Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2022 Dec 7;66(3):944–954. doi: 10.1007/s40843-022-2268-9

Engineering chemical-bonded Ti3C2 MXene@carbon composite films with 3D transportation channels for promoting lithium-ion storage in hybrid capacitors

具有三维传输通道的化学键合Ti3C2 MXene@C复合材料促进混合电容器中的锂离子存储

Min Feng 1, Wanli Wang 1, Zhaowei Hu 1, Cheng Fan 1, Xiaoran Zhao 1, Peng Wang 1, Huifang Li 1, Lei Yang 2,3, Xiaojun Wang 1,3,, Zhiming Liu 1,
PMCID: PMC10015531  PMID: 36937247

Abstract

Lithium-ion capacitors (LICs) are promising energy storage devices because they feature the high energy density of lithium-ion batteries and the high power density of supercapacitors. However, the mismatch of electrochemical reaction kinetics between the anode and cathode in LICs makes exploring anode materials with fast ion diffusion and electron transfer channels an urgent task. Herein, the two-dimensional (2D) Ti3C2 MXene with controllable terminal groups was introduced into 1D carbon nanofibers to form a 3D conductive network by the electrospinning strategy. In such Ti3C2 MXene and carbon matrix composites (named KTi-400@CNFs), the 2D nanosheet structure endows Ti3C2 MXene with more active sites for Li+ ion storage, and the carbon framework is favorable to the conductivity of the composites. Impressively, Ti-O-C bonds are formed at the interface between Ti3C2 MXene and the carbon framework. Such chemical bonding in the composites builds a bridge for rapid electron transportation and quick ion diffusion in the longitudinal direction from layer to layer. As a result, the optimized KTi-400@CNFs composites maintain a good capacity of 235 mA h g−1 for 500 cycles at a current density of 5 A g−1. The LIC consisting of the KTi-400@CNFs//AC configuration achieves high energy density (114.3 W h kg−1) and high power density (12.8 kW kg−1). This paper provides guidance for designing 2D materials and the KTi-400@CNFs composites with such a unique structure and superior electrochemical performance have great potential in the next-generation energy storage fields.

graphic file with name 40843_2022_2268_Fig1_HTML.jpg

Electronic Supplementary Material

Supplementary material is available for this article at 10.1007/s40843-022-2268-9 and is accessible for authorized users.

Keywords: Ti3C2, carbon nanofibers, Ti-O-C chemical bonds, 3D transportation channels, lithium-ion capacitors

Supplementary Information

40843_2022_2268_MOESM1_ESM.pdf (1MB, pdf)

Engineering chemical-bonded Ti3C2 MXene@carbon composite films with 3D transportation channels for promoting lithium-ion storage in hybrid capacitors

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22005167 and 21905152), Shandong Provincial Natural Science Foundation (ZR2020QB125 and ZR2020MB045), China Postdoctoral Science Foundation (2021M693256, 2021T140687 and 2022M713249), Qingdao Postdoctoral Applied Research Project, Taishan Scholar Project of Shandong Province (ts20190937), and the Youth Innovation Team Project for Talent Introduction and Cultivation in Universities of Shandong Province.

Author contributions Wang X planned and designed the project; Feng M performed all the experiments and analyzed the data; Wang X and Feng M wrote this paper; Liu Z provided some guidance and suggestions on the experiments; Wang W and Hu Z helped to synthesize the materials; Fan C and Zhao X helped to characterize the samples; Wang P provided suggestions on the experiments; Li H and Yang L provided guidance on the paper. All the authors contributed to the general discussion.

Conflict of interest The authors declare that they have no conflict of interest.

Footnotes

Supplementary information Supporting data are available in the online version of the paper.

Min Feng is currently a Master’s student at Qingdao University of Science and Technology, under the guidence of associate professor Xiaojun Wang. Her research focuses on the preparation of Ti3C2Tx (MXene)-based composite nanomaterials and their applications in energy storage fields.

Xiaojun Wang is currently an associate professor at the College of Electromechanical Engineering, Qingdao University of Science and Technology. She received her PhD degree from Nankai University in 2019 and then continued with her post-doctoral research at Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences. Her research interests include advanced energy storage materials and devices, such as sodium-ion batteries and zinc-ion batteries.

Zhiming Liu is currently a professor at Qingdao University of Science and Technology. He earned his PhD degree in energy engineering from Hanyang University in Korea in 2018 and then continued his post-doctoral research under the supervision of Dr. Guanglei Cui at Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences. His research focuses on functional nanomaterials for electrochemical energy storage and conversion.

Contributor Information

Xiaojun Wang, Email: wangxiaojunchem@163.com.

Zhiming Liu, Email: zmliu@qust.edu.cn.

References

  • 1.Larcher D, Tarascon JM. Towards greener and more sustainable batteries for electrical energy storage. Nat Chem. 2015;7:19–29. doi: 10.1038/nchem.2085. [DOI] [PubMed] [Google Scholar]
  • 2.Xu H, Zheng R, Du D, et al. Cationic vanadium vacancy-enriched V2−xO5 on V2C mxene as superior bifunctional electrocatalysts for Li-O2 batteries. Sci China Mater. 2022;65:1761–1770. doi: 10.1007/s40843-021-1959-1. [DOI] [Google Scholar]
  • 3.Ding J, Hu W, Paek E, et al. Review of hybrid ion capacitors: From aqueous to lithium to sodium. Chem Rev. 2018;118:6457–6498. doi: 10.1021/acs.chemrev.8b00116. [DOI] [PubMed] [Google Scholar]
  • 4.Du Y, Wang X, Zhang Y, et al. High mass loading CaV4O9 microflowers with amorphous phase transformation as cathode for aqueous zinc-ion battery. Chem Eng J. 2022;434:134642. doi: 10.1016/j.cej.2022.134642. [DOI] [Google Scholar]
  • 5.Wang H, Zhu C, Chao D, et al. Nonaqueous hybrid lithium-ion and sodium-ion capacitors. Adv Mater. 2017;29:1702093. doi: 10.1002/adma.201702093. [DOI] [PubMed] [Google Scholar]
  • 6.Jin L, Shen C, Shellikeri A, et al. Progress and perspectives on pre-lithiation technologies for lithium ion capacitors. Energy Environ Sci. 2020;13:2341–2362. doi: 10.1039/D0EE00807A. [DOI] [Google Scholar]
  • 7.Chen P, Zhou W, Xiao Z, et al. In situ anchoring MnO nanoparticles on self-supported 3D interconnected graphene scroll framework: A fast kinetics boosted ultrahigh-rate anode for Li-ion capacitor. Energy Storage Mater. 2020;33:298–308. doi: 10.1016/j.ensm.2020.08.017. [DOI] [Google Scholar]
  • 8.Dong S, Li H, Wang J, et al. Improved flexible Li-ion hybrid capacitors: Techniques for superior stability. Nano Res. 2017;10:4448–4456. doi: 10.1007/s12274-017-1753-6. [DOI] [Google Scholar]
  • 9.Er D, Li J, Naguib M, et al. Ti3C2 MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries. ACS Appl Mater Interfaces. 2014;6:11173–11179. doi: 10.1021/am501144q. [DOI] [PubMed] [Google Scholar]
  • 10.Gao X, Du X, Mathis TS, et al. Maximizing ion accessibility in MXene-knotted carbon nanotube composite electrodes for high-rate electrochemical energy storage. Nat Commun. 2020;11:6160. doi: 10.1038/s41467-020-19992-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Chao H, Li Y, Lu Y, et al. MXene-mediated regulation of local electric field surrounding polyoxometalate nanoparticles for improved lithium storage. Sci China Mater. 2022;65:2958–2966. doi: 10.1007/s40843-022-2099-9. [DOI] [Google Scholar]
  • 12.Hu M, Zhang H, Hu T, et al. Emerging 2D MXenes for supercapacitors: Status, challenges and prospects. Chem Soc Rev. 2020;49:6666–6693. doi: 10.1039/D0CS00175A. [DOI] [PubMed] [Google Scholar]
  • 13.Zhang M, Cao J, Wang Y, et al. Electrolyte-mediated dense integration of graphene-MXene films for high volumetric capacitance flexible supercapacitors. Nano Res. 2020;14:699–706. doi: 10.1007/s12274-020-3100-6. [DOI] [Google Scholar]
  • 14.Shao Y, El-Kady MF, Sun J, et al. Design and mechanisms of asymmetric supercapacitors. Chem Rev. 2018;118:9233–9280. doi: 10.1021/acs.chemrev.8b00252. [DOI] [PubMed] [Google Scholar]
  • 15.Tian Y, Que B, Luo Y, et al. Amino-rich surface-modified MXene as anode for hybrid aqueous proton supercapacitors with superior volumetric capacity. J Power Sources. 2021;495:229790. doi: 10.1016/j.jpowsour.2021.229790. [DOI] [Google Scholar]
  • 16.Xiao Z, Zhao L, Yu Z, et al. Multilayered graphene endowing superior dispersibility for excellent low temperature performance in lithium-ion capacitor as both anode and cathode. Chem Eng J. 2022;429:132358. doi: 10.1016/j.cej.2021.132358. [DOI] [Google Scholar]
  • 17.Li FF, Gao JF, He ZH, et al. Design and synthesis of CoP/r-GO hierarchical architecture: Dominated pseudocapacitance, fasted kinetics features, and Li-ion capacitor applications. ACS Appl Energy Mater. 2020;3:5448–5461. doi: 10.1021/acsaem.0c00440. [DOI] [Google Scholar]
  • 18.Wang L, Zhang X, Xu Y, et al. Tetrabutylammonium-intercalated 1T-MoS2 nanosheets with expanded interlayer spacing vertically coupled on 2D delaminated MXene for high-performance lithium-ion capacitors. Adv Funct Mater. 2021;31:2104286. doi: 10.1002/adfm.202104286. [DOI] [Google Scholar]
  • 19.Li T, Zhang J, Li C, et al. Nitrogen and phosphorous co-doped hierarchical meso-Microporous carbon nanospheres with extraordinary lithium storage for high-performance lithium-ion capacitors. Sci China Mater. 2022;65:2363–2372. doi: 10.1007/s40843-021-2047-x. [DOI] [Google Scholar]
  • 20.Luo B, Hu Y, Zhu X, et al. Controllable growth of SnS2 nanostructures on nanocarbon surfaces for lithium-ion and sodium-ion storage with high rate capability. J Mater Chem A. 2018;6:1462–1472. doi: 10.1039/C7TA09757C. [DOI] [Google Scholar]
  • 21.Li X, Huang Z, Shuck CE, et al. MXene chemistry, electrochemistry and energy storage applications. Nat Rev Chem. 2022;6:389–404. doi: 10.1038/s41570-022-00384-8. [DOI] [PubMed] [Google Scholar]
  • 22.Chen J, Ding Y, Yan D, et al. Synthesis of MXene and its application for zinc-ion. SusMat. 2022;2:293–318. doi: 10.1002/sus2.57. [DOI] [Google Scholar]
  • 23.VahidMohammadi A, Rosen J, Gogotsi Y. The world of two-dimensional carbides and nitrides (MXenes) Science. 2021;372:1165. doi: 10.1126/science.abf1581. [DOI] [PubMed] [Google Scholar]
  • 24.Ghidiu M, Lukatskaya MR, Zhao MQ, et al. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature. 2014;516:78–81. doi: 10.1038/nature13970. [DOI] [PubMed] [Google Scholar]
  • 25.Naguib M, Halim J, Lu J, et al. New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries. J Am Chem Soc. 2013;135:15966–15969. doi: 10.1021/ja405735d. [DOI] [PubMed] [Google Scholar]
  • 26.Zhang T, Zhang L, Hou Y. MXenes: Synthesis strategies and lithium-sulfur battery applications. eScience. 2022;2:164–182. doi: 10.1016/j.esci.2022.02.010. [DOI] [Google Scholar]
  • 27.Zhang K, Zhao D, Qian Z, et al. N-doped Ti3C2Tx MXene sheet-coated SiOx to boost lithium storage for lithium-ion batteries. Sci China Mater. 2023;66:51–60. doi: 10.1007/s40843-022-2142-1. [DOI] [Google Scholar]
  • 28.Bao W, Tang X, Guo X, et al. Porous cryo-dried MXene for efficient capacitive deionization. Joule. 2018;2:778–787. doi: 10.1016/j.joule.2018.02.018. [DOI] [Google Scholar]
  • 29.Guo Y, Zhang D, Yang Y, et al. MXene-encapsulated hollow Fe3O4 nanochains embedded in N-doped carbon nanofibers with dual electronic pathways as flexible anodes for high-performance Li-ion batteries. Nanoscale. 2021;13:4624–4633. doi: 10.1039/D0NR09228B. [DOI] [PubMed] [Google Scholar]
  • 30.Song X, Wang H, Jin S, et al. Oligolayered Ti3C2Tx MXene towards high performance lithium/sodium storage. Nano Res. 2020;13:1659–1667. doi: 10.1007/s12274-020-2789-6. [DOI] [Google Scholar]
  • 31.Mao X, Zou Y, Xu F, et al. Three-dimensional self-supporting Ti3C2 with MoS2 and Cu2O nanocrystals for high-performance flexible supercapacitors. ACS Appl Mater Interfaces. 2021;13:22664–22675. doi: 10.1021/acsami.1c05231. [DOI] [PubMed] [Google Scholar]
  • 32.Yi S, Wang L, Zhang X, et al. Cationic intermediates assisted self-assembly two-dimensional Ti3C2T/rGO hybrid nanoflakes for advanced lithium-ion capacitors. Sci Bull. 2021;66:914–924. doi: 10.1016/j.scib.2020.12.026. [DOI] [PubMed] [Google Scholar]
  • 33.He X, Jin S, Miao L, et al. A 3D hydroxylated MXene/carbon nanotubes composite as a scaffold for dendrite-free sodium-metal electrodes. Angew Chem Int Ed. 2020;59:16705–16711. doi: 10.1002/anie.202006783. [DOI] [PubMed] [Google Scholar]
  • 34.Luo J, Zhang W, Yuan H, et al. Pillared structure design of MXene with ultralarge interlayer spacing for high-performance lithium-ion capacitors. ACS Nano. 2017;11:2459–2469. doi: 10.1021/acsnano.6b07668. [DOI] [PubMed] [Google Scholar]
  • 35.Huang P, Zhang S, Ying H, et al. Fabrication of Fe nanocomplex pillared few-layered Ti3C2Tx MXene with enhanced rate performance for lithium-ion batteries. Nano Res. 2020;14:1218–1227. doi: 10.1007/s12274-020-3221-y. [DOI] [Google Scholar]
  • 36.Li J, Yuan X, Lin C, et al. Achieving high pseudocapacitance of 2D titanium carbide (MXene) by cation intercalation and surface modification. Adv Energy Mater. 2017;7:1602725. doi: 10.1002/aenm.201602725. [DOI] [Google Scholar]
  • 37.Levitt AS, Alhabeb M, Hatter CB, et al. Electrospun MXene/carbon nanofibers as supercapacitor electrodes. J Mater Chem A. 2019;7:269–277. doi: 10.1039/C8TA09810G. [DOI] [Google Scholar]
  • 38.Chen X, Zhu Y, Zhang M, et al. n-Butyllithium-treated Ti3C2Tx MXene with excellent pseudocapacitor performance. ACS Nano. 2019;13:9449–9456. doi: 10.1021/acsnano.9b04301. [DOI] [PubMed] [Google Scholar]
  • 39.Zhang CJ. Interfacial assembly of two-dimensional mxenes. J Energy Chem. 2021;60:417–434. doi: 10.1016/j.jechem.2020.12.036. [DOI] [Google Scholar]
  • 40.Shi H, Zhang P, Liu Z, et al. Ambient-stable two-dimensional titanium carbide (MXene) enabled by iodine etching. Angew Chem Int Ed. 2021;60:8689–8693. doi: 10.1002/anie.202015627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Naguib M, Kurtoglu M, Presser V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater. 2011;23:4248–4253. doi: 10.1002/adma.201102306. [DOI] [PubMed] [Google Scholar]
  • 42.Tang J, Peng X, Lin T, et al. Confining ultrafine tin monophosphide in Ti3C2Tx interlayers for rapid and stable sodium ion storage. eScience. 2021;1:203–211. doi: 10.1016/j.esci.2021.12.004. [DOI] [Google Scholar]
  • 43.An GH, Koo BR, Ahn HJ. Activated mesoporous carbon nanofibers fabricated using water etching-assisted templating for high-performance electrochemical capacitors. Phys Chem Chem Phys. 2016;18:6587–6594. doi: 10.1039/C6CP00035E. [DOI] [PubMed] [Google Scholar]
  • 44.Yang C, Ren J, Zheng M, et al. High-level N/P co-doped Sn-carbon nanofibers with ultrahigh pseudocapacitance for high-energy lithium-ion and sodium-ion capacitors. Electrochim Acta. 2020;359:136898. doi: 10.1016/j.electacta.2020.136898. [DOI] [Google Scholar]
  • 45.Zhou J, Xu S, Kang Q, et al. Iron oxide encapsulated in nitrogen-rich carbon enabling high-performance lithium-ion capacitor. Sci China Mater. 2020;63:2289–2302. doi: 10.1007/s40843-020-1414-0. [DOI] [Google Scholar]
  • 46.Yang L, Qin H, Dong Z, et al. Metallic S-CoTe with surface reconstruction activated by electrochemical oxidation for oxygen evolution catalysis. Small. 2021;17:2102027. doi: 10.1002/smll.202102027. [DOI] [PubMed] [Google Scholar]
  • 47.Jin H, Li J, Xu Z, et al. Assembly of two-dimensional nanofluidic channel with high proton conductivity using single-layer MnO2 nanosheets. Sci China Mater. 2022;65:2578–2584. doi: 10.1007/s40843-021-1987-4. [DOI] [Google Scholar]
  • 48.Yu P, Cao G, Yi S, et al. Binder-free 2D titanium carbide (MXene)/carbon nanotube composites for high-performance lithium-ion capacitors. Nanoscale. 2018;10:5906–5913. doi: 10.1039/C8NR00380G. [DOI] [PubMed] [Google Scholar]
  • 49.Qiu ZM, Bai Y, Gao YD, et al. MXenes nanocomposites for energy storage and conversion. Rare Met. 2021;41:1101–1128. doi: 10.1007/s12598-021-01876-0. [DOI] [Google Scholar]
  • 50.Xia Y, Que LF, Yu FD, et al. Boosting ion/e− transfer of Ti3C2via interlayered and interfacial co-modification for high-performance Liion capacitors. Chem Eng J. 2021;404:127116. doi: 10.1016/j.cej.2020.127116. [DOI] [Google Scholar]
  • 51.Jagadale A, Zhou X, Blaisdell D, et al. Carbon nanofibers (CNFs) supported cobalt- nickel sulfide (CoNi2S4) nanoparticles hybrid anode for high performance lithium ion capacitor. Sci Rep. 2018;8:1602. doi: 10.1038/s41598-018-19787-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Qin L, Liu Y, Xu S, et al. In-plane assembled single-crystalline T-Nb2O5 nanorods derived from few-layered Nb2CTx MXene nanosheets for advanced Li-ion capacitors. Small Methods. 2020;4:2000630. doi: 10.1002/smtd.202000630. [DOI] [Google Scholar]
  • 53.Ju J, Lv Y, An X, et al. The stereoscopic honeycomb-like porous carbon nanofibers as a carrier of TiO2 nanoparticles for high-performance Liion capacitor. J Alloys Compd. 2019;791:1248–1256. doi: 10.1016/j.jallcom.2019.03.413. [DOI] [Google Scholar]
  • 54.Sathiya M, Prakash AS, Ramesha K, et al. V2O5-anchored carbon nanotubes for enhanced electrochemical energy storage. J Am Chem Soc. 2011;133:16291–16299. doi: 10.1021/ja207285b. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

40843_2022_2268_MOESM1_ESM.pdf (1MB, pdf)

Engineering chemical-bonded Ti3C2 MXene@carbon composite films with 3D transportation channels for promoting lithium-ion storage in hybrid capacitors


Articles from Science China Materials are provided here courtesy of Nature Publishing Group

RESOURCES