Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2023 Mar 11;53(1):61–69. doi: 10.1007/s11055-023-01391-y

Perinatal Stressors as a Factor in Impairments to Nervous System Development and Functions: Review of In Vivo Models

V R Gedzun 1,, D D Khukhareva 1, N Yu Sarycheva 1, M M Kotova 1, I A Kabiolsky 1, V A Dubynin 1
PMCID: PMC10006566  PMID: 36969360

Abstract

The human body is faced with stress throughout ontogeny. At the stage of intrauterine development, the mother’s body serves as a source of resources and most of the humoral factors supporting the development of the fetus. In normal conditions, maternal stress-related humoral signals (e.g., cortisol) regulate fetal development; however, distress (excessive pathological stress) in the perinatal period leads to serious and sometimes irreversible changes in the developing brain. The mother being in an unfavorable psychoemotional state, toxins and teratogens, environmental conditions, and severe infectious diseases are the most common risk factors for the development of perinatal nervous system pathology in the modern world. In this regard, the challenge of modeling situations in which prenatal or early postnatal stresses lead to serious impairments to brain development and functioning is extremely relevant. This review addresses the various models of perinatal pathology used in our studies (hypoxia, exposure to valproate, hyperserotoninemia, alcoholization), and assesses the commonality of the mechanisms of the resulting disorders and behavioral phenotypes forming in these models, as well as their relationship with models of perinatal pathology based on the impact of psychoemotional stressors.

Keywords: intrauterine development, perinatal pathology, perinatal stress, animal models, valproic acid, perinatal hypoxia, perinatal alcoholization, hyperserotoninemia

Footnotes

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 72, No. 4, pp. 457–470, July–August, 2022.

References

  1. Amaral, W. N. D., Moraes, C. L. D., Rodrigues, A. P. D. S., et al., “Maternal coronavirus infections and neonates born to mothers with Sars-Cov-2: a systematic review,” Healthcare, 8, No. 4, 511 (2020). [DOI] [PMC free article] [PubMed]
  2. Angelidou A, Asadi S, Alysandratos KD, et al. Perinatal stress, brain inflammation and risk of autism-review and proposal. BMC Pediatr. 2012;12(1):1–12. doi: 10.1186/1471-2431-12-89. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Anokhin, P. K., Razumkina, E. V., and Shamakina, I. Yu., “Comparative analysis of the expression of mRNA for dopamine receptors, tyrosine hydroxylase, and dopamine transport protein in the mesolimbic system of rats with different levels of alcohol consumption,” Neirokhimiya, 36, No. 2, 119–127 (2019).
  4. Arutyunyan, A. V., Kerkeshko, G. O., and Milyutina, Yu. P., “Prenatal stress in maternal hyperhomocysteinemia: impairments to fetal nervous system development and the functional state of the placenta,” Biokhimiya, 86, No. 6, 871–884 (2021), 10.31857/S0320972521060099. [DOI] [PubMed]
  5. Bestry M, Symons M, Larcombe A, et al. Association of prenatal alcohol exposure with offspring DNA methylation in mammals: a systematic review of the evidence. Clin. Epigenetics. 2022;14(1):1–15. doi: 10.1186/S13148-022-01231-9/TABLES/2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Blazevic S, Colic L, Culig L, Hranilovic D. Anxiety-like behavior and cognitive flexibility in adult rats perinatally exposed to increased serotonin concentrations. Behav. Brain Res. 2012;230(1):175–181. doi: 10.1016/j.bbr.2012.02.001. [DOI] [PubMed] [Google Scholar]
  7. Bond CM, Johnson JC, Chaudhary V, et al. Perinatal fluoxetine exposure results in social deficits and reduced monoamine oxidase gene expression in mice. Brain Res. 2020;1727:146282. doi: 10.1016/J.BRAINRES.2019.06.001. [DOI] [PubMed] [Google Scholar]
  8. Boucoiran I, Kakkar F, Renaud C. Maternal infections. Handb. Clin. Neurol. 2020;173:401–422. doi: 10.1016/B978-0-444-64150-2.00029-0. [DOI] [PubMed] [Google Scholar]
  9. Branten AJ, Wetzels JF, Weber AM, Koene RA. Hyponatremia due to sodium valproate. Ann. Neurol. 1998;43:256–257. doi: 10.1002/ana.410430219. [DOI] [PubMed] [Google Scholar]
  10. Cannizzaro C, Plescia F, Gagliano M, et al. Perinatal exposure to 5-methoxytryptamine, behavioural-stress reactivity and functional response of 5-HT1A receptors in the adolescent rat. Behav. Brain Res. 2008;186(1):98–106. doi: 10.1016/J.BBR.2007.07.036. [DOI] [PubMed] [Google Scholar]
  11. Charil A, Laplante DP, Vaillancourt C, King S. Prenatal stress and brain development. Brain Res. Rev. 2010;65(1):56–79. doi: 10.1016/J.BRAINRESREV.2010.-06.002. [DOI] [PubMed] [Google Scholar]
  12. Chaste, P. and Leboyer, M., “Autism risk factors: genes, environment, and gene-environment interactions,” Dialogues Clin. Neurosci., 14, No. 3, 281–292 (2012), 10.31887/DCNS.2012.14.3/PCHASTE. [DOI] [PMC free article] [PubMed]
  13. Cheroni, C., Caporale, N., and Testa, G., “Autism spectrum disorder at the crossroad between genes and environment: contributions, convergences, and interactions in ASD developmental pathophysiology,” Mol. Autism, 11, No. 1, 69 (2020), 10.1186/S13229-020-00370-1. [DOI] [PMC free article] [PubMed]
  14. Choi, C. S., Gonzales, E. L., Kim, K. CH., et al., “The transgenerational inheritance of autism-like phenotypes in mice exposed to valproic acid during pregnancy,” Sci. Rep., 6, Art. 36250 (2016), 10.1038/srep36250. [DOI] [PMC free article] [PubMed]
  15. Cisneros-Franco JM, Voss P, Thomas EM, de Villers-Sidani E. Critical periods of brain development. Handb. Clin. Neurol. 2020;173(January):75–88. doi: 10.1016/B978-0-444-64150-2.00-009-5. [DOI] [PubMed] [Google Scholar]
  16. Colson A, Sonveaux P, Debiève F, Sferruzzi-Perri AN. Adaptations of the human placenta to hypoxia: Opportunities for interventions in fetal growth restriction. Human Reprod. Update. 2021;27(3):531–569. doi: 10.1093/HUMUPD/DMAA053. [DOI] [PubMed] [Google Scholar]
  17. Cook JL. Effects of prenatal alcohol and cannabis exposure on neurodevelopmental and cognitive disabilities. Handb. Clin. Neurol. 2020;173(January):391–400. doi: 10.1016/B978-0-444-64150-2.00-028-9. [DOI] [PubMed] [Google Scholar]
  18. Creutzberg KC, Sanson A, Viola TW, et al. Long-lasting effects of prenatal stress on HPA axis and inflammation: a systematic review and multilevel meta-analysis in rodent studies. Neurosci. Biobehav. Rev. 2021;127:270–283. doi: 10.1016/j.neubiorev.2021.04.032. [DOI] [PubMed] [Google Scholar]
  19. Cristancho AG, Marsh ED. Epigenetics modifiers: potential hub for understanding and treating neurodevelopmental disorders from hypoxic injury. J. Neurodev. Disord. 2020;12(1):1–12. doi: 10.1186/S11689-020-09344-Z/FIGURES/2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Crombie GK, Palliser HK, Shaw JC, et al. Effects of prenatal stress on behavioural and neurodevelopmental outcomes are altered by maternal separation in the neonatal period. Psychoneuroendocrinology. 2021;124:105060. doi: 10.1016/J.PSYNEUEN.2020.10-5060. [DOI] [PubMed] [Google Scholar]
  21. Dobrovolsky AP, Gedzun VR, Bogin VI, et al. Beneficial effects of xenon inhalation on behavioral changes in a valproic acid-induced model of autism in rats. J. Transl. Med. 2019;17(1):1–15. doi: 10.1186/S12967-019-02161-6/FI-GURES/10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Donaldson, J., “Treatments for autism spectrum disorder: Literature review,” Senior Honors Theses, No. 1061 (2021), https://digitalcommons.liberty.edu/honors/1061.
  23. Dubrovskaya, N. M., Development of Motor Behavior in the Ontogenesis of Rats Subjected to Hypoxia at Different Stages of Embryogenesis: Auth. Abstr. of Master’s Thesis in Biological Sciences (2007), pp. 1–24.
  24. Dubynin, V. A., Dobryakova, Yu. V., and Tanaeva, K. K., Neurobiology and Neuropharmacology of Maternal Behavior, KMK Science Publishing Association, Moscow (2014).
  25. Eléfant E, Hanin C, Cohen D. Pregnant women, prescription, and fetal risk. Handb. Clin. Neurol. 2020;173:377–389. doi: 10.1016/B978-0-444-64150-2.00-027-7. [DOI] [PubMed] [Google Scholar]
  26. Felice AD, Anita Greco A, Calamandrei G, Minghetti L. Prenatal exposure to the organophosphate insecticide chlorpyrifos enhances brain oxidative stress and prostaglandin E2 synthesis in a mouse model of idiopathic autism. J. Neuroinflammation. 2016;13(1):1–10. doi: 10.1186/S12974-016-0617-4/TABLES/1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Fueta Y, Sekino Y, Yoshida S, et al. Prenatal exposure to valproic acid alters the development of excitability in the postnatal rat hippocampus. Neurotoxicology. 2018;65:1–8. doi: 10.1016/J.NEURO.2018.01.001. [DOI] [PubMed] [Google Scholar]
  28. Gagnon-Chauvin A, Bastien K, Saint-Amour D. Environmental toxic agents: the impact of heavy metals and organochlorides on brain development. Handb. Clin. Neurol. 2020;173(January):423–442. doi: 10.1016/B978-0-444-64150-2.00-030-7. [DOI] [PubMed] [Google Scholar]
  29. Gedzun, V. R., Svinov, M. M., Sarycheva, N. Yu., et al., “Effects of prenatal and early postnatal administration of valproate on the behavior and cytological characteristics of Wistar rats,” Zh. Vyssh. Nerv. Deyat., 70, No. 5, 682–695 (2020).
  30. Gelashvili, O. A., “A variant of periodization of biologically similar stages of human and rat ontogenesis,” Saratov. Nauchn. Med. Zh., 4, No. 22 (2008).
  31. Glazova, N. Yu., Merchieva, S. A., Volodina, M. A., et al., “Effects of neonatal administration of fluvoxamine on the physical development and activity of the serotonergic system of albino rats,” Acta Naturae (Russian version), 3, No. 22, 104–112 (2014). [PMC free article] [PubMed]
  32. Golosnaya GS, Petrukhin AS, Kotii SA. Immunochemical evaluation of blood–brain barrier disorders in neonates with perinatal hypoxic central nervous system lesions. Nevrol. Vestn. 2004;36:12–16. [Google Scholar]
  33. Guedeney A, Dupong I. The effects of socio-affective environment. Handb. Clin. Neurol. 2020;173:443–450. doi: 10.1016/B978-0-444-64150-2.00031-9. [DOI] [PubMed] [Google Scholar]
  34. Hossain MA. Molecular mediators of hypoxic-ischemic injury and implications for epilepsy in the developing brain. Epilepsy Behav. 2005;7:204–213. doi: 10.1016/j.yebeh.2005.05.015. [DOI] [PubMed] [Google Scholar]
  35. Juruena, M. F., Eror, F., Cleare, A. J., and Young, A. H., “The role of early life stress in HPA axis and anxiety,” Adv. Experim. Med. Biol., 1191: 141–53 (2020), 10.1007/978-981-32-9705-0_9. [DOI] [PubMed]
  36. Karpova NN, Lindholm J, Pruunsild P, et al. Long-lasting behavioural and molecular alterations induced by early postnatal fluoxetine exposure are restored by chronic fluoxetine treatment in adult mice. Eur. Neuropsychopharmacol. 2009;19:97–108. doi: 10.1016/j.euroneuro.2008.09.002. [DOI] [PubMed] [Google Scholar]
  37. Kaseka ML, Dlamini N, Westmacott R. Ischemic sequelae and other vascular diseases. Handb. Clin. Neurol. 2020;173:485–492. doi: 10.1016/B978-0-444-64150-2.00-033-2. [DOI] [PubMed] [Google Scholar]
  38. Khukhareva DD, Guseva KD, Sukhanova YA, et al. Physiological effects of acute neonatal normobaric hypoxia in c57bl/6 mice. Neurosci. Behav. Physiol. 2021;51(2):220–228. doi: 10.1007/s11055-021-01060-y. [DOI] [Google Scholar]
  39. Khukhareva DD, Sukhanova IA, Sebentsova EA, Levitskaya NG. Effects of single-session normobaric hypoxia in rats aged 10 days on sensorimotor development and behavior. Neurosci. Behav. Physiol. 2021;51(8):1153–1161. doi: 10.1007/s11055-021-01175-2. [DOI] [Google Scholar]
  40. Kinney, D. K., Munir, K. M., Crowley, D. J., and Miller, A. M., “Prenatal stress and risk for autism,” Neurosci. Biobehav. Rev., 32, No. 8, 1519 (2008), 10.1016/J.NEUBIOREV.2008.06.004. [DOI] [PMC free article] [PubMed]
  41. Kohls, G., Antezana, L., Mosner, M. G., et al., “Altered reward system reactivity for personalized circumscribed interests in autism,” Mol. Autism, 9, No. 1 (2018), 10.1186/S13229-018-0195-7. [DOI] [PMC free article] [PubMed]
  42. Kulkarni ML, Zaheeruddin M, Shenoy N, Vani HN. Fetal valproate syndrome. Indian J. Pediatr. 2006;73:937–939. doi: 10.1007/BF02859291. [DOI] [PubMed] [Google Scholar]
  43. Kundakovic M, Gudsnuk K, Herbstman JB, et al. DNA methylation of BDNF as a biomarker of early-life adversity. Proc. Natl. Acad. Sci. USA. 2015;112(22):6807–6813. doi: 10.1073/PNAS.1408355111/SUPPL_FILE/PNAS.201408355SI.PDF. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Lai, M.-C. and Yang, S.-N., “Perinatal hypoxic-ischemic encephalopathy,” Biomed. Res. Int., 2011, Art. 609813 (2010), 10.1155/2011/609813. [DOI] [PMC free article] [PubMed]
  45. Lee, B. L. and Glass, H. C., “Cognitive outcomes in late childhood and adolescence of neonatal hypoxic-ischemic encephalopathy,” Clin. Exp. Pediatr., 64, No. 12, 608 (2021), 10.3345/CEP.2021.00164. [DOI] [PMC free article] [PubMed]
  46. Lee E, Lee J, Kim E. Excitation/inhibition imbalance in animal models of autism spectrum disorders. Biol. Psychiatry. 2017;81:838–847. doi: 10.1016/j.biopsych.2016.05.011. [DOI] [PubMed] [Google Scholar]
  47. Liu Y, Heron J, Hickman M, et al. Prenatal stress and offspring depression in adulthood: the mediating role of childhood trauma. J.Affect. Disord. 2022;297(January):45–52. doi: 10.1016/J.JAD.2021.10.019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Malyshev AV, Abbasova KR, Averina OA, et al. Fetal valproate syndrome as an experimental model of autism. Moscow Univ. Biol. Sci. Bull. 2015;70(3):110–14. doi: 10.3103/S0096392515030074. [DOI] [Google Scholar]
  49. Markham, J. A. and Koenig, J. I., “Prenatal stress: Role in psychotic and depressive diseases,” Psychopharmacology, 214, No. 1, 89 (2011), 10.1007/S00213-010-2035-0. [DOI] [PMC free article] [PubMed]
  50. Marotta, R., Risoleo, M. C., Messina, G., et al., “The neurochemistry of autism,” Brain Sci., 10, No. 3 (2020), 10.3390/BRAINSCI10030163. [DOI] [PMC free article] [PubMed]
  51. Milyutina, Yu. P., Pustygina, A. V., Shcherbitskaya, A. D., et al., “Comparison of serum indicators of oxidative stress in rats in various models of hyperhomocysteinemia,” Acta Biomed. Scient., 3, No. 2, 109 (2016).
  52. Morozov SA. Comorbidity in autistic spectrum disorders. Autizm Narush. Razvit. 2018;16(2):3–8. [Google Scholar]
  53. Morozova EA, Morozov DV. Neurological disorders in adolescents as a consequence of perinatal CNS pathologies. Ross. Med. Zh. 2008;16(3):126–128. [Google Scholar]
  54. Perez-Fernandez C, Morales-Navas M, Aguilera-Sáez LM, et al. Medium and long-term effects of low doses of chlorpyrifos during the postnatal, preweaning developmental stage on sociability, dominance, gut microbiota and plasma metabolites. Environ. Res. 2020;184:109341. doi: 10.1016/J.ENVRES.2020.109341. [DOI] [PubMed] [Google Scholar]
  55. Piesova M, Mach M. Impact of perinatal hypoxia on the developing brain. Physiol. Res. 2020;69(2):199–213. doi: 10.33549/physiolres.934198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Prusakov VF, Morozova EA, Marulina VI, et al. Current neurological problems of adolescents. Praktich. Med. 2012;7(62):147–150. [Google Scholar]
  57. Ramsteijn AS, Van de Wijer L, Rando J, et al. Perinatal selective serotonin reuptake inhibitor exposure and behavioral outcomes: a systematic review and meta-analyses of animal studies. Neurosci. Biobehav. Rev. 2020;114:53–69. doi: 10.1016/J.NEUBIOREV.2020.04.010. [DOI] [PubMed] [Google Scholar]
  58. Razumkina EV, Anokhin PK, Proskuryakova TV, Shamakina IY. Experimental approaches to the study of behavioral disorders associated with the prenatal effects of alcohol. Zh. Nevrol. Psikhiatr. 2018;118:79–88. doi: 10.17116/jnevro20181181279-88. [DOI] [PubMed] [Google Scholar]
  59. Razumkina EV, Anokhin PK, Sarycheva NY, Kamenskii AA. Prenatal actions of alcohol and DNA methylation. Vopr. Narkol. 2018;9:18–43. [Google Scholar]
  60. Rice D, Stan Barone S. Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ. Health Perspect. 2000;108(Suppl. 3):511–533. doi: 10.1289/EHP.00108S3511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Saeki, H., Ito, T., Ishiyama, Sh., et al., “Animal models of prenatal stress,” Juntendo Med. J., 67, No. 2, 124–130 (2021), 10.14789/JMJ.2021.67.JMJ20-R18.
  62. Schaeffer EL, Kühn F, Schmitt A, et al. Increased cell proliferation in the rat anterior cingulate cortex following neonatal hypoxia: relevance to schizophrenia. J. Neural Transm. (Vienna) 2013;120:187–195. doi: 10.1007/s00702-012-0859-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Scott H, Phillips TJ, Sze Y, et al. Maternal antioxidant treatment prevents the adverse effects of prenatal stress on the offspring’s brain and behavior. Neurobiol. Stress. 2020;13:100281. doi: 10.1016/J.YNSTR.2020.100281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Smith AL, Alexander M, Rosenkrantz TS, et al. Sex differences in behavioral outcome following neonatal hypoxia ischemia: insights from a clinical meta-analysis and a rodent model of induced hypoxic ischemic brain injury. Exp. Neurol. 2014;254:54–67. doi: 10.1016/j.expneurol.2014.01.003. [DOI] [PubMed] [Google Scholar]
  65. Song S, Zhang L, Zhang H, et al. Perinatal BPA exposure induces hyperglycemia, oxidative stress and decreased adiponectin production in later life of male rat offspring. Int. J. Environ. Res. Public Health. 2014;11:3728–3742. doi: 10.3390/IJERPH110403728. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Sosnowski DW, Booth C, York TP, et al. Maternal prenatal stress and infant DNA methylation: a systematic review. Dev. Psychobiol. 2018;60(2):127–139. doi: 10.1002/DEV.21604. [DOI] [PubMed] [Google Scholar]
  67. Sukhanova IA, Sebentsova EA, Khukhareva DD, et al. Genderdependent changes in physical development, BDNF content and GSH redox system in a model of acute neonatal hypoxia in rats. Behav. Brain Res. 2018;350:87–98. doi: 10.1016/j.bbr.2018.05.008. [DOI] [PubMed] [Google Scholar]
  68. Sukhanova IA, Sebentsova EA, Khukhareva DD, et al. Early-life n-arachidonoyl-dopamine exposure increases antioxidant capacity of the brain tissues and reduces functional deficits after neonatal hypoxia in rats. Int. J. Dev. Neurosci. 2019;78:7–18. doi: 10.1016/j.ijdevneu.2019.06.007. [DOI] [PubMed] [Google Scholar]
  69. Sukhanova YA, Sebentsova EA, Levitskaya NG. Acute and delayed effects of perinatal hypoxic brain damage in children and in model experiments on rodents. Neirokhimiya. 2016;33:276–292. [Google Scholar]
  70. Supekar, K., Kochalka, J., Schaer, M., et al., “Deficits in mesolimbic reward pathway underlie social interaction impairments in children with autism,” Brain, 141, No. 9, 2795–2805 (2018). [DOI] [PMC free article] [PubMed]
  71. Thompson BL, Levitt P, Stanwood GD. Prenatal exposure to drugs: effects on brain development and implications for policy and education. Nat. Rev. Neurosci. 2009;10(4):303–312. doi: 10.1038/nrn2598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Thongkorn S, Kanlayaprasit S, Jindatip D, et al. Sex differences in the effects of prenatal Bisphenol A exposure on genes associated with autism spectrum disorder in the hippocampus. Sci. Rep. 2019;9(1):1–14. doi: 10.1038/s41598-019-39386-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Ujhazy E, Dubovicky M, Navarova J, et al. Subchronic perinatal asphyxia in rats: embryo-foetal assessment of a new model of oxidative stress during critical period of development. Food Chem. Toxicol. 2013;61:233–239. doi: 10.1016/J.FCT.2013.07.023. [DOI] [PubMed] [Google Scholar]
  74. Vargas DL, Nascimbene C, Krishnan C, et al. Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann. Neurol. 2005;57(1):67–81. doi: 10.1002/ana.20315. [DOI] [PubMed] [Google Scholar]
  75. Vasil’ev, D. S., Formation of the Rat Telencephalon after Impaired Embryonic Development Due to Prenatal Hypoxia: Dissertation for Master of Biological Sciences, 03.00.13, 03.00.25 (2007).
  76. Wang Y, Cao M, Liu A, et al. Changes of inflammatory cytokines and neurotrophins emphasized their roles in hypoxic-ischemic brain damage. Int. J. Neurosci. 2013;123(3):191–195. doi: 10.3109/00207454.2012.744755. [DOI] [PubMed] [Google Scholar]
  77. Weinstock, M. and Antonelli, M. C., “Changes induced by prenatal stress in behavior and brain morphology: Can they be prevented or reversed?” Adv. Neurobiol., 10, 3–25 (2015), 10.1007/978-1-4939-1372-5_1. [DOI] [PubMed]
  78. Weinstock, M., “Contribution of early life stress to anxiety disorder,” in: Stressfrom Molecules to Behavior: a Comprehensive Analysis of the Neurobiology of Stress Responses (2009), pp. 189–205, 10.1002/9783527628346.CH10.
  79. Weinstock, M., “Prenatal stressors in rodents: effects on behavior,” Neurobiol. Stress, 6 (2017), 10.1016/J.YNSTR.2016.08.004. [DOI] [PMC free article] [PubMed]
  80. Weinstock M. Sex-dependent changes induced by prenatal stress in cortical and hippocampal morphology and behaviour in rats: an update. Int. J. Biol. Stress. 2011;14(6):604–613. doi: 10.3109/10253890.2011.588294. [DOI] [PubMed] [Google Scholar]
  81. Welberg LAM, Seckl JR. Prenatal stress, glucocorticoids and the programming of the brain. J. Neuroendocrinol. 2001;13(2):113–128. doi: 10.1111/J.1365-2826.2001.00601.X. [DOI] [PubMed] [Google Scholar]
  82. Whittle S, Liu K, Bastin C, et al. Neurodevelopmental correlates of proneness to guilt and shame in adolescence and early adulthood. Dev. Cogn. Neurosci. 2016;19:51–57. doi: 10.1016/J.DCN.2016.02.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Yakovleva OV, Ziganshina AR, Gerasimova EV, et al. Effects of B group vitamins on the early development of rat pups with prenatal hyperhomocysteinemia. Ros. Fiziol. Zh. 2019;105(10):1247–1261. doi: 10.1134/S086981391910011X. [DOI] [Google Scholar]

Articles from Neuroscience and Behavioral Physiology are provided here courtesy of Nature Publishing Group

RESOURCES