998321995912. [DOI] [Google Scholar]
  • 11.Menazea AA. One-Pot Pulsed Laser Ablation route assisted copper oxide nanoparticles doped in PEO/PVP blend for the electrical conductivity enhancement. J Market Res. 2020;9:2412–2422. doi: 10.1016/j.jmrt.2019.12.073. [DOI] [Google Scholar]
  • 12.Ghazi RA, Al-Mayalee KH, Al-Bermany E, et al. Impact of polymer molecular weights and graphene nanosheets on fabricated PVA-PEG/GO nanocomposites: Morphology, sorption behavior and shielding application. AIMS Materials Science. 2022;9:584–603. doi: 10.3934/matersci.2022035. [DOI] [Google Scholar]
  • 13.Abdali K. Synthesis, characterization and USW sensor of PEO/PMMA/PVP doped with zirconium dioxide nanoparticles. Trans Electr Electron Mater. 2022 doi: 10.1007/s42341-022-00388-7. [DOI] [Google Scholar]
  • 14.Cao G, Brinker CF. Annual Review of. Nano Res. 2008;1:645. [Google Scholar]
  • 15.Bigg DM. Mechanical, thermal, and electrical properties of metal fiber-filled polymer composites. Polym Eng Sci. 1979;19:1188–1192. doi: 10.1002/pen.760191610. [DOI] [Google Scholar]
  • 16.Szabo A. Theory of fluorescence depolarization in macromolecules and membranes. J Chem Phys. 1984;81:150–167. doi: 10.1063/1.447378. [DOI] [Google Scholar]
  • 17.Hamida RS, Abdelmeguid NE, Ali MA, et al. Synthesis of Silver Nanoparticles Using a Novel Cyanobacteria Desertifilum sp. extract: Their Antibacterial and Cytotoxicity Effects. Int J Nanomed. 2020;15:49–63. doi: 10.2147/IJN.S238575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Assis M, Simoes LGP, Tremiliosi GC, et al. Sio2-ag composite as a highly virucidal material: A roadmap that rapidly eliminates sars-cov-2. Nanomaterials. 2021;11:1–19. doi: 10.3390/nano11030638. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Sakthisabarimoorthi A, Martin Britto Dhas SA, Jose M. Nonlinear optical properties of Ag@SiO2 core-shell nanoparticles investigated by continuous wave He-Ne laser. Mater Chem Phys. 2018;212:224–229. doi: 10.1016/j.matchemphys.2018.03.047. [DOI] [Google Scholar]
  • 20.Asselin J, Legros P, Grégoire A, Boudreau D. Correlating Metal-Enhanced Fluorescence and Structural Properties in Ag@SiO2 Core-Shell Nanoparticles. Plasmonics. 2016;11:1369–1376. doi: 10.1007/s11468-016-0186-5. [DOI] [Google Scholar]
  • 21.Wang J, White WB, Adair JH. Optical properties of core–shell structured Ag/SiO2 nanocomposites. Mater Sci Eng, B. 2010;166:235–238. doi: 10.1016/j.mseb.2009.11.026. [DOI] [Google Scholar]
  • 22.Liang Y, Ouyang J, Wang H, et al. Synthesis and characterization of core-shell structured SiO 2 @YVO 4: Yb 3+, Er 3+ microspheres. Appl Surf Sci. 2012;258:3689–3694. doi: 10.1016/j.apsusc.2011.12.006. [DOI] [Google Scholar]
  • 23.Das MR, Sarma RK, Saikia R, et al. Synthesis of silver nanoparticles in an aqueous suspension of graphene oxide sheets and its antimicrobial activity. Colloids Surf, B. 2011;83:16–22. doi: 10.1016/j.colsurfb.2010.10.033. [DOI] [PubMed] [Google Scholar]
  • 24.Gün Gök Z. Synthesis and characterization of polyvinyl alcohol–silk sericin nanofibers containing gelatin-capped silver nanoparticles for antibacterial applications. Polym Bull. 2022;166:235–238. doi: 10.1007/s00289-022-04455-0. [DOI] [Google Scholar]
  • 25.Sakthisabarimoorthi A, Jose M, Martin Britto Dhas SA, Jerome Das S. Fabrication of Cu@Ag core–shell nanoparticles for nonlinear optical applications. J Mater Sci: Mater Electron. 2017;28:4545–4552. doi: 10.1007/s10854-016-6090-0. [DOI] [Google Scholar]
  • 26.Al-shammari AK, Al-Bermany E. Polymer functional group impact on the thermo-mechanical properties of polyacrylic acid, polyacrylic amide- poly (vinyl alcohol) nanocomposites reinforced by graphene oxide nanosheets. J Polym Res. 2022;29:351. doi: 10.1007/s10965-022-03210-3. [DOI] [Google Scholar]
  • 27.Kandulna R, Choudhary RB. Concentration-dependent behaviors of ZnO-reinforced PVA–ZnO nanocomposites as electron transport materials for OLED application. Polym Bull. 2018;75:3089–3107. doi: 10.1007/s00289-017-2186-9. [DOI] [Google Scholar]
  • 28.Yang Z, Zhang Y, Wen B. Enhanced electromagnetic interference shielding capability in bamboo fiber@polyaniline composites through microwave reflection cavity design. Compos Sci Technol. 2019;178:41–49. doi: 10.1016/j.compscitech.2019.04.023. [DOI] [Google Scholar]
  • 29.Qiu M, Zhang Y, Wen B. Facile synthesis of polyaniline nanostructures with effective electromagnetic interference shielding performance. J Mater Sci: Mater Electron. 2018;29:10437–10444. doi: 10.1007/s10854-018-9100-6. [DOI] [Google Scholar]
  • 30.Cao Y-C, Xu C, Wu X, et al. A poly (ethylene oxide)/graphene oxide electrolyte membrane for low temperature polymer fuel cells. J Power Sources. 2011;196:8377–8382. doi: 10.1016/j.jpowsour.2011.06.074. [DOI] [Google Scholar]
  • 31.Ramalla I, Gupta RK, Bansal K. Effect on superhydrophobic surfaces on electrical porcelain insulator, improved technique at polluted areas for longer life and reliability. Inter J. of Eng & Techol. 2015;4:509. doi: 10.14419/ijet.v4i4.5405. [DOI] [Google Scholar]
  • 32.Oje AI, Ogwu AA, Mirzaeian M, Tsendzughul N. Electrochemical energy storage of silver and silver oxide thin films in an aqueous NaCl electrolyte. J Electroanal Chem. 2018;829:59–68. doi: 10.1016/j.jelechem.2018.10.001. [DOI] [Google Scholar]
  • 33.Gaabour LH. Influence of silica nanoparticles incorporated with chitosan/polyacrylamide polymer nanocomposites. J Market Res. 2019;8:2157–2163. doi: 10.1016/j.jmrt.2019.02.003. [DOI] [Google Scholar]
  • 34.Pankove JI, Kiewit DA. Optical Processes in Semiconductors. J Electrochem Soc. 1972;119:156C. doi: 10.1149/1.2404256. [DOI] [Google Scholar]
  • 35.Hussein AM, Dannoun EMA, Aziz SB, et al. Steps toward the band gap identification in polystyrene based solid polymer nanocomposites integrated with tin titanate nanoparticles. Polymers. 2020;12:1–21. doi: 10.3390/polym12102320. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Ji KA, Design M, Chemistry A. Electrical properties of poly ( n-butylamino ) J Mater Sci. 1998;3:2955–2959. [Google Scholar]
  • 37.Shekhar S, Prasad V, Subramanyam SV. Structural and electrical properties of composites of polymer-iron carbide nanoparticles embedded in carbon. Mater Sci and Eng B: Solid-State Mater for Adv Technol. 2006;133:108–112. doi: 10.1016/j.mseb.2006.06.010. [DOI] [Google Scholar]
  • 38.Hayany AT (1970) Solid dielectric waveguide filters
  • 39.Hu H, Zhang F, Luo S, et al. Recent advances in rational design of polymer nanocomposite dielectrics for energy storage. Nano Energy. 2020;74:104844. doi: 10.1016/j.nanoen.2020.104844. [DOI] [Google Scholar]
  • 40.Tareev BM, Tareev BM. Physics of Dielectric Materials. Moscow: Mir Publ; 1979. p. 90. [Google Scholar]
  • 41.Al-Abbas SS, Ghazi RA, Al-shammari AK, et al. Influence of the polymer molecular weights on the electrical properties of Poly(vinyl alcohol) – Poly(ethylene glycols)/Graphene oxide nanocomposites. Mater Today Proc. 2021;42:2469–2474. doi: 10.1016/j.matpr.2020.12.565. [DOI] [Google Scholar]
  • 42.Coetzee D, Venkataraman M, Militky J, Petru M (2020) Influence of nanoparticles on thermal and electrical conductivity of composites. Polymers 12, 10.3390/POLYM12040742 [DOI] [PMC free article] [PubMed]
  • 43.Abdali K. Structural, optical, electrical properties, and relative humidity sensor application of PVA/Dextrin polymeric blend loaded with silicon dioxide nanoparticles. J Mater Sci: Mater Electron. 2022;33:18199–18208. doi: 10.1007/s10854-022-08676-x. [DOI] [Google Scholar]
  • 44.Hezma AM, Elashmawi IS, Rajeh A, Kamal M. Change Spectroscopic, thermal and mechanical studies of PU/PVC blends. Physica B. 2016;495:4–10. doi: 10.1016/j.physb.2016.04.043. [DOI] [Google Scholar]
  • 45.Patla SK, Mukhopadhyay M, Ray R. Ion specificity towards structure-property correlation of poly (ethylene oxide) [PEO]-NH 4 I and PEO-KBr composite solid polymer electrolyte. Ionics. 2019;25:627–639. doi: 10.1007/s11581-018-2711-3. [DOI] [Google Scholar]
  • 46.Buraidah MH, Teo LP, Majid SR, Arof AK. Ionic conductivity by correlated barrier hopping in NH4I doped chitosan solid electrolyte. Physica B. 2009;404:1373–1379. doi: 10.1016/j.physb.2008.12.027. [DOI] [Google Scholar]
  • 47.Prajapati GK, Roshan R, Gupta PN. Effect of plasticizer on ionic transport and dielectric properties of PVAH3PO4 proton conducting polymeric electrolytes. J Phys Chem Solids. 2010;71:1717–1723. doi: 10.1016/j.jpcs.2010.08.023. [DOI] [Google Scholar]
  • 48.Weng L, Wang X, Zhang X, et al. The effect of Ag@SiO2 core-shell nanoparticles on the dielectric properties of PVDF based nanocomposites. Polym Compos. 2020;41:2245–2253. doi: 10.1002/pc.25535. [DOI] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

The data are available in the manuscript.


Articles from Silicon are provided here courtesy of Nature Publishing Group

RESOURCES