Skip to main content

This is a preprint.

It has not yet been peer reviewed by a journal.

The National Library of Medicine is running a pilot to include preprints that result from research funded by NIH in PMC and PubMed.

bioRxiv logoLink to bioRxiv
[Preprint]. 2023 Feb 27:2023.02.24.529904. [Version 1] doi: 10.1101/2023.02.24.529904

Activity-dependent induction of astrocytic Slc22a3 regulates sensory processing through histone serotonylation

Debosmita Sardar, Yi-Ting Cheng, Junsung Woo, Dong-Joo Choi, Zhung-Fu Lee, Wookbong Kwon, Hsiao-Chi Chen, Brittney Lozzi, Alexis Cervantes, Kavitha Rajendran, Teng-Wei Huang, Antrix Jain, Benjamin Arenkiel, Ian Maze, Benjamin Deneen
PMCID: PMC10002681  PMID: 36909526

Abstract

Neuronal activity drives global alterations in gene expression within neurons, yet how it directs transcriptional and epigenomic changes in neighboring astrocytes in functioning circuits is unknown. Here we show that neuronal activity induces widespread transcriptional upregulation and downregulation in astrocytes, highlighted by the identification of a neuromodulator transporter Slc22a3 as an activity-inducible astrocyte gene regulating sensory processing in the olfactory bulb. Loss of astrocytic Slc22a3 reduces serotonin levels in astrocytes, leading to alterations in histone serotonylation. Inhibition of histone serotonylation in astrocytes reduces expression of GABA biosynthetic genes and GABA release, culminating in olfactory deficits. Our study reveals that neuronal activity orchestrates transcriptional and epigenomic responses in astrocytes, while illustrating new mechanisms for how astrocytes process neuromodulatory input to gate neurotransmitter release for sensory processing.

Full Text Availability

The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.


Articles from bioRxiv are provided here courtesy of Cold Spring Harbor Laboratory Preprints

RESOURCES